1 /* 2 * Pid namespaces 3 * 4 * Authors: 5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 7 * Many thanks to Oleg Nesterov for comments and help 8 * 9 */ 10 11 #include <linux/pid.h> 12 #include <linux/pid_namespace.h> 13 #include <linux/user_namespace.h> 14 #include <linux/syscalls.h> 15 #include <linux/err.h> 16 #include <linux/acct.h> 17 #include <linux/slab.h> 18 #include <linux/proc_ns.h> 19 #include <linux/reboot.h> 20 #include <linux/export.h> 21 22 struct pid_cache { 23 int nr_ids; 24 char name[16]; 25 struct kmem_cache *cachep; 26 struct list_head list; 27 }; 28 29 static LIST_HEAD(pid_caches_lh); 30 static DEFINE_MUTEX(pid_caches_mutex); 31 static struct kmem_cache *pid_ns_cachep; 32 33 /* 34 * creates the kmem cache to allocate pids from. 35 * @nr_ids: the number of numerical ids this pid will have to carry 36 */ 37 38 static struct kmem_cache *create_pid_cachep(int nr_ids) 39 { 40 struct pid_cache *pcache; 41 struct kmem_cache *cachep; 42 43 mutex_lock(&pid_caches_mutex); 44 list_for_each_entry(pcache, &pid_caches_lh, list) 45 if (pcache->nr_ids == nr_ids) 46 goto out; 47 48 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL); 49 if (pcache == NULL) 50 goto err_alloc; 51 52 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids); 53 cachep = kmem_cache_create(pcache->name, 54 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid), 55 0, SLAB_HWCACHE_ALIGN, NULL); 56 if (cachep == NULL) 57 goto err_cachep; 58 59 pcache->nr_ids = nr_ids; 60 pcache->cachep = cachep; 61 list_add(&pcache->list, &pid_caches_lh); 62 out: 63 mutex_unlock(&pid_caches_mutex); 64 return pcache->cachep; 65 66 err_cachep: 67 kfree(pcache); 68 err_alloc: 69 mutex_unlock(&pid_caches_mutex); 70 return NULL; 71 } 72 73 static void proc_cleanup_work(struct work_struct *work) 74 { 75 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); 76 pid_ns_release_proc(ns); 77 } 78 79 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ 80 #define MAX_PID_NS_LEVEL 32 81 82 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 83 { 84 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 85 } 86 87 static void dec_pid_namespaces(struct ucounts *ucounts) 88 { 89 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 90 } 91 92 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 93 struct pid_namespace *parent_pid_ns) 94 { 95 struct pid_namespace *ns; 96 unsigned int level = parent_pid_ns->level + 1; 97 struct ucounts *ucounts; 98 int i; 99 int err; 100 101 err = -ENOSPC; 102 if (level > MAX_PID_NS_LEVEL) 103 goto out; 104 ucounts = inc_pid_namespaces(user_ns); 105 if (!ucounts) 106 goto out; 107 108 err = -ENOMEM; 109 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 110 if (ns == NULL) 111 goto out_dec; 112 113 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 114 if (!ns->pidmap[0].page) 115 goto out_free; 116 117 ns->pid_cachep = create_pid_cachep(level + 1); 118 if (ns->pid_cachep == NULL) 119 goto out_free_map; 120 121 err = ns_alloc_inum(&ns->ns); 122 if (err) 123 goto out_free_map; 124 ns->ns.ops = &pidns_operations; 125 126 kref_init(&ns->kref); 127 ns->level = level; 128 ns->parent = get_pid_ns(parent_pid_ns); 129 ns->user_ns = get_user_ns(user_ns); 130 ns->ucounts = ucounts; 131 ns->nr_hashed = PIDNS_HASH_ADDING; 132 INIT_WORK(&ns->proc_work, proc_cleanup_work); 133 134 set_bit(0, ns->pidmap[0].page); 135 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1); 136 137 for (i = 1; i < PIDMAP_ENTRIES; i++) 138 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE); 139 140 return ns; 141 142 out_free_map: 143 kfree(ns->pidmap[0].page); 144 out_free: 145 kmem_cache_free(pid_ns_cachep, ns); 146 out_dec: 147 dec_pid_namespaces(ucounts); 148 out: 149 return ERR_PTR(err); 150 } 151 152 static void delayed_free_pidns(struct rcu_head *p) 153 { 154 kmem_cache_free(pid_ns_cachep, 155 container_of(p, struct pid_namespace, rcu)); 156 } 157 158 static void destroy_pid_namespace(struct pid_namespace *ns) 159 { 160 int i; 161 162 ns_free_inum(&ns->ns); 163 for (i = 0; i < PIDMAP_ENTRIES; i++) 164 kfree(ns->pidmap[i].page); 165 dec_pid_namespaces(ns->ucounts); 166 put_user_ns(ns->user_ns); 167 call_rcu(&ns->rcu, delayed_free_pidns); 168 } 169 170 struct pid_namespace *copy_pid_ns(unsigned long flags, 171 struct user_namespace *user_ns, struct pid_namespace *old_ns) 172 { 173 if (!