1 /* 2 * Pid namespaces 3 * 4 * Authors: 5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 7 * Many thanks to Oleg Nesterov for comments and help 8 * 9 */ 10 11 #include <linux/pid.h> 12 #include <linux/pid_namespace.h> 13 #include <linux/user_namespace.h> 14 #include <linux/syscalls.h> 15 #include <linux/err.h> 16 #include <linux/acct.h> 17 #include <linux/slab.h> 18 #include <linux/proc_ns.h> 19 #include <linux/reboot.h> 20 #include <linux/export.h> 21 22 struct pid_cache { 23 int nr_ids; 24 char name[16]; 25 struct kmem_cache *cachep; 26 struct list_head list; 27 }; 28 29 static LIST_HEAD(pid_caches_lh); 30 static DEFINE_MUTEX(pid_caches_mutex); 31 static struct kmem_cache *pid_ns_cachep; 32 33 /* 34 * creates the kmem cache to allocate pids from. 35 * @nr_ids: the number of numerical ids this pid will have to carry 36 */ 37 38 static struct kmem_cache *create_pid_cachep(int nr_ids) 39 { 40 struct pid_cache *pcache; 41 struct kmem_cache *cachep; 42 43 mutex_lock(&pid_caches_mutex); 44 list_for_each_entry(pcache, &pid_caches_lh, list) 45 if (pcache->nr_ids == nr_ids) 46 goto out; 47 48 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL); 49 if (pcache == NULL) 50 goto err_alloc; 51 52 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids); 53 cachep = kmem_cache_create(pcache->name, 54 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid), 55 0, SLAB_HWCACHE_ALIGN, NULL); 56 if (cachep == NULL) 57 goto err_cachep; 58 59 pcache->nr_ids = nr_ids; 60 pcache->cachep = cachep; 61 list_add(&pcache->list, &pid_caches_lh); 62 out: 63 mutex_unlock(&pid_caches_mutex); 64 return pcache->cachep; 65 66 err_cachep: 67 kfree(pcache); 68 err_alloc: 69 mutex_unlock(&pid_caches_mutex); 70 return NULL; 71 } 72 73 static void proc_cleanup_work(struct work_struct *work) 74 { 75 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); 76 pid_ns_release_proc(ns); 77 } 78 79 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ 80 #define MAX_PID_NS_LEVEL 32 81 82 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 83 struct pid_namespace *parent_pid_ns) 84 { 85 struct pid_namespace *ns; 86 unsigned int level = parent_pid_ns->level + 1; 87 int i; 88 int err; 89 90 if (level > MAX_PID_NS_LEVEL) { 91 err = -EINVAL; 92 goto out; 93 } 94 95 err = -ENOMEM; 96 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 97 if (ns == NULL) 98 goto out; 99 100 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 101 if (!ns->pidmap[0].page) 102 goto out_free; 103 104 ns->pid_cachep = create_pid_cachep(level + 1); 105 if (ns->pid_cachep == NULL) 106 goto out_free_map; 107 108 err = ns_alloc_inum(&ns->ns); 109 if (err) 110 goto out_free_map; 111 ns->ns.ops = &pidns_operations; 112 113 kref_init(&ns->kref); 114 ns->level = level; 115 ns->parent = get_pid_ns(parent_pid_ns); 116 ns->user_ns = get_user_ns(user_ns); 117 ns->nr_hashed = PIDNS_HASH_ADDING; 118 INIT_WORK(&ns->proc_work, proc_cleanup_work); 119 120 set_bit(0, ns->pidmap[0].page); 121 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1); 122 123 for (i = 1; i < PIDMAP_ENTRIES; i++) 124 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE); 125 126 return ns; 127 128 out_free_map: 129 kfree(ns->pidmap[0].page); 130 out_free: 131 kmem_cache_free(pid_ns_cachep, ns); 132 out: 133 return ERR_PTR(err); 134 } 135 136 static void delayed_free_pidns(struct rcu_head *p) 137 { 138 kmem_cache_free(pid_ns_cachep, 139 container_of(p, struct pid_namespace, rcu)); 140 } 141 142 static void destroy_pid_namespace(struct pid_namespace *ns) 143 { 144 int i; 145 146 ns_free_inum(&ns->ns); 147 for (i = 0; i < PIDMAP_ENTRIES; i++) 148 kfree(ns->pidmap[i].page); 149 put_user_ns(ns->user_ns); 150 call_rcu(&ns->rcu, delayed_free_pidns); 151 } 152 153 struct pid_namespace *copy_pid_ns(unsigned long flags, 154 struct user_namespace *user_ns, struct pid_namespace *old_ns) 155 { 156 if (!