xref: /openbmc/linux/kernel/pid_namespace.c (revision d170e938f01fc8c5c41f8a12f0c12491580829ef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Pid namespaces
4  *
5  * Authors:
6  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8  *     Many thanks to Oleg Nesterov for comments and help
9  *
10  */
11 
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26 #include "pid_sysctl.h"
27 
28 static DEFINE_MUTEX(pid_caches_mutex);
29 static struct kmem_cache *pid_ns_cachep;
30 /* Write once array, filled from the beginning. */
31 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
32 
33 /*
34  * creates the kmem cache to allocate pids from.
35  * @level: pid namespace level
36  */
37 
38 static struct kmem_cache *create_pid_cachep(unsigned int level)
39 {
40 	/* Level 0 is init_pid_ns.pid_cachep */
41 	struct kmem_cache **pkc = &pid_cache[level - 1];
42 	struct kmem_cache *kc;
43 	char name[4 + 10 + 1];
44 	unsigned int len;
45 
46 	kc = READ_ONCE(*pkc);
47 	if (kc)
48 		return kc;
49 
50 	snprintf(name, sizeof(name), "pid_%u", level + 1);
51 	len = sizeof(struct pid) + level * sizeof(struct upid);
52 	mutex_lock(&pid_caches_mutex);
53 	/* Name collision forces to do allocation under mutex. */
54 	if (!*pkc)
55 		*pkc = kmem_cache_create(name, len, 0,
56 					 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
57 	mutex_unlock(&pid_caches_mutex);
58 	/* current can fail, but someone else can succeed. */
59 	return READ_ONCE(*pkc);
60 }
61 
62 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
63 {
64 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
65 }
66 
67 static void dec_pid_namespaces(struct ucounts *ucounts)
68 {
69 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
70 }
71 
72 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
73 	struct pid_namespace *parent_pid_ns)
74 {
75 	struct pid_namespace *ns;
76 	unsigned int level = parent_pid_ns->level + 1;
77 	struct ucounts *ucounts;
78 	int err;
79 
80 	err = -EINVAL;
81 	if (!in_userns(parent_pid_ns->user_ns, user_ns))
82 		goto out;
83 
84 	err = -ENOSPC;
85 	if (level > MAX_PID_NS_LEVEL)
86 		goto out;
87 	ucounts = inc_pid_namespaces(user_ns);
88 	if (!ucounts)
89 		goto out;
90 
91 	err = -ENOMEM;
92 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
93 	if (ns == NULL)
94 		goto out_dec;
95 
96 	idr_init(&ns->idr);
97 
98 	ns->pid_cachep = create_pid_cachep(level);
99 	if (ns->pid_cachep == NULL)
100 		goto out_free_idr;
101 
102 	err = ns_alloc_inum(&ns->ns);
103 	if (err)
104 		goto out_free_idr;
105 	ns->ns.ops = &pidns_operations;
106 
107 	refcount_set(&ns->ns.count, 1);
108 	ns->level = level;
109 	ns->parent = get_pid_ns(parent_pid_ns);
110 	ns->user_ns = get_user_ns(user_ns);
111 	ns->ucounts = ucounts;
112 	ns->pid_allocated = PIDNS_ADDING;
113 
114 	initialize_memfd_noexec_scope(ns);
115 
116 	return ns;
117 
118 out_free_idr:
119 	idr_destroy(&ns->idr);
120 	kmem_cache_free(pid_ns_cachep, ns);
121 out_dec:
122 	dec_pid_namespaces(ucounts);
123 out:
124 	return ERR_PTR(err);
125 }
126 
127 static void delayed_free_pidns(struct rcu_head *p)
128 {
129 	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
130 
131 	dec_pid_namespaces(ns->ucounts);
132 	put_user_ns(ns->user_ns);
133 
134 	kmem_cache_free(pid_ns_cachep, ns);
135 }
136 
137 static void destroy_pid_namespace(struct pid_namespace *ns)
138 {
139 	ns_free_inum(&ns->ns);
140 
141 	idr_destroy(&ns->idr);
142 	call_rcu(&ns->rcu, delayed_free_pidns);
143 }
144 