(flags & CLONE_NEWPID)) 174 return get_pid_ns(old_ns); 175 if (task_active_pid_ns(current) != old_ns) 176 return ERR_PTR(-EINVAL); 177 return create_pid_namespace(user_ns, old_ns); 178 } 179 180 static void free_pid_ns(struct kref *kref) 181 { 182 struct pid_namespace *ns; 183 184 ns = container_of(kref, struct pid_namespace, kref); 185 destroy_pid_namespace(ns); 186 } 187 188 void put_pid_ns(struct pid_namespace *ns) 189 { 190 struct pid_namespace *parent; 191 192 while (ns != &init_pid_ns) { 193 parent = ns->parent; 194 if (!kref_put(&ns->kref, free_pid_ns)) 195 break; 196 ns = parent; 197 } 198 } 199 EXPORT_SYMBOL_GPL(put_pid_ns); 200 201 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 202 { 203 int nr; 204 int rc; 205 struct task_struct *task, *me = current; 206 int init_pids = thread_group_leader(me) ? 1 : 2; 207 208 /* Don't allow any more processes into the pid namespace */ 209 disable_pid_allocation(pid_ns); 210 211 /* 212 * Ignore SIGCHLD causing any terminated children to autoreap. 213 * This speeds up the namespace shutdown, plus see the comment 214 * below. 215 */ 216 spin_lock_irq(&me->sighand->siglock); 217 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 218 spin_unlock_irq(&me->sighand->siglock); 219 220 /* 221 * The last thread in the cgroup-init thread group is terminating. 222 * Find remaining pid_ts in the namespace, signal and wait for them 223 * to exit. 224 * 225 * Note: This signals each threads in the namespace - even those that 226 * belong to the same thread group, To avoid this, we would have 227 * to walk the entire tasklist looking a processes in this 228 * namespace, but that could be unnecessarily expensive if the 229 * pid namespace has just a few processes. Or we need to 230 * maintain a tasklist for each pid namespace. 231 * 232 */ 233 read_lock(&tasklist_lock); 234 nr = next_pidmap(pid_ns, 1); 235 while (nr > 0) { 236 rcu_read_lock(); 237 238 task = pid_task(find_vpid(nr), PIDTYPE_PID); 239 if (task && !__fatal_signal_pending(task)) 240 send_sig_info(SIGKILL, SEND_SIG_FORCED, task); 241 242 rcu_read_unlock(); 243 244 nr = next_pidmap(pid_ns, nr); 245 } 246 read_unlock(&tasklist_lock); 247 248 /* 249 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 250 * sys_wait4() will also block until our children traced from the 251 * parent namespace are detached and become EXIT_DEAD. 252 */ 253 do { 254 clear_thread_flag(TIF_SIGPENDING); 255 rc = sys_wait4(-1, NULL, __WALL, NULL); 256 } while (rc != -ECHILD); 257 258 /* 259 * sys_wait4() above can't reap the EXIT_DEAD children but we do not 260 * really care, we could reparent them to the global init. We could 261 * exit and reap ->child_reaper even if it is not the last thread in 262 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(), 263 * pid_ns can not go away until proc_kill_sb() drops the reference. 264 * 265 * But this ns can also have other tasks injected by setns()+fork(). 266 * Again, ignoring the user visible semantics we do not really need 267 * to wait until they are all reaped, but they can be reparented to 268 * us and thus we need to ensure that pid->child_reaper stays valid 269 * until they all go away. See free_pid()->wake_up_process(). 270 * 271 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped 272 * if reparented. 273 */ 274 for (;;) { 275 set_current_state(TASK_UNINTERRUPTIBLE); 276 if (pid_ns->nr_hashed == init_pids) 277 break; 278 schedule(); 279 } 280 __set_current_state(TASK_RUNNING); 281 282 if (pid_ns->reboot) 283 current->signal->group_exit_code = pid_ns->reboot; 284 285 acct_exit_ns(pid_ns); 286 return; 287 } 288 289 #ifdef CONFIG_CHECKPOINT_RESTORE 290 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 291 void __user *buffer, size_t *lenp, loff_t *ppos) 292 { 293 struct pid_namespace *pid_ns = task_active_pid_ns(current); 294 struct ctl_table tmp = *table; 295 296 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) 297 return -EPERM; 298 299 /* 300 * Writing directly to ns' last_pid field is OK, since this field 301 * is volatile in a living namespace anyway and a code writing to 302 * it should synchronize its usage with external means. 