(flags & CLONE_NEWPID)) 157 return get_pid_ns(old_ns); 158 if (task_active_pid_ns(current) != old_ns) 159 return ERR_PTR(-EINVAL); 160 return create_pid_namespace(user_ns, old_ns); 161 } 162 163 static void free_pid_ns(struct kref *kref) 164 { 165 struct pid_namespace *ns; 166 167 ns = container_of(kref, struct pid_namespace, kref); 168 destroy_pid_namespace(ns); 169 } 170 171 void put_pid_ns(struct pid_namespace *ns) 172 { 173 struct pid_namespace *parent; 174 175 while (ns != &init_pid_ns) { 176 parent = ns->parent; 177 if (!kref_put(&ns->kref, free_pid_ns)) 178 break; 179 ns = parent; 180 } 181 } 182 EXPORT_SYMBOL_GPL(put_pid_ns); 183 184 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 185 { 186 int nr; 187 int rc; 188 struct task_struct *task, *me = current; 189 int init_pids = thread_group_leader(me) ? 1 : 2; 190 191 /* Don't allow any more processes into the pid namespace */ 192 disable_pid_allocation(pid_ns); 193 194 /* 195 * Ignore SIGCHLD causing any terminated children to autoreap. 196 * This speeds up the namespace shutdown, plus see the comment 197 * below. 198 */ 199 spin_lock_irq(&me->sighand->siglock); 200 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 201 spin_unlock_irq(&me->sighand->siglock); 202 203 /* 204 * The last thread in the cgroup-init thread group is terminating. 205 * Find remaining pid_ts in the namespace, signal and wait for them 206 * to exit. 207 * 208 * Note: This signals each threads in the namespace - even those that 209 * belong to the same thread group, To avoid this, we would have 210 * to walk the entire tasklist looking a processes in this 211 * namespace, but that could be unnecessarily expensive if the 212 * pid namespace has just a few processes. Or we need to 213 * maintain a tasklist for each pid namespace. 214 * 215 */ 216 read_lock(&tasklist_lock); 217 nr = next_pidmap(pid_ns, 1); 218 while (nr > 0) { 219 rcu_read_lock(); 220 221 task = pid_task(find_vpid(nr), PIDTYPE_PID); 222 if (task && !__fatal_signal_pending(task)) 223 send_sig_info(SIGKILL, SEND_SIG_FORCED, task); 224 225 rcu_read_unlock(); 226 227 nr = next_pidmap(pid_ns, nr); 228 } 229 read_unlock(&tasklist_lock); 230 231 /* 232 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 233 * sys_wait4() will also block until our children traced from the 234 * parent namespace are detached and become EXIT_DEAD. 235 */ 236 do { 237 clear_thread_flag(TIF_SIGPENDING); 238 rc = sys_wait4(-1, NULL, __WALL, NULL); 239 } while (rc != -ECHILD); 240 241 /* 242 * sys_wait4() above can't reap the EXIT_DEAD children but we do not 243 * really care, we could reparent them to the global init. We could 244 * exit and reap ->child_reaper even if it is not the last thread in 245 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(), 246 * pid_ns can not go away until proc_kill_sb() drops the reference. 247 * 248 * But this ns can also have other tasks injected by setns()+fork(). 249 * Again, ignoring the user visible semantics we do not really need 250 * to wait until they are all reaped, but they can be reparented to 251 * us and thus we need to ensure that pid->child_reaper stays valid 252 * until they all go away. See free_pid()->wake_up_process(). 253 * 254 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped 255 * if reparented. 