xref: /openbmc/linux/kernel/pid_namespace.c (revision 8ee90c5c)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/cred.h>
16 #include <linux/err.h>
17 #include <linux/acct.h>
18 #include <linux/slab.h>
19 #include <linux/proc_ns.h>
20 #include <linux/reboot.h>
21 #include <linux/export.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/signal.h>
24 
25 struct pid_cache {
26 	int nr_ids;
27 	char name[16];
28 	struct kmem_cache *cachep;
29 	struct list_head list;
30 };
31 
32 static LIST_HEAD(pid_caches_lh);
33 static DEFINE_MUTEX(pid_caches_mutex);
34 static struct kmem_cache *pid_ns_cachep;
35 
36 /*
37  * creates the kmem cache to allocate pids from.
38  * @nr_ids: the number of numerical ids this pid will have to carry
39  */
40 
41 static struct kmem_cache *create_pid_cachep(int nr_ids)
42 {
43 	struct pid_cache *pcache;
44 	struct kmem_cache *cachep;
45 
46 	mutex_lock(&pid_caches_mutex);
47 	list_for_each_entry(pcache, &pid_caches_lh, list)
48 		if (pcache->nr_ids == nr_ids)
49 			goto out;
50 
51 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
52 	if (pcache == NULL)
53 		goto err_alloc;
54 
55 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
56 	cachep = kmem_cache_create(pcache->name,
57 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
58 			0, SLAB_HWCACHE_ALIGN, NULL);
59 	if (cachep == NULL)
60 		goto err_cachep;
61 
62 	pcache->nr_ids = nr_ids;
63 	pcache->cachep = cachep;
64 	list_add(&pcache->list, &pid_caches_lh);
65 out:
66 	mutex_unlock(&pid_caches_mutex);
67 	return pcache->cachep;
68 
69 err_cachep:
70 	kfree(pcache);
71 err_alloc:
72 	mutex_unlock(&pid_caches_mutex);
73 	return NULL;
74 }
75 
76 static void proc_cleanup_work(struct work_struct *work)
77 {
78 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
79 	pid_ns_release_proc(ns);
80 }
81 
82 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
83 #define MAX_PID_NS_LEVEL 32
84 
85 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
86 {
87 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
88 }
89 
90 static void dec_pid_namespaces(struct ucounts *ucounts)
91 {
92 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
93 }
94 
95 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
96 	struct pid_namespace *parent_pid_ns)
97 {
98 	struct pid_namespace *ns;
99 	unsigned int level = parent_pid_ns->level + 1;
100 	struct ucounts *ucounts;
101 	int i;
102 	int err;
103 
104 	err = -EINVAL;
105 	if (!in_userns(parent_pid_ns->user_ns, user_ns))
106 		goto out;
107 
108 	err = -ENOSPC;
109 	if (level > MAX_PID_NS_LEVEL)
110 		goto out;
111 	ucounts = inc_pid_namespaces(user_ns);
112 	if (!ucounts)
113 		goto out;
114 
115 	err = -ENOMEM;
116 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
117 	if (ns == NULL)
118 		goto out_dec;
119 
120 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
121 	if (!ns->pidmap[0].page)
122 		goto out_free;
123 
124 	ns->pid_cachep = create_pid_cachep(level + 1);
125 	if (ns->pid_cachep == NULL)
126 		goto out_free_map;
127 
128 	err = ns_alloc_inum(&ns->ns);
129 	if (err)
130 		goto out_free_map;
131 	ns->ns.ops = &pidns_operations;
132 
133 	kref_init(&ns->kref);
134 	ns->level = level;
135 	ns->parent = get_pid_ns(parent_pid_ns);
136 	ns->user_ns = get_user_ns(user_ns);
137 	ns->ucounts = ucounts;
138 	ns->nr_hashed = PIDNS_HASH_ADDING;
139 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
140 
141 	set_bit(0, ns->pidmap[0].page);
142 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
143 
144 	for (i = 1; i < PIDMAP_ENTRIES; i++)
145 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
146 
147 	return ns;
148 
149 out_free_map:
150 	kfree(ns->pidmap[0].page);
151 out_free:
152 	kmem_cache_free(pid_ns_cachep, ns);
153 out_dec:
154 	dec_pid_namespaces(ucounts);
155 out:
156 	return ERR_PTR(err);
157 }
158 
159 static void delayed_free_pidns(struct rcu_head *p)
160 {
161 	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
162 
163 	dec_pid_namespaces(ns->ucounts);
164 	put_user_ns(ns->user_ns);
165 
166 	kmem_cache_free(pid_ns_cachep, ns);
167 }
168 
169 static void destroy_pid_namespace(struct pid_namespace *ns)
170 {
171 	int i;
172 
173 	ns_free_inum(&ns->ns);
174 	for (i = 0; i < PIDMAP_ENTRIES; i++)
175 		kfree(ns->pidmap[i].page);
176 	call_rcu(&ns->rcu, delayed_free_pidns);
177 }
178 
179 struct pid_namespace *copy_pid_ns(unsigned long flags,
180 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
181 {
182 	if (!(flags & CLONE_NEWPID))
183 		return get_pid_ns(old_ns);
184 	if (task_active_pid_ns(current) != old_ns)
185 		return ERR_PTR(-EINVAL);
186 	return create_pid_namespace(user_ns, old_ns);
187 }
188 
189 static void free_pid_ns(struct kref *kref)
190 {
191 	struct pid_namespace *ns;
192 
193 	ns = container_of(kref, struct pid_namespace, kref);
194 	destroy_pid_namespace(ns);
195 }
196 
197 void put_pid_ns(struct pid_namespace *ns)
198 {
199 	struct pid_namespace *parent;
200 
201 	while (ns != &init_pid_ns) {
202 		parent = ns->parent;
203 		if (!kref_put(&ns->kref, free_pid_ns))
204 			break;
205 		ns = parent;
206 	}
207 }
208 EXPORT_SYMBOL_GPL(put_pid_ns);
209 
210 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
211 {
212 	int nr;
213 	int rc;
214 	struct task_struct *task, *me = current;
215 	int init_pids = thread_group_leader(me) ? 1 : 2;
216 
217 	/* Don't allow any more processes into the pid namespace */
218 	disable_pid_allocation(pid_ns);
219 
220 	/*
221 	 * Ignore SIGCHLD causing any terminated children to autoreap.
