xref: /openbmc/linux/kernel/pid_namespace.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Pid namespaces
4  *
5  * Authors:
6  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8  *     Many thanks to Oleg Nesterov for comments and help
9  *
10  */
11 
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26 
27 static DEFINE_MUTEX(pid_caches_mutex);
28 static struct kmem_cache *pid_ns_cachep;
29 /* Write once array, filled from the beginning. */
30 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
31 
32 /*
33  * creates the kmem cache to allocate pids from.
34  * @level: pid namespace level
35  */
36 
37 static struct kmem_cache *create_pid_cachep(unsigned int level)
38 {
39 	/* Level 0 is init_pid_ns.pid_cachep */
40 	struct kmem_cache **pkc = &pid_cache[level - 1];
41 	struct kmem_cache *kc;
42 	char name[4 + 10 + 1];
43 	unsigned int len;
44 
45 	kc = READ_ONCE(*pkc);
46 	if (kc)
47 		return kc;
48 
49 	snprintf(name, sizeof(name), "pid_%u", level + 1);
50 	len = sizeof(struct pid) + level * sizeof(struct upid);
51 	mutex_lock(&pid_caches_mutex);
52 	/* Name collision forces to do allocation under mutex. */
53 	if (!*pkc)
54 		*pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
55 	mutex_unlock(&pid_caches_mutex);
56 	/* current can fail, but someone else can succeed. */
57 	return READ_ONCE(*pkc);
58 }
59 
60 static void proc_cleanup_work(struct work_struct *work)
61 {
62 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
63 	pid_ns_release_proc(ns);
64 }
65 
66 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
67 {
68 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
69 }
70 
71 static void dec_pid_namespaces(struct ucounts *ucounts)
72 {
73 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
74 }
75 
76 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
77 	struct pid_namespace *parent_pid_ns)
78 {
79 	struct pid_namespace *ns;
80 	unsigned int level = parent_pid_ns->level + 1;
81 	struct ucounts *ucounts;
82 	int err;
83 
84 	err = -EINVAL;
85 	if (!in_userns(parent_pid_ns->user_ns, user_ns))
86 		goto out;
87 
88 	err = -ENOSPC;
89 	if (level > MAX_PID_NS_LEVEL)
90 		goto out;
91 	ucounts = inc_pid_namespaces(user_ns);
92 	if (!ucounts)
93 		goto out;
94 
95 	err = -ENOMEM;
96 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
97 	if (ns == NULL)
98 		goto out_dec;
99 
100 	idr_init(&ns->idr);
101 
102 	ns->pid_cachep = create_pid_cachep(level);
103 	if (ns->pid_cachep == NULL)
104 		goto out_free_idr;
105 
106 	err = ns_alloc_inum(&ns->ns);
107 	if (err)
108 		goto out_free_idr;
109 	ns->ns.ops = &pidns_operations;
110 
111 	kref_init(&ns->kref);
112 	ns->level = level;
113 	ns->parent = get_pid_ns(parent_pid_ns);
114 	ns->user_ns = get_user_ns(user_ns);
115 	ns->ucounts = ucounts;
116 	ns->pid_allocated = PIDNS_ADDING;
117 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
118 
119 	return ns;
120 
121 out_free_idr:
122 	idr_destroy(&ns->idr);
123 	kmem_cache_free(pid_ns_cachep, ns);
124 out_dec:
125 	dec_pid_namespaces(ucounts);
126 out:
127 	return ERR_PTR(err);
128 }
129 
130 static void delayed_free_pidns(struct rcu_head *p)
131 {
132 	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
133 
134 	dec_pid_namespaces(ns->ucounts);
135 	put_user_ns(ns->user_ns);
136 
137 	kmem_cache_free(pid_ns_cachep, ns);
138 }
139 
140 static void destroy_pid_namespace(struct pid_namespace *ns)
141 {
142 	ns_free_inum(&ns->ns);
143 
144 	idr_destroy(&ns->idr);
145 	call_rcu(&ns->rcu, delayed_free_pidns);
146 }
147 
148 struct pid_namespace *copy_pid_ns(unsigned long flags,
149 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
150 {
151 	if (!(flags & CLONE_NEWPID))
152 		return get_pid_ns(old_ns);
153 	if (task_active_pid_ns(current) != old_ns)
154 		return ERR_PTR(-EINVAL);
155 	return create_pid_namespace(user_ns, old_ns);
156 }
157 
158 static void free_pid_ns(struct kref *kref)
159 {
160 	struct pid_namespace *ns;
161 
162 	ns = container_of(kref, struct pid_namespace, kref);
163 	destroy_pid_namespace(ns);
164 }
165 
166 void put_pid_ns(struct pid_namespace *ns)
167 {
168 	struct pid_namespace *parent;
169 
170 	while (ns != &init_pid_ns) {
171 		parent = ns->parent;
172 		if (!kref_put(&ns->kref, free_pid_ns))
173 			break;
174 		ns = parent;
175 	}
176 }
177 EXPORT_SYMBOL_GPL(put_pid_ns);
178 
179 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
180 {
181 	int nr;
182 	int rc;
183 	struct task_struct *task, *me = current;
184 	int init_pids = thread_group_leader(me) ? 1 : 2;
185 	struct pid *pid;
186 
187 	/* Don't allow any more processes into the pid namespace */
188 	disable_pid_allocation(pid_ns);
189 
190 	/*
191 	 * Ignore SIGCHLD causing any terminated children to autoreap.
