1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Pid namespaces 4 * 5 * Authors: 6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 8 * Many thanks to Oleg Nesterov for comments and help 9 * 10 */ 11 12 #include <linux/pid.h> 13 #include <linux/pid_namespace.h> 14 #include <linux/user_namespace.h> 15 #include <linux/syscalls.h> 16 #include <linux/cred.h> 17 #include <linux/err.h> 18 #include <linux/acct.h> 19 #include <linux/slab.h> 20 #include <linux/proc_ns.h> 21 #include <linux/reboot.h> 22 #include <linux/export.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/signal.h> 25 #include <linux/idr.h> 26 27 static DEFINE_MUTEX(pid_caches_mutex); 28 static struct kmem_cache *pid_ns_cachep; 29 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ 30 #define MAX_PID_NS_LEVEL 32 31 /* Write once array, filled from the beginning. */ 32 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; 33 34 /* 35 * creates the kmem cache to allocate pids from. 36 * @level: pid namespace level 37 */ 38 39 static struct kmem_cache *create_pid_cachep(unsigned int level) 40 { 41 /* Level 0 is init_pid_ns.pid_cachep */ 42 struct kmem_cache **pkc = &pid_cache[level - 1]; 43 struct kmem_cache *kc; 44 char name[4 + 10 + 1]; 45 unsigned int len; 46 47 kc = READ_ONCE(*pkc); 48 if (kc) 49 return kc; 50 51 snprintf(name, sizeof(name), "pid_%u", level + 1); 52 len = sizeof(struct pid) + level * sizeof(struct upid); 53 mutex_lock(&pid_caches_mutex); 54 /* Name collision forces to do allocation under mutex. */ 55 if (!*pkc) 56 *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0); 57 mutex_unlock(&pid_caches_mutex); 58 /* current can fail, but someone else can succeed. */ 59 return READ_ONCE(*pkc); 60 } 61 62 static void proc_cleanup_work(struct work_struct *work) 63 { 64 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); 65 pid_ns_release_proc(ns); 66 } 67 68 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 69 { 70 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 71 } 72 73 static void dec_pid_namespaces(struct ucounts *ucounts) 74 { 75 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 76 } 77 78 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 79 struct pid_namespace *parent_pid_ns) 80 { 81 struct pid_namespace *ns; 82 unsigned int level = parent_pid_ns->level + 1; 83 struct ucounts *ucounts; 84 int err; 85 86 err = -EINVAL; 87 if (!in_userns(parent_pid_ns->user_ns, user_ns)) 88 goto out; 89 90 err = -ENOSPC; 91 if (level > MAX_PID_NS_LEVEL) 92 goto out; 93 ucounts = inc_pid_namespaces(user_ns); 94 if (!ucounts) 95 goto out; 96 97 err = -ENOMEM; 98 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 99 if (ns == NULL) 100 goto out_dec; 101 102 idr_init(&ns->idr); 103 104 ns->pid_cachep = create_pid_cachep(level); 105 if (ns->pid_cachep == NULL) 106 goto out_free_idr; 107 108 err = ns_alloc_inum(&ns->ns); 109 if (err) 110 goto out_free_idr; 111 ns->ns.ops = &pidns_operations; 112 113 kref_init(&ns->kref); 114 ns->level = level; 115 ns->parent = get_pid_ns(parent_pid_ns); 116 ns->user_ns = get_user_ns(user_ns); 117 ns->ucounts = ucounts; 118 ns->pid_allocated = PIDNS_ADDING; 119 INIT_WORK(&ns->proc_work, proc_cleanup_work); 120 121 return ns; 122 123 out_free_idr: 124 idr_destroy(&ns->idr); 125 kmem_cache_free(pid_ns_cachep, ns); 126 out_dec: 127 dec_pid_namespaces(ucounts); 128 out: 129 return ERR_PTR(err); 130 } 131 132 static void delayed_free_pidns(struct rcu_head *p) 133 { 134 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 135 136 dec_pid_namespaces(ns->ucounts); 137 put_user_ns(ns->user_ns); 138 139 kmem_cache_free(pid_ns_cachep, ns); 140 } 141 142 static void destroy_pid_namespace(struct pid_namespace *ns) 143 { 144 ns_free_inum(&ns->ns); 145 146 idr_destroy(&ns->idr); 147 call_rcu(&ns->rcu, delayed_free_pidns); 148 } 149 150 struct pid_namespace *copy_pid_ns(unsigned long flags, 151 struct user_namespace *user_ns, struct pid_namespace *old_ns) 152 { 153 if (!