xref: /openbmc/linux/kernel/pid_namespace.c (revision a36954f5)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/cred.h>
16 #include <linux/err.h>
17 #include <linux/acct.h>
18 #include <linux/slab.h>
19 #include <linux/proc_ns.h>
20 #include <linux/reboot.h>
21 #include <linux/export.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/signal.h>
24 
25 struct pid_cache {
26 	int nr_ids;
27 	char name[16];
28 	struct kmem_cache *cachep;
29 	struct list_head list;
30 };
31 
32 static LIST_HEAD(pid_caches_lh);
33 static DEFINE_MUTEX(pid_caches_mutex);
34 static struct kmem_cache *pid_ns_cachep;
35 
36 /*
37  * creates the kmem cache to allocate pids from.
38  * @nr_ids: the number of numerical ids this pid will have to carry
39  */
40 
41 static struct kmem_cache *create_pid_cachep(int nr_ids)
42 {
43 	struct pid_cache *pcache;
44 	struct kmem_cache *cachep;
45 
46 	mutex_lock(&pid_caches_mutex);
47 	list_for_each_entry(pcache, &pid_caches_lh, list)
48 		if (pcache->nr_ids == nr_ids)
49 			goto out;
50 
51 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
52 	if (pcache == NULL)
53 		goto err_alloc;
54 
55 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
56 	cachep = kmem_cache_create(pcache->name,
57 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
58 			0, SLAB_HWCACHE_ALIGN, NULL);
59 	if (cachep == NULL)
60 		goto err_cachep;
61 
62 	pcache->nr_ids = nr_ids;
63 	pcache->cachep = cachep;
64 	list_add(&pcache->list, &pid_caches_lh);
65 out:
66 	mutex_unlock(&pid_caches_mutex);
67 	return pcache->cachep;
68 
69 err_cachep:
70 	kfree(pcache);
71 err_alloc:
72 	mutex_unlock(&pid_caches_mutex);
73 	return NULL;
74 }
75 
76 static void proc_cleanup_work(struct work_struct *work)
77 {
78 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
79 	pid_ns_release_proc(ns);
80 }
81 
82 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
83 #define MAX_PID_NS_LEVEL 32
84 
85 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
86 {
87 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
88 }
89 
90 static void dec_pid_namespaces(struct ucounts *ucounts)
91 {
92 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
93 }
94 
95 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
96 	struct pid_namespace *parent_pid_ns)
97 {
98 	struct pid_namespace *ns;
99 	unsigned int level = parent_pid_ns->level + 1;
100 	struct ucounts *ucounts;
101 	int i;
102 	int err;
103 
104 	err = -ENOSPC;
105 	if (level > MAX_PID_NS_LEVEL)
106 		goto out;
107 	ucounts = inc_pid_namespaces(user_ns);
108 	if (!ucounts)
109 		goto out;
110 
111 	err = -ENOMEM;
112 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
113 	if (ns == NULL)
114 		goto out_dec;
115 
116 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
117 	if (!ns->pidmap[0].page)
118 		goto out_free;
119 
120 	ns->pid_cachep = create_pid_cachep(level + 1);
121 	if (ns->pid_cachep == NULL)
122 		goto out_free_map;
123 
124 	err = ns_alloc_inum(&ns->ns);
125 	if (err)
126 		goto out_free_map;
127 	ns->ns.ops = &pidns_operations;
128 
129 	kref_init(&ns->kref);
130 	ns->level = level;
131 	ns->parent = get_pid_ns(parent_pid_ns);
132 	ns->user_ns = get_user_ns(user_ns);
133 	ns->ucounts = ucounts;
134 	ns->nr_hashed = PIDNS_HASH_ADDING;
135 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
136 
137 	set_bit(0, ns->pidmap[0].page);
138 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
139 
140 	for (i = 1; i < PIDMAP_ENTRIES; i++)
141 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
142 
143 	return ns;
144 
145 out_free_map:
146 	kfree(ns->pidmap[0].page);
147 out_free:
148 	kmem_cache_free(pid_ns_cachep, ns);
149 out_dec:
150 	dec_pid_namespaces(ucounts);
151 out:
152 	return ERR_PTR(err);
153 }
154 
155 static void delayed_free_pidns(struct rcu_head *p)
156 {
157 	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
158 
159 	dec_pid_namespaces(ns->ucounts);
160 	put_user_ns(ns->user_ns);
161 
162 	kmem_cache_free(pid_ns_cachep, ns);
163 }
164 
165 static void destroy_pid_namespace(struct pid_namespace *ns)
166 {
167 	int i;
168 
169 	ns_free_inum(&ns->ns);
170 	for (i = 0; i < PIDMAP_ENTRIES; i++)
171 		kfree(ns->pidmap[i].page);
172 	call_rcu(&ns->rcu, delayed_free_pidns);
173 }
174 
175 struct pid_namespace *copy_pid_ns(unsigned long flags,
176 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
177 {
178 	if (!(flags & CLONE_NEWPID))
179 		return get_pid_ns(old_ns);
180 	if (task_active_pid_ns(current) != old_ns)
181 		return ERR_PTR(-EINVAL);
182 	return create_pid_namespace(user_ns, old_ns);
183 }
184 
185 static void free_pid_ns(struct kref *kref)
186 {
187 	struct pid_namespace *ns;
188 
189 	ns = container_of(kref, struct pid_namespace, kref);
190 	destroy_pid_namespace(ns);
191 }
192 
193 void put_pid_ns(struct pid_namespace *ns)
194 {
195 	struct pid_namespace *parent;
196 
197 	while (ns != &init_pid_ns) {
198 		parent = ns->parent;
199 		if (!kref_put(&ns->kref, free_pid_ns))
200 			break;
201 		ns = parent;
202 	}
203 }
204 EXPORT_SYMBOL_GPL(put_pid_ns);
205 
206 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
207 {
208 	int nr;
209 	int rc;
210 	struct task_struct *task, *me = current;
211 	int init_pids = thread_group_leader(me) ? 1 : 2;
212 
213 	/* Don't allow any more processes into the pid namespace */
214 	disable_pid_allocation(pid_ns);
215 
216 	/*
217 	 * Ignore SIGCHLD causing any terminated children to autoreap.