145 struct pid_namespace *copy_pid_ns(unsigned long flags,
146 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
147 {
148 	if (!(flags & CLONE_NEWPID))
149 		return get_pid_ns(old_ns);
150 	if (task_active_pid_ns(current) != old_ns)
151 		return ERR_PTR(-EINVAL);
152 	return create_pid_namespace(user_ns, old_ns);
153 }
154 
155 void put_pid_ns(struct pid_namespace *ns)
156 {
157 	struct pid_namespace *parent;
158 
159 	while (ns != &init_pid_ns) {
160 		parent = ns->parent;
161 		if (!refcount_dec_and_test(&ns->ns.count))
162 			break;
163 		destroy_pid_namespace(ns);
164 		ns = parent;
165 	}
166 }
167 EXPORT_SYMBOL_GPL(put_pid_ns);
168 
169 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
170 {
171 	int nr;
172 	int rc;
173 	struct task_struct *task, *me = current;
174 	int init_pids = thread_group_leader(me) ? 1 : 2;
175 	struct pid *pid;
176 
177 	/* Don't allow any more processes into the pid namespace */
178 	disable_pid_allocation(pid_ns);
179 
180 	/*
181 	 * Ignore SIGCHLD causing any terminated children to autoreap.
182 	 * This speeds up the namespace shutdown, plus see the comment
183 	 * below.
184 	 */
185 	spin_lock_irq(&me->sighand->siglock);
186 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
187 	spin_unlock_irq(&me->sighand->siglock);
188 
189 	/*
190 	 * The last thread in the cgroup-init thread group is terminating.
191 	 * Find remaining pid_ts in the namespace, signal and wait for them
192 	 * to exit.
193 	 *
194 	 * Note:  This signals each threads in the namespace - even those that
195 	 * 	  belong to the same thread group, To avoid this, we would have
196 	 * 	  to walk the entire tasklist looking a processes in this
197 	 * 	  namespace, but that could be unnecessarily expensive if the
198 	 * 	  pid namespace has just a few processes. Or we need to
199 	 * 	  maintain a tasklist for each pid namespace.
200 	 *
201 	 */
202 	rcu_read_lock();
203 	read_lock(&tasklist_lock);
204 	nr = 2;
205 	idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
206 		task = pid_task(pid, PIDTYPE_PID);
207 		if (task && !__fatal_signal_pending(task))
208 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
209 	}
210 	read_unlock(&tasklist_lock);
211 	rcu_read_unlock();
212 
213 	/*
214 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
215 	 * kernel_wait4() will also block until our children traced from the
216 	 * parent namespace are detached and become EXIT_DEAD.
217 	 */
218 	do {
219 		clear_thread_flag(TIF_SIGPENDING);
220 		rc = kernel_wait4(-1, NULL, __WALL, NULL);
221 	} while (rc != -ECHILD);
222 
223 	/*
224 	 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
225 	 * process whose parents processes are outside of the pid
226 	 * namespace.  Such processes are created with setns()+fork().
227 	 *
228 	 * If those EXIT_ZOMBIE processes are not reaped by their
229 	 * parents before their parents exit, they will be reparented
230 	 * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
231 	 * stay valid until they all go away.
232 	 *
233 	 * The code relies on the pid_ns->child_reaper ignoring
234 	 * SIGCHILD to cause those EXIT_ZOMBIE processes to be
235 	 * autoreaped if reparented.
236 	 *
237 	 * Semantically it is also desirable to wait for EXIT_ZOMBIE
238 	 * processes before allowing the child_reaper to be reaped, as
239 	 * that gives the invariant that when the init process of a
240 	 * pid namespace is reaped all of the processes in the pid
241 	 * namespace are gone.