222 	 * This speeds up the namespace shutdown, plus see the comment
223 	 * below.
224 	 */
225 	spin_lock_irq(&me->sighand->siglock);
226 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
227 	spin_unlock_irq(&me->sighand->siglock);
228 
229 	/*
230 	 * The last thread in the cgroup-init thread group is terminating.
231 	 * Find remaining pid_ts in the namespace, signal and wait for them
232 	 * to exit.
233 	 *
234 	 * Note:  This signals each threads in the namespace - even those that
235 	 * 	  belong to the same thread group, To avoid this, we would have
236 	 * 	  to walk the entire tasklist looking a processes in this
237 	 * 	  namespace, but that could be unnecessarily expensive if the
238 	 * 	  pid namespace has just a few processes. Or we need to
239 	 * 	  maintain a tasklist for each pid namespace.
240 	 *
241 	 */
242 	read_lock(&tasklist_lock);
243 	nr = next_pidmap(pid_ns, 1);
244 	while (nr > 0) {
245 		rcu_read_lock();
246 
247 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
248 		if (task && !__fatal_signal_pending(task))
249 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
250 
251 		rcu_read_unlock();
252 
253 		nr = next_pidmap(pid_ns, nr);
254 	}
255 	read_unlock(&tasklist_lock);
256 
257 	/*
258 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
259 	 * sys_wait4() will also block until our children traced from the
260 	 * parent namespace are detached and become EXIT_DEAD.
261 	 */
262 	do {
263 		clear_thread_flag(TIF_SIGPENDING);
264 		rc = sys_wait4(-1, NULL, __WALL, NULL);
265 	} while (rc != -ECHILD);
266 
267 	/*
268 	 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
269 	 * really care, we could reparent them to the global init. We could
270 	 * exit and reap ->child_reaper even if it is not the last thread in
271 	 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
272 	 * pid_ns can not go away until proc_kill_sb() drops the reference.
273 	 *
274 	 * But this ns can also have other tasks injected by setns()+fork().
275 	 * Again, ignoring the user visible semantics we do not really need
276 	 * to wait until they are all reaped, but they can be reparented to
277 	 * us and thus we need to ensure that pid->child_reaper stays valid
278 	 * until they all go away. See free_pid()->wake_up_process().
279 	 *
280 	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
281 	 * if reparented.
282 	 */
283 	for (;;) {
284 		set_current_state(TASK_INTERRUPTIBLE);
285 		if (pid_ns->nr_hashed == init_pids)
286 			break;
287 		schedule();
288 	}
289 	__set_current_state(TASK_RUNNING);
290 
291 	if (pid_ns->reboot)
292 		current->signal->group_exit_code = pid_ns->reboot;
293 
294 	acct_exit_ns(pid_ns);
295 	return;
296 }
297 
298 #ifdef CONFIG_CHECKPOINT_RESTORE
299 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
300 		void __user *buffer, size_t *lenp, loff_t *ppos)
301 {
302 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
303 	struct ctl_table tmp = *table;
304 
305 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
306 		return -EPERM;
307 
308 	/*
309 	 * Writing directly to ns' last_pid field is OK, since this field
310 	 * is volatile in a living namespace anyway and a code writing to
311 	 * it should synchronize its usage with external means.