256 */ 257 for (;;) { 258 set_current_state(TASK_UNINTERRUPTIBLE); 259 if (pid_ns->nr_hashed == init_pids) 260 break; 261 schedule(); 262 } 263 __set_current_state(TASK_RUNNING); 264 265 if (pid_ns->reboot) 266 current->signal->group_exit_code = pid_ns->reboot; 267 268 acct_exit_ns(pid_ns); 269 return; 270 } 271 272 #ifdef CONFIG_CHECKPOINT_RESTORE 273 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 274 void __user *buffer, size_t *lenp, loff_t *ppos) 275 { 276 struct pid_namespace *pid_ns = task_active_pid_ns(current); 277 struct ctl_table tmp = *table; 278 279 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) 280 return -EPERM; 281 282 /* 283 * Writing directly to ns' last_pid field is OK, since this field 284 * is volatile in a living namespace anyway and a code writing to 285 * it should synchronize its usage with external means. 286 */ 287 288 tmp.data = &pid_ns->last_pid; 289 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 290 } 291 292 extern int pid_max; 293 static int zero = 0; 294 static struct ctl_table pid_ns_ctl_table[] = { 295 { 296 .procname = "ns_last_pid", 297 .maxlen = sizeof(int), 298 .mode = 0666, /* permissions are checked in the handler */ 299 .proc_handler = pid_ns_ctl_handler, 300 .extra1 = &zero, 301 .extra2 = &pid_max, 302 }, 303 { } 304 }; 305 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 306 #endif /* CONFIG_CHECKPOINT_RESTORE */ 307 308 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 309 { 310 if (pid_ns == &init_pid_ns) 311 return 0; 312 313 switch (cmd) { 314 case LINUX_REBOOT_CMD_RESTART2: 315 case LINUX_REBOOT_CMD_RESTART: 316 pid_ns->reboot = SIGHUP; 317 break; 318 319 case LINUX_REBOOT_CMD_POWER_OFF: 320 case LINUX_REBOOT_CMD_HALT: 321 pid_ns->reboot = SIGINT; 322 break; 323 default: 324 return -EINVAL; 325 } 326 327 read_lock(&tasklist_lock); 328 force_sig(SIGKILL, pid_ns->child_reaper); 329 read_unlock(&tasklist_lock); 330 331 do_exit(0); 332 333 /* Not reached */ 334 return 0; 335 } 336 337 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 338 { 339 return container_of(ns, struct pid_namespace, ns); 340 } 341 342 static struct ns_common *pidns_get(struct task_struct *task) 343 { 344 struct pid_namespace *ns; 345 346 rcu_read_lock(); 347 ns = task_active_pid_ns(task); 348 if (ns) 349 get_pid_ns(ns); 350 rcu_read_unlock(); 351 352 return ns ? &ns->ns : NULL; 353 } 354 355 static void pidns_put(struct ns_common *ns) 356 { 357 put_pid_ns(to_pid_ns(ns)); 358 } 359 360 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns) 361 { 362 struct pid_namespace *active = task_active_pid_ns(current); 363 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 364 365 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 366 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 367 return -EPERM; 368 369 /* 370 * Only allow entering the current active pid namespace 371 * or a child of the current active pid namespace. 372 * 373 * This is required for fork to return a usable pid value and 374 * this maintains the property that processes and their 375 * children can not escape their current pid namespace. 376 */ 377 if (new->level < active->level) 378 return -EINVAL; 379 380 ancestor = new; 381 while (ancestor->level > active->level) 382 ancestor = ancestor->parent; 383 if (ancestor != active) 384 return -EINVAL; 385 386 put_pid_ns(nsproxy->pid_ns_for_children); 387 nsproxy->pid_ns_for_children = get_pid_ns(new); 388 return 0; 389 } 390 391 const struct proc_ns_operations pidns_operations = { 392 .name = "pid", 393 .type = CLONE_NEWPID, 394 .get = pidns_get, 395 .put = pidns_put, 396 .install = pidns_install, 397 }; 398 399 static __init int pid_namespaces_init(void) 400 { 401 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 402 403 #ifdef CONFIG_CHECKPOINT_RESTORE 404 register_sysctl_paths(kern_path, pid_ns_ctl_table); 405 #endif 406 return 0; 407 } 408 409 __initcall(pid_namespaces_init); 410