242 	 *
243 	 * Once all of the other tasks are gone from the pid_namespace
244 	 * free_pid() will awaken this task.
245 	 */
246 	for (;;) {
247 		set_current_state(TASK_INTERRUPTIBLE);
248 		if (pid_ns->pid_allocated == init_pids)
249 			break;
250 		/*
251 		 * Release tasks_rcu_exit_srcu to avoid following deadlock:
252 		 *
253 		 * 1) TASK A unshare(CLONE_NEWPID)
254 		 * 2) TASK A fork() twice -> TASK B (child reaper for new ns)
255 		 *    and TASK C
256 		 * 3) TASK B exits, kills TASK C, waits for TASK A to reap it
257 		 * 4) TASK A calls synchronize_rcu_tasks()
258 		 *                   -> synchronize_srcu(tasks_rcu_exit_srcu)
259 		 * 5) *DEADLOCK*
260 		 *
261 		 * It is considered safe to release tasks_rcu_exit_srcu here
262 		 * because we assume the current task can not be concurrently
263 		 * reaped at this point.
264 		 */
265 		exit_tasks_rcu_stop();
266 		schedule();
267 		exit_tasks_rcu_start();
268 	}
269 	__set_current_state(TASK_RUNNING);
270 
271 	if (pid_ns->reboot)
272 		current->signal->group_exit_code = pid_ns->reboot;
273 
274 	acct_exit_ns(pid_ns);
275 	return;
276 }
277 
278 #ifdef CONFIG_CHECKPOINT_RESTORE
279 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
280 		void *buffer, size_t *lenp, loff_t *ppos)
281 {
282 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
283 	struct ctl_table tmp = *table;
284 	int ret, next;
285 
286 	if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
287 		return -EPERM;
288 
289 	/*
290 	 * Writing directly to ns' last_pid field is OK, since this field
291 	 * is volatile in a living namespace anyway and a code writing to
292 	 * it should synchronize its usage with external means.
293 	 */
294 
295 	next = idr_get_cursor(&pid_ns->idr) - 1;
296 
297 	tmp.data = &next;
298 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
299 	if (!ret && write)
300 		idr_set_cursor(&pid_ns->idr, next + 1);
301 
302 	return ret;
303 }
304 
305 extern int pid_max;
306 static struct ctl_table pid_ns_ctl_table[] = {
307 	{
308 		.procname = "ns_last_pid",
309 		.maxlen = sizeof(int),
310 		.mode = 0666, /* permissions are checked in the handler */
311 		.proc_handler = pid_ns_ctl_handler,
312 		.extra1 = SYSCTL_ZERO,
313 		.extra2 = &pid_max,
314 	},
315 	{ }
316 };
317 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
318 #endif	/* CONFIG_CHECKPOINT_RESTORE */
319 
320 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
321 {
322 	if (pid_ns == &init_pid_ns)
323 		return 0;
324 
325 	switch (cmd) {
326 	case LINUX_REBOOT_CMD_RESTART2:
327 	case LINUX_REBOOT_CMD_RESTART:
328 		pid_ns->reboot = SIGHUP;
329 		break;
330 
331 	case LINUX_REBOOT_CMD_POWER_OFF:
332 	case LINUX_REBOOT_CMD_HALT:
333 		pid_ns->reboot = SIGINT;
334 		break;
335 	default:
336 		return -EINVAL;
337 	}
338 
339 	read_lock(&tasklist_lock);
340 	send_sig(SIGKILL, pid_ns->child_reaper, 1);
341 	read_unlock(&tasklist_lock);
342 
343 	do_exit(0);
344 
345 	/* Not reached */
346 	return 0;
347 }
348 
349 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
350 {
351 	return container_of(ns, struct pid_namespace, ns);
352 }
353 
354 static struct ns_common *pidns_get(struct task_struct *task)
355 {
356 	struct pid_namespace *ns;
357 
358 	rcu_read_lock();
359 	ns = task_active_pid_ns(task);