303 */ 304 305 tmp.data = &pid_ns->last_pid; 306 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 307 } 308 309 extern int pid_max; 310 static int zero = 0; 311 static struct ctl_table pid_ns_ctl_table[] = { 312 { 313 .procname = "ns_last_pid", 314 .maxlen = sizeof(int), 315 .mode = 0666, /* permissions are checked in the handler */ 316 .proc_handler = pid_ns_ctl_handler, 317 .extra1 = &zero, 318 .extra2 = &pid_max, 319 }, 320 { } 321 }; 322 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 323 #endif /* CONFIG_CHECKPOINT_RESTORE */ 324 325 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 326 { 327 if (pid_ns == &init_pid_ns) 328 return 0; 329 330 switch (cmd) { 331 case LINUX_REBOOT_CMD_RESTART2: 332 case LINUX_REBOOT_CMD_RESTART: 333 pid_ns->reboot = SIGHUP; 334 break; 335 336 case LINUX_REBOOT_CMD_POWER_OFF: 337 case LINUX_REBOOT_CMD_HALT: 338 pid_ns->reboot = SIGINT; 339 break; 340 default: 341 return -EINVAL; 342 } 343 344 read_lock(&tasklist_lock); 345 force_sig(SIGKILL, pid_ns->child_reaper); 346 read_unlock(&tasklist_lock); 347 348 do_exit(0); 349 350 /* Not reached */ 351 return 0; 352 } 353 354 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 355 { 356 return container_of(ns, struct pid_namespace, ns); 357 } 358 359 static struct ns_common *pidns_get(struct task_struct *task) 360 { 361 struct pid_namespace *ns; 362 363 rcu_read_lock(); 364 ns = task_active_pid_ns(task); 365 if (ns) 366 get_pid_ns(ns); 367 rcu_read_unlock(); 368 369 return ns ? &ns->ns : NULL; 370 } 371 372 static void pidns_put(struct ns_common *ns) 373 { 374 put_pid_ns(to_pid_ns(ns)); 375 } 376 377 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns) 378 { 379 struct pid_namespace *active = task_active_pid_ns(current); 380 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 381 382 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 383 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 384 return -EPERM; 385 386 /* 387 * Only allow entering the current active pid namespace 388 * or a child of the current active pid namespace. 389 * 390 * This is required for fork to return a usable pid value and 391 * this maintains the property that processes and their 392 * children can not escape their current pid namespace. 393 */ 394 if (new->level < active->level) 395 return -EINVAL; 396 397 ancestor = new; 398 while (ancestor->level > active->level) 399 ancestor = ancestor->parent; 400 if (ancestor != active) 401 return -EINVAL; 402 403 put_pid_ns(nsproxy->pid_ns_for_children); 404 nsproxy->pid_ns_for_children = get_pid_ns(new); 405 return 0; 406 } 407 408 static struct ns_common *pidns_get_parent(struct ns_common *ns) 409 { 410 struct pid_namespace *active = task_active_pid_ns(current); 411 struct pid_namespace *pid_ns, *p; 412 413 /* See if the parent is in the current namespace */ 414 pid_ns = p = to_pid_ns(ns)->parent; 415 for (;;) { 416 if (!p) 417 return ERR_PTR(-EPERM); 418 if (p == active) 419 break; 420 p = p->parent; 421 } 422 423 return &get_pid_ns(pid_ns)->ns; 424 } 425 426 static struct user_namespace *pidns_owner(struct ns_common *ns) 427 { 428 return to_pid_ns(ns)->user_ns; 429 } 430 431 const struct proc_ns_operations pidns_operations = { 432 .name = "pid", 433 .type = CLONE_NEWPID, 434 .get = pidns_get, 435 .put = pidns_put, 436 .install = pidns_install, 437 .owner = pidns_owner, 438 .get_parent = pidns_get_parent, 439 }; 440 441 static __init int pid_namespaces_init(void) 442 { 443 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 444 445 #ifdef CONFIG_CHECKPOINT_RESTORE 446 register_sysctl_paths(kern_path, pid_ns_ctl_table); 447 #endif 448 return 0; 449 } 450 451 __initcall(pid_namespaces_init); 452