(flags & CLONE_NEWPID)) 154 return get_pid_ns(old_ns); 155 if (task_active_pid_ns(current) != old_ns) 156 return ERR_PTR(-EINVAL); 157 return create_pid_namespace(user_ns, old_ns); 158 } 159 160 static void free_pid_ns(struct kref *kref) 161 { 162 struct pid_namespace *ns; 163 164 ns = container_of(kref, struct pid_namespace, kref); 165 destroy_pid_namespace(ns); 166 } 167 168 void put_pid_ns(struct pid_namespace *ns) 169 { 170 struct pid_namespace *parent; 171 172 while (ns != &init_pid_ns) { 173 parent = ns->parent; 174 if (!kref_put(&ns->kref, free_pid_ns)) 175 break; 176 ns = parent; 177 } 178 } 179 EXPORT_SYMBOL_GPL(put_pid_ns); 180 181 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 182 { 183 int nr; 184 int rc; 185 struct task_struct *task, *me = current; 186 int init_pids = thread_group_leader(me) ? 1 : 2; 187 struct pid *pid; 188 189 /* Don't allow any more processes into the pid namespace */ 190 disable_pid_allocation(pid_ns); 191 192 /* 193 * Ignore SIGCHLD causing any terminated children to autoreap. 194 * This speeds up the namespace shutdown, plus see the comment 195 * below. 196 */ 197 spin_lock_irq(&me->sighand->siglock); 198 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 199 spin_unlock_irq(&me->sighand->siglock); 200 201 /* 202 * The last thread in the cgroup-init thread group is terminating. 203 * Find remaining pid_ts in the namespace, signal and wait for them 204 * to exit. 205 * 206 * Note: This signals each threads in the namespace - even those that 207 * belong to the same thread group, To avoid this, we would have 208 * to walk the entire tasklist looking a processes in this 209 * namespace, but that could be unnecessarily expensive if the 210 * pid namespace has just a few processes. Or we need to 211 * maintain a tasklist for each pid namespace. 212 * 213 */ 214 rcu_read_lock(); 215 read_lock(&tasklist_lock); 216 nr = 2; 217 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { 218 task = pid_task(pid, PIDTYPE_PID); 219 if (task && !__fatal_signal_pending(task)) 220 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); 221 } 222 read_unlock(&tasklist_lock); 223 rcu_read_unlock(); 224 225 /* 226 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 227 * kernel_wait4() will also block until our children traced from the 228 * parent namespace are detached and become EXIT_DEAD. 229 */ 230 do { 231 clear_thread_flag(TIF_SIGPENDING); 232 rc = kernel_wait4(-1, NULL, __WALL, NULL); 233 } while (rc != -ECHILD); 234 235 /* 236 * kernel_wait4() above can't reap the EXIT_DEAD children but we do not 237 * really care, we could reparent them to the global init. We could 238 * exit and reap ->child_reaper even if it is not the last thread in 239 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(), 240 * pid_ns can not go away until proc_kill_sb() drops the reference. 241 * 242 * But this ns can also have other tasks injected by setns()+fork(). 243 * Again, ignoring the user visible semantics we do not really need 244 * to wait until they are all reaped, but they can be reparented to 245 * us and thus we need to ensure that pid->child_reaper stays valid 246 * until they all go away. See free_pid()->wake_up_process(). 247 * 248 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped 249 * if reparented. 250 */ 251 for (;;) { 252 set_current_state(TASK_INTERRUPTIBLE); 253 if (pid_ns->pid_allocated == init_pids) 254 break; 255 schedule(); 256 } 257 __set_current_state(TASK_RUNNING); 258 259 if (pid_ns->reboot) 260 current->signal->group_exit_code = pid_ns->reboot; 261 262 acct_exit_ns(pid_ns); 263 return; 264 } 265 266 #ifdef CONFIG_CHECKPOINT_RESTORE 267 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 268 void __user *buffer, size_t *lenp, loff_t *ppos) 269 { 270 struct pid_namespace *pid_ns = task_active_pid_ns(current); 271 struct ctl_table tmp = *table; 272 int ret, next; 273 274 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) 275 return -EPERM; 276 277 /* 278 * Writing directly to ns' last_pid field is OK, since this field 279 * is volatile in a living namespace anyway and a code writing to 280 * it should synchronize its usage with external means. 