218 	 * This speeds up the namespace shutdown, plus see the comment
219 	 * below.
220 	 */
221 	spin_lock_irq(&me->sighand->siglock);
222 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
223 	spin_unlock_irq(&me->sighand->siglock);
224 
225 	/*
226 	 * The last thread in the cgroup-init thread group is terminating.
227 	 * Find remaining pid_ts in the namespace, signal and wait for them
228 	 * to exit.
229 	 *
230 	 * Note:  This signals each threads in the namespace - even those that
231 	 * 	  belong to the same thread group, To avoid this, we would have
232 	 * 	  to walk the entire tasklist looking a processes in this
233 	 * 	  namespace, but that could be unnecessarily expensive if the
234 	 * 	  pid namespace has just a few processes. Or we need to
235 	 * 	  maintain a tasklist for each pid namespace.
236 	 *
237 	 */
238 	read_lock(&tasklist_lock);
239 	nr = next_pidmap(pid_ns, 1);
240 	while (nr > 0) {
241 		rcu_read_lock();
242 
243 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
244 		if (task && !__fatal_signal_pending(task))
245 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
246 
247 		rcu_read_unlock();
248 
249 		nr = next_pidmap(pid_ns, nr);
250 	}
251 	read_unlock(&tasklist_lock);
252 
253 	/*
254 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
255 	 * sys_wait4() will also block until our children traced from the
256 	 * parent namespace are detached and become EXIT_DEAD.
257 	 */
258 	do {
259 		clear_thread_flag(TIF_SIGPENDING);
260 		rc = sys_wait4(-1, NULL, __WALL, NULL);
261 	} while (rc != -ECHILD);
262 
263 	/*
264 	 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
265 	 * really care, we could reparent them to the global init. We could
266 	 * exit and reap ->child_reaper even if it is not the last thread in
267 	 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
268 	 * pid_ns can not go away until proc_kill_sb() drops the reference.
269 	 *
270 	 * But this ns can also have other tasks injected by setns()+fork().
271 	 * Again, ignoring the user visible semantics we do not really need
272 	 * to wait until they are all reaped, but they can be reparented to
273 	 * us and thus we need to ensure that pid->child_reaper stays valid
274 	 * until they all go away. See free_pid()->wake_up_process().
275 	 *
276 	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
277 	 * if reparented.
278 	 */
279 	for (;;) {
280 		set_current_state(TASK_INTERRUPTIBLE);
281 		if (pid_ns->nr_hashed == init_pids)
282 			break;
283 		schedule();
284 	}
285 	__set_current_state(TASK_RUNNING);
286 
287 	if (pid_ns->reboot)
288 		current->signal->group_exit_code = pid_ns->reboot;
289 
290 	acct_exit_ns(pid_ns);
291 	return;
292 }
293 
294 #ifdef CONFIG_CHECKPOINT_RESTORE
295 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
296 		void __user *buffer, size_t *lenp, loff_t *ppos)
297 {
298 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
299 	struct ctl_table tmp = *table;
300 
301 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
302 		return -EPERM;
303 
304 	/*
305 	 * Writing directly to ns' last_pid field is OK, since this field
306 	 * is volatile in a living namespace anyway and a code writing to
307 	 * it should synchronize its usage with external means.