192 	 * This speeds up the namespace shutdown, plus see the comment
193 	 * below.
194 	 */
195 	spin_lock_irq(&me->sighand->siglock);
196 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
197 	spin_unlock_irq(&me->sighand->siglock);
198 
199 	/*
200 	 * The last thread in the cgroup-init thread group is terminating.
201 	 * Find remaining pid_ts in the namespace, signal and wait for them
202 	 * to exit.
203 	 *
204 	 * Note:  This signals each threads in the namespace - even those that
205 	 * 	  belong to the same thread group, To avoid this, we would have
206 	 * 	  to walk the entire tasklist looking a processes in this
207 	 * 	  namespace, but that could be unnecessarily expensive if the
208 	 * 	  pid namespace has just a few processes. Or we need to
209 	 * 	  maintain a tasklist for each pid namespace.
210 	 *
211 	 */
212 	rcu_read_lock();
213 	read_lock(&tasklist_lock);
214 	nr = 2;
215 	idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
216 		task = pid_task(pid, PIDTYPE_PID);
217 		if (task && !__fatal_signal_pending(task))
218 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
219 	}
220 	read_unlock(&tasklist_lock);
221 	rcu_read_unlock();
222 
223 	/*
224 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
225 	 * kernel_wait4() will also block until our children traced from the
226 	 * parent namespace are detached and become EXIT_DEAD.
227 	 */
228 	do {
229 		clear_thread_flag(TIF_SIGPENDING);
230 		rc = kernel_wait4(-1, NULL, __WALL, NULL);
231 	} while (rc != -ECHILD);
232 
233 	/*
234 	 * kernel_wait4() above can't reap the EXIT_DEAD children but we do not
235 	 * really care, we could reparent them to the global init. We could
236 	 * exit and reap ->child_reaper even if it is not the last thread in
237 	 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
238 	 * pid_ns can not go away until proc_kill_sb() drops the reference.
239 	 *
240 	 * But this ns can also have other tasks injected by setns()+fork().
241 	 * Again, ignoring the user visible semantics we do not really need
242 	 * to wait until they are all reaped, but they can be reparented to
243 	 * us and thus we need to ensure that pid->child_reaper stays valid
244 	 * until they all go away. See free_pid()->wake_up_process().
245 	 *
246 	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
247 	 * if reparented.
248 	 */
249 	for (;;) {
250 		set_current_state(TASK_INTERRUPTIBLE);
251 		if (pid_ns->pid_allocated == init_pids)
252 			break;
253 		schedule();
254 	}
255 	__set_current_state(TASK_RUNNING);
256 
257 	if (pid_ns->reboot)
258 		current->signal->group_exit_code = pid_ns->reboot;
259 
260 	acct_exit_ns(pid_ns);
261 	return;
262 }
263 
264 #ifdef CONFIG_CHECKPOINT_RESTORE
265 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
266 		void __user *buffer, size_t *lenp, loff_t *ppos)
267 {
268 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
269 	struct ctl_table tmp = *table;
270 	int ret, next;
271 
272 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
273 		return -EPERM;
274 
275 	/*
276 	 * Writing directly to ns' last_pid field is OK, since this field
277 	 * is volatile in a living namespace anyway and a code writing to
278 	 * it should synchronize its usage with external means.