360 	if (ns)
361 		get_pid_ns(ns);
362 	rcu_read_unlock();
363 
364 	return ns ? &ns->ns : NULL;
365 }
366 
367 static struct ns_common *pidns_for_children_get(struct task_struct *task)
368 {
369 	struct pid_namespace *ns = NULL;
370 
371 	task_lock(task);
372 	if (task->nsproxy) {
373 		ns = task->nsproxy->pid_ns_for_children;
374 		get_pid_ns(ns);
375 	}
376 	task_unlock(task);
377 
378 	if (ns) {
379 		read_lock(&tasklist_lock);
380 		if (!ns->child_reaper) {
381 			put_pid_ns(ns);
382 			ns = NULL;
383 		}
384 		read_unlock(&tasklist_lock);
385 	}
386 
387 	return ns ? &ns->ns : NULL;
388 }
389 
390 static void pidns_put(struct ns_common *ns)
391 {
392 	put_pid_ns(to_pid_ns(ns));
393 }
394 
395 static int pidns_install(struct nsset *nsset, struct ns_common *ns)
396 {
397 	struct nsproxy *nsproxy = nsset->nsproxy;
398 	struct pid_namespace *active = task_active_pid_ns(current);
399 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
400 
401 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
402 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
403 		return -EPERM;
404 
405 	/*
406 	 * Only allow entering the current active pid namespace
407 	 * or a child of the current active pid namespace.
408 	 *
409 	 * This is required for fork to return a usable pid value and
410 	 * this maintains the property that processes and their
411 	 * children can not escape their current pid namespace.
412 	 */
413 	if (new->level < active->level)
414 		return -EINVAL;
415 
416 	ancestor = new;
417 	while (ancestor->level > active->level)
418 		ancestor = ancestor->parent;
419 	if (ancestor != active)
420 		return -EINVAL;
421 
422 	put_pid_ns(nsproxy->pid_ns_for_children);
423 	nsproxy->pid_ns_for_children = get_pid_ns(new);
424 	return 0;
425 }
426 
427 static struct ns_common *pidns_get_parent(struct ns_common *ns)
428 {
429 	struct pid_namespace *active = task_active_pid_ns(current);
430 	struct pid_namespace *pid_ns, *p;
431 
432 	/* See if the parent is in the current namespace */
433 	pid_ns = p = to_pid_ns(ns)->parent;
434 	for (;;) {
435 		if (!p)
436 			return ERR_PTR(-EPERM);
437 		if (p == active)
438 			break;
439 		p = p->parent;
440 	}
441 
442 	return &get_pid_ns(pid_ns)->ns;
443 }
444 
445 static struct user_namespace *pidns_owner(struct ns_common *ns)
446 {
447 	return to_pid_ns(ns)->user_ns;
448 }
449 
450 const struct proc_ns_operations pidns_operations = {
451 	.name		= "pid",
452 	.type		= CLONE_NEWPID,
453 	.get		= pidns_get,
454 	.put		= pidns_put,
455 	.install	= pidns_install,
456 	.owner		= pidns_owner,
457 	.get_parent	= pidns_get_parent,
458 };
459 
460 const struct proc_ns_operations pidns_for_children_operations = {
461 	.name		= "pid_for_children",
462 	.real_ns_name	= "pid",
463 	.type		= CLONE_NEWPID,
464 	.get		= pidns_for_children_get,
465 	.put		= pidns_put,
466 	.install	= pidns_install,
467 	.owner		= pidns_owner,
468 	.get_parent	= pidns_get_parent,
469 };
470 
471 static __init int pid_namespaces_init(void)
472 {
473 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
474 
475 #ifdef CONFIG_CHECKPOINT_RESTORE
476 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
477 #endif
478 
479 	register_pid_ns_sysctl_table_vm();
480 	return 0;
481 }
482 
483 __initcall(pid_namespaces_init);
484