308 	 */
309 
310 	tmp.data = &pid_ns->last_pid;
311 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
312 }
313 
314 extern int pid_max;
315 static int zero = 0;
316 static struct ctl_table pid_ns_ctl_table[] = {
317 	{
318 		.procname = "ns_last_pid",
319 		.maxlen = sizeof(int),
320 		.mode = 0666, /* permissions are checked in the handler */
321 		.proc_handler = pid_ns_ctl_handler,
322 		.extra1 = &zero,
323 		.extra2 = &pid_max,
324 	},
325 	{ }
326 };
327 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
328 #endif	/* CONFIG_CHECKPOINT_RESTORE */
329 
330 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
331 {
332 	if (pid_ns == &init_pid_ns)
333 		return 0;
334 
335 	switch (cmd) {
336 	case LINUX_REBOOT_CMD_RESTART2:
337 	case LINUX_REBOOT_CMD_RESTART:
338 		pid_ns->reboot = SIGHUP;
339 		break;
340 
341 	case LINUX_REBOOT_CMD_POWER_OFF:
342 	case LINUX_REBOOT_CMD_HALT:
343 		pid_ns->reboot = SIGINT;
344 		break;
345 	default:
346 		return -EINVAL;
347 	}
348 
349 	read_lock(&tasklist_lock);
350 	force_sig(SIGKILL, pid_ns->child_reaper);
351 	read_unlock(&tasklist_lock);
352 
353 	do_exit(0);
354 
355 	/* Not reached */
356 	return 0;
357 }
358 
359 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
360 {
361 	return container_of(ns, struct pid_namespace, ns);
362 }
363 
364 static struct ns_common *pidns_get(struct task_struct *task)
365 {
366 	struct pid_namespace *ns;
367 
368 	rcu_read_lock();
369 	ns = task_active_pid_ns(task);
370 	if (ns)
371 		get_pid_ns(ns);
372 	rcu_read_unlock();
373 
374 	return ns ? &ns->ns : NULL;
375 }
376 
377 static struct ns_common *pidns_for_children_get(struct task_struct *task)
378 {
379 	struct pid_namespace *ns = NULL;
380 
381 	task_lock(task);
382 	if (task->nsproxy) {
383 		ns = task->nsproxy->pid_ns_for_children;
384 		get_pid_ns(ns);
385 	}
386 	task_unlock(task);
387 
388 	if (ns) {
389 		read_lock(&tasklist_lock);
390 		if (!ns->child_reaper) {
391 			put_pid_ns(ns);
392 			ns = NULL;
393 		}
394 		read_unlock(&tasklist_lock);
395 	}
396 
397 	return ns ? &ns->ns : NULL;
398 }
399 
400 static void pidns_put(struct ns_common *ns)
401 {
402 	put_pid_ns(to_pid_ns(ns));
403 }
404 
405 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
406 {
407 	struct pid_namespace *active = task_active_pid_ns(current);
408 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
409 
410 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
411 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
412 		return -EPERM;
413 
414 	/*
415 	 * Only allow entering the current active pid namespace
416 	 * or a child of the current active pid namespace.
417 	 *
418 	 * This is required for fork to return a usable pid value and
419 	 * this maintains the property that processes and their
420 	 * children can not escape their current pid namespace.
421 	 */
422 	if (new->level < active->level)
423 		return -EINVAL;
424 
425 	ancestor = new;
426 	while (ancestor->level > active->level)
427 		ancestor = ancestor->parent;
428 	if (ancestor != active)
429 		return -EINVAL;
430 
431 	put_pid_ns(nsproxy->pid_ns_for_children);
432 	nsproxy->pid_ns_for_children = get_pid_ns(new);
433 	return 0;
434 }
435 
436 static struct ns_common *pidns_get_parent(struct ns_common *ns)
437 {
438 	struct pid_namespace *active = task_active_pid_ns(current);
439 	struct pid_namespace *pid_ns, *p;
440 
441 	/* See if the parent is in the current namespace */
442 	pid_ns = p = to_pid_ns(ns)->parent;
443 	for (;;) {
444 		if (!p)
445 			return ERR_PTR(-EPERM);
446 		if (p == active)
447 			break;
448 		p = p->parent;
449 	}
450 
451 	return &get_pid_ns(pid_ns)->ns;
452 }
453 
454 static struct user_namespace *pidns_owner(struct ns_common *ns)
455 {
456 	return to_pid_ns(ns)->user_ns;
457 }
458 
459 const struct proc_ns_operations pidns_operations = {
460 	.name		= "pid",
461 	.type		= CLONE_NEWPID,
462 	.get		= pidns_get,
463 	.put		= pidns_put,
464 	.install	= pidns_install,
465 	.owner		= pidns_owner,
466 	.get_parent	= pidns_get_parent,
467 };
468 
469 const struct proc_ns_operations pidns_for_children_operations = {
470 	.name		= "pid_for_children",
471 	.real_ns_name	= "pid",
472 	.type		= CLONE_NEWPID,
473 	.get		= pidns_for_children_get,
474 	.put		= pidns_put,
475 	.install	= pidns_install,
476 	.owner		= pidns_owner,
477 	.get_parent	= pidns_get_parent,
478 };
479 
480 static __init int pid_namespaces_init(void)
481 {
482 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
483 
484 #ifdef CONFIG_CHECKPOINT_RESTORE
485 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
486 #endif
487 	return 0;
488 }
489 
490 __initcall(pid_namespaces_init);
491