279 	 */
280 
281 	next = idr_get_cursor(&pid_ns->idr) - 1;
282 
283 	tmp.data = &next;
284 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
285 	if (!ret && write)
286 		idr_set_cursor(&pid_ns->idr, next + 1);
287 
288 	return ret;
289 }
290 
291 extern int pid_max;
292 static struct ctl_table pid_ns_ctl_table[] = {
293 	{
294 		.procname = "ns_last_pid",
295 		.maxlen = sizeof(int),
296 		.mode = 0666, /* permissions are checked in the handler */
297 		.proc_handler = pid_ns_ctl_handler,
298 		.extra1 = SYSCTL_ZERO,
299 		.extra2 = &pid_max,
300 	},
301 	{ }
302 };
303 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
304 #endif	/* CONFIG_CHECKPOINT_RESTORE */
305 
306 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
307 {
308 	if (pid_ns == &init_pid_ns)
309 		return 0;
310 
311 	switch (cmd) {
312 	case LINUX_REBOOT_CMD_RESTART2:
313 	case LINUX_REBOOT_CMD_RESTART:
314 		pid_ns->reboot = SIGHUP;
315 		break;
316 
317 	case LINUX_REBOOT_CMD_POWER_OFF:
318 	case LINUX_REBOOT_CMD_HALT:
319 		pid_ns->reboot = SIGINT;
320 		break;
321 	default:
322 		return -EINVAL;
323 	}
324 
325 	read_lock(&tasklist_lock);
326 	send_sig(SIGKILL, pid_ns->child_reaper, 1);
327 	read_unlock(&tasklist_lock);
328 
329 	do_exit(0);
330 
331 	/* Not reached */
332 	return 0;
333 }
334 
335 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
336 {
337 	return container_of(ns, struct pid_namespace, ns);
338 }
339 
340 static struct ns_common *pidns_get(struct task_struct *task)
341 {
342 	struct pid_namespace *ns;
343 
344 	rcu_read_lock();
345 	ns = task_active_pid_ns(task);
346 	if (ns)
347 		get_pid_ns(ns);
348 	rcu_read_unlock();
349 
350 	return ns ? &ns->ns : NULL;
351 }
352 
353 static struct ns_common *pidns_for_children_get(struct task_struct *task)
354 {
355 	struct pid_namespace *ns = NULL;
356 
357 	task_lock(task);
358 	if (task->nsproxy) {
359 		ns = task->nsproxy->pid_ns_for_children;
360 		get_pid_ns(ns);
361 	}
362 	task_unlock(task);
363 
364 	if (ns) {
365 		read_lock(&tasklist_lock);
366 		if (!ns->child_reaper) {
367 			put_pid_ns(ns);
368 			ns = NULL;
369 		}
370 		read_unlock(&tasklist_lock);
371 	}
372 
373 	return ns ? &ns->ns : NULL;
374 }
375 
376 static void pidns_put(struct ns_common *ns)
377 {
378 	put_pid_ns(to_pid_ns(ns));
379 }
380 
381 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
382 {
383 	struct pid_namespace *active = task_active_pid_ns(current);
384 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
385 
386 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
387 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
388 		return -EPERM;
389 
390 	/*
391 	 * Only allow entering the current active pid namespace
392 	 * or a child of the current active pid namespace.
393 	 *
394 	 * This is required for fork to return a usable pid value and
395 	 * this maintains the property that processes and their
396 	 * children can not escape their current pid namespace.
397 	 */
398 	if (new->level < active->level)
399 		return -EINVAL;
400 
401 	ancestor = new;
402 	while (ancestor->level > active->level)
403 		ancestor = ancestor->parent;
404 	if (ancestor != active)
405 		return -EINVAL;
406 
407 	put_pid_ns(nsproxy->pid_ns_for_children);
408 	nsproxy->pid_ns_for_children = get_pid_ns(new);
409 	return 0;
410 }
411 
412 static struct ns_common *pidns_get_parent(struct ns_common *ns)
413 {
414 	struct pid_namespace *active = task_active_pid_ns(current);
415 	struct pid_namespace *pid_ns, *p;
416 
417 	/* See if the parent is in the current namespace */
418 	pid_ns = p = to_pid_ns(ns)->parent;
419 	for (;;) {
420 		if (!p)
421 			return ERR_PTR(-EPERM);
422 		if (p == active)
423 			break;
424 		p = p->parent;
425 	}
426 
427 	return &get_pid_ns(pid_ns)->ns;
428 }
429 
430 static struct user_namespace *pidns_owner(struct ns_common *ns)
431 {
432 	return to_pid_ns(ns)->user_ns;
433 }
434 
435 const struct proc_ns_operations pidns_operations = {
436 	.name		= "pid",
437 	.type		= CLONE_NEWPID,
438 	.get		= pidns_get,
439 	.put		= pidns_put,
440 	.install	= pidns_install,
441 	.owner		= pidns_owner,
442 	.get_parent	= pidns_get_parent,
443 };
444 
445 const struct proc_ns_operations pidns_for_children_operations = {
446 	.name		= "pid_for_children",
447 	.real_ns_name	= "pid",
448 	.type		= CLONE_NEWPID,
449 	.get		= pidns_for_children_get,
450 	.put		= pidns_put,
451 	.install	= pidns_install,
452 	.owner		= pidns_owner,
453 	.get_parent	= pidns_get_parent,
454 };
455 
456 static __init int pid_namespaces_init(void)
457 {
458 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
459 
460 #ifdef CONFIG_CHECKPOINT_RESTORE
461 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
462 #endif
463 	return 0;
464 }
465 
466 __initcall(pid_namespaces_init);
467