281 */ 282 283 next = idr_get_cursor(&pid_ns->idr) - 1; 284 285 tmp.data = &next; 286 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 287 if (!ret && write) 288 idr_set_cursor(&pid_ns->idr, next + 1); 289 290 return ret; 291 } 292 293 extern int pid_max; 294 static struct ctl_table pid_ns_ctl_table[] = { 295 { 296 .procname = "ns_last_pid", 297 .maxlen = sizeof(int), 298 .mode = 0666, /* permissions are checked in the handler */ 299 .proc_handler = pid_ns_ctl_handler, 300 .extra1 = SYSCTL_ZERO, 301 .extra2 = &pid_max, 302 }, 303 { } 304 }; 305 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 306 #endif /* CONFIG_CHECKPOINT_RESTORE */ 307 308 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 309 { 310 if (pid_ns == &init_pid_ns) 311 return 0; 312 313 switch (cmd) { 314 case LINUX_REBOOT_CMD_RESTART2: 315 case LINUX_REBOOT_CMD_RESTART: 316 pid_ns->reboot = SIGHUP; 317 break; 318 319 case LINUX_REBOOT_CMD_POWER_OFF: 320 case LINUX_REBOOT_CMD_HALT: 321 pid_ns->reboot = SIGINT; 322 break; 323 default: 324 return -EINVAL; 325 } 326 327 read_lock(&tasklist_lock); 328 send_sig(SIGKILL, pid_ns->child_reaper, 1); 329 read_unlock(&tasklist_lock); 330 331 do_exit(0); 332 333 /* Not reached */ 334 return 0; 335 } 336 337 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 338 { 339 return container_of(ns, struct pid_namespace, ns); 340 } 341 342 static struct ns_common *pidns_get(struct task_struct *task) 343 { 344 struct pid_namespace *ns; 345 346 rcu_read_lock(); 347 ns = task_active_pid_ns(task); 348 if (ns) 349 get_pid_ns(ns); 350 rcu_read_unlock(); 351 352 return ns ? &ns->ns : NULL; 353 } 354 355 static struct ns_common *pidns_for_children_get(struct task_struct *task) 356 { 357 struct pid_namespace *ns = NULL; 358 359 task_lock(task); 360 if (task->nsproxy) { 361 ns = task->nsproxy->pid_ns_for_children; 362 get_pid_ns(ns); 363 } 364 task_unlock(task); 365 366 if (ns) { 367 read_lock(&tasklist_lock); 368 if (!ns->child_reaper) { 369 put_pid_ns(ns); 370 ns = NULL; 371 } 372 read_unlock(&tasklist_lock); 373 } 374 375 return ns ? &ns->ns : NULL; 376 } 377 378 static void pidns_put(struct ns_common *ns) 379 { 380 put_pid_ns(to_pid_ns(ns)); 381 } 382 383 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns) 384 { 385 struct pid_namespace *active = task_active_pid_ns(current); 386 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 387 388 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 389 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 390 return -EPERM; 391 392 /* 393 * Only allow entering the current active pid namespace 394 * or a child of the current active pid namespace. 395 * 396 * This is required for fork to return a usable pid value and 397 * this maintains the property that processes and their 398 * children can not escape their current pid namespace. 399 */ 400 if (new->level < active->level) 401 return -EINVAL; 402 403 ancestor = new; 404 while (ancestor->level > active->level) 405 ancestor = ancestor->parent; 406 if (ancestor != active) 407 return -EINVAL; 408 409 put_pid_ns(nsproxy->pid_ns_for_children); 410 nsproxy->pid_ns_for_children = get_pid_ns(new); 411 return 0; 412 } 413 414 static struct ns_common *pidns_get_parent(struct ns_common *ns) 415 { 416 struct pid_namespace *active = task_active_pid_ns(current); 417 struct pid_namespace *pid_ns, *p; 418 419 /* See if the parent is in the current namespace */ 420 pid_ns = p = to_pid_ns(ns)->parent; 421 for (;;) { 422 if (!p) 423 return ERR_PTR(-EPERM); 424 if (p == active) 425 break; 426 p = p->parent; 427 } 428 429 return &get_pid_ns(pid_ns)->ns; 430 } 431 432 static struct user_namespace *pidns_owner(struct ns_common *ns) 433 { 434 return to_pid_ns(ns)->user_ns; 435 } 436 437 const struct proc_ns_operations pidns_operations = { 438 .name = "pid", 439 .type = CLONE_NEWPID, 440 .get = pidns_get, 441 .put = pidns_put, 442 .install = pidns_install, 443 .owner = pidns_owner, 444 .get_parent = pidns_get_parent, 445 }; 446 447 const struct proc_ns_operations pidns_for_children_operations = { 448 .name = "pid_for_children", 449 .real_ns_name = "pid", 450 .type = CLONE_NEWPID, 451 .get = pidns_for_children_get, 452 .put = pidns_put, 453 .install = pidns_install, 454 .owner = pidns_owner, 455 .get_parent = pidns_get_parent, 456 }; 457 458 static __init int pid_namespaces_init(void) 459 { 460 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 461 462 #ifdef CONFIG_CHECKPOINT_RESTORE 463 register_sysctl_paths(kern_path, pid_ns_ctl_table); 464 #endif 465 return 0; 466 } 467 468 __initcall(pid_namespaces_init); 469