312 	 */
313 
314 	tmp.data = &pid_ns->last_pid;
315 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
316 }
317 
318 extern int pid_max;
319 static int zero = 0;
320 static struct ctl_table pid_ns_ctl_table[] = {
321 	{
322 		.procname = "ns_last_pid",
323 		.maxlen = sizeof(int),
324 		.mode = 0666, /* permissions are checked in the handler */
325 		.proc_handler = pid_ns_ctl_handler,
326 		.extra1 = &zero,
327 		.extra2 = &pid_max,
328 	},
329 	{ }
330 };
331 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
332 #endif	/* CONFIG_CHECKPOINT_RESTORE */
333 
334 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
335 {
336 	if (pid_ns == &init_pid_ns)
337 		return 0;
338 
339 	switch (cmd) {
340 	case LINUX_REBOOT_CMD_RESTART2:
341 	case LINUX_REBOOT_CMD_RESTART:
342 		pid_ns->reboot = SIGHUP;
343 		break;
344 
345 	case LINUX_REBOOT_CMD_POWER_OFF:
346 	case LINUX_REBOOT_CMD_HALT:
347 		pid_ns->reboot = SIGINT;
348 		break;
349 	default:
350 		return -EINVAL;
351 	}
352 
353 	read_lock(&tasklist_lock);
354 	force_sig(SIGKILL, pid_ns->child_reaper);
355 	read_unlock(&tasklist_lock);
356 
357 	do_exit(0);
358 
359 	/* Not reached */
360 	return 0;
361 }
362 
363 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
364 {
365 	return container_of(ns, struct pid_namespace, ns);
366 }
367 
368 static struct ns_common *pidns_get(struct task_struct *task)
369 {
370 	struct pid_namespace *ns;
371 
372 	rcu_read_lock();
373 	ns = task_active_pid_ns(task);
374 	if (ns)
375 		get_pid_ns(ns);
376 	rcu_read_unlock();
377 
378 	return ns ? &ns->ns : NULL;
379 }
380 
381 static struct ns_common *pidns_for_children_get(struct task_struct *task)
382 {
383 	struct pid_namespace *ns = NULL;
384 
385 	task_lock(task);
386 	if (task->nsproxy) {
387 		ns = task->nsproxy->pid_ns_for_children;
388 		get_pid_ns(ns);
389 	}
390 	task_unlock(task);
391 
392 	if (ns) {
393 		read_lock(&tasklist_lock);
394 		if (!ns->child_reaper) {
395 			put_pid_ns(ns);
396 			ns = NULL;
397 		}
398 		read_unlock(&tasklist_lock);
399 	}
400 
401 	return ns ? &ns->ns : NULL;
402 }
403 
404 static void pidns_put(struct ns_common *ns)
405 {
406 	put_pid_ns(to_pid_ns(ns));
407 }
408 
409 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
410 {
411 	struct pid_namespace *active = task_active_pid_ns(current);
412 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
413 
414 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
415 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
416 		return -EPERM;
417 
418 	/*
419 	 * Only allow entering the current active pid namespace
420 	 * or a child of the current active pid namespace.
421 	 *
422 	 * This is required for fork to return a usable pid value and
423 	 * this maintains the property that processes and their
424 	 * children can not escape their current pid namespace.
425 	 */
426 	if (new->level < active->level)
427 		return -EINVAL;
428 
429 	ancestor = new;
430 	while (ancestor->level > active->level)
431 		ancestor = ancestor->parent;
432 	if (ancestor != active)
433 		return -EINVAL;
434 
435 	put_pid_ns(nsproxy->pid_ns_for_children);
436 	nsproxy->pid_ns_for_children = get_pid_ns(new);
437 	return 0;
438 }
439 
440 static struct ns_common *pidns_get_parent(struct ns_common *ns)
441 {
442 	struct pid_namespace *active = task_active_pid_ns(current);
443 	struct pid_namespace *pid_ns, *p;
444 
445 	/* See if the parent is in the current namespace */
446 	pid_ns = p = to_pid_ns(ns)->parent;
447 	for (;;) {
448 		if (!p)
449 			return ERR_PTR(-EPERM);
450 		if (p == active)
451 			break;
452 		p = p->parent;
453 	}
454 
455 	return &get_pid_ns(pid_ns)->ns;
456 }
457 
458 static struct user_namespace *pidns_owner(struct ns_common *ns)
459 {
460 	return to_pid_ns(ns)->user_ns;
461 }
462 
463 const struct proc_ns_operations pidns_operations = {
464 	.name		= "pid",
465 	.type		= CLONE_NEWPID,
466 	.get		= pidns_get,
467 	.put		= pidns_put,
468 	.install	= pidns_install,
469 	.owner		= pidns_owner,
470 	.get_parent	= pidns_get_parent,
471 };
472 
473 const struct proc_ns_operations pidns_for_children_operations = {
474 	.name		= "pid_for_children",
475 	.real_ns_name	= "pid",
476 	.type		= CLONE_NEWPID,
477 	.get		= pidns_for_children_get,
478 	.put		= pidns_put,
479 	.install	= pidns_install,
480 	.owner		= pidns_owner,
481 	.get_parent	= pidns_get_parent,
482 };
483 
484 static __init int pid_namespaces_init(void)
485 {
486 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
487 
488 #ifdef CONFIG_CHECKPOINT_RESTORE
489 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
490 #endif
491 	return 0;
492 }
493 
494 __initcall(pid_namespaces_init);
495