xref: /openbmc/linux/kernel/pid_namespace.c (revision 64fc2a94)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/err.h>
16 #include <linux/acct.h>
17 #include <linux/slab.h>
18 #include <linux/proc_ns.h>
19 #include <linux/reboot.h>
20 #include <linux/export.h>
21 
22 struct pid_cache {
23 	int nr_ids;
24 	char name[16];
25 	struct kmem_cache *cachep;
26 	struct list_head list;
27 };
28 
29 static LIST_HEAD(pid_caches_lh);
30 static DEFINE_MUTEX(pid_caches_mutex);
31 static struct kmem_cache *pid_ns_cachep;
32 
33 /*
34  * creates the kmem cache to allocate pids from.
35  * @nr_ids: the number of numerical ids this pid will have to carry
36  */
37 
38 static struct kmem_cache *create_pid_cachep(int nr_ids)
39 {
40 	struct pid_cache *pcache;
41 	struct kmem_cache *cachep;
42 
43 	mutex_lock(&pid_caches_mutex);
44 	list_for_each_entry(pcache, &pid_caches_lh, list)
45 		if (pcache->nr_ids == nr_ids)
46 			goto out;
47 
48 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
49 	if (pcache == NULL)
50 		goto err_alloc;
51 
52 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
53 	cachep = kmem_cache_create(pcache->name,
54 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
55 			0, SLAB_HWCACHE_ALIGN, NULL);
56 	if (cachep == NULL)
57 		goto err_cachep;
58 
59 	pcache->nr_ids = nr_ids;
60 	pcache->cachep = cachep;
61 	list_add(&pcache->list, &pid_caches_lh);
62 out:
63 	mutex_unlock(&pid_caches_mutex);
64 	return pcache->cachep;
65 
66 err_cachep:
67 	kfree(pcache);
68 err_alloc:
69 	mutex_unlock(&pid_caches_mutex);
70 	return NULL;
71 }
72 
73 static void proc_cleanup_work(struct work_struct *work)
74 {
75 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
76 	pid_ns_release_proc(ns);
77 }
78 
79 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
80 #define MAX_PID_NS_LEVEL 32
81 
82 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
83 {
84 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
85 }
86 
87 static void dec_pid_namespaces(struct ucounts *ucounts)
88 {
89 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
90 }
91 
92 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
93 	struct pid_namespace *parent_pid_ns)
94 {
95 	struct pid_namespace *ns;
96 	unsigned int level = parent_pid_ns->level + 1;
97 	struct ucounts *ucounts;
98 	int i;
99 	int err;
100 
101 	err = -ENOSPC;
102 	if (level > MAX_PID_NS_LEVEL)
103 		goto out;
104 	ucounts = inc_pid_namespaces(user_ns);
105 	if (!ucounts)
106 		goto out;
107 
108 	err = -ENOMEM;
109 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
110 	if (ns == NULL)
111 		goto out_dec;
112 
113 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
114 	if (!ns->pidmap[0].page)
115 		goto out_free;
116 
117 	ns->pid_cachep = create_pid_cachep(level + 1);
118 	if (ns->pid_cachep == NULL)
119 		goto out_free_map;
120 
121 	err = ns_alloc_inum(&ns->ns);
122 	if (err)
123 		goto out_free_map;
124 	ns->ns.ops = &pidns_operations;
125 
126 	kref_init(&ns->kref);
127 	ns->level = level;
128 	ns->parent = get_pid_ns(parent_pid_ns);
129 	ns->user_ns = get_user_ns(user_ns);
130 	ns->ucounts = ucounts;
131 	ns->nr_hashed = PIDNS_HASH_ADDING;
132 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
133 
134 	set_bit(0, ns->pidmap[0].page);
135 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
136 
137 	for (i = 1; i < PIDMAP_ENTRIES; i++)
138 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
139 
140 	return ns;
141 
142 out_free_map:
143 	kfree(ns->pidmap[0].page);
144 out_free:
145 	kmem_cache_free(pid_ns_cachep, ns);
146 out_dec:
147 	dec_pid_namespaces(ucounts);
148 out:
149 	return ERR_PTR(err);
150 }
151 
152 static void delayed_free_pidns(struct rcu_head *p)
153 {
154 	kmem_cache_free(pid_ns_cachep,
155 			container_of(p, struct pid_namespace, rcu));
156 }
157 
158 static void destroy_pid_namespace(struct pid_namespace *ns)
159 {
160 	int i;
161 
162 	ns_free_inum(&ns->ns);
163 	for (i = 0; i < PIDMAP_ENTRIES; i++)
164 		kfree(ns->pidmap[i].page);
165 	dec_pid_namespaces(ns->ucounts);
166 	put_user_ns(ns->user_ns);
167 	call_rcu(&ns->rcu, delayed_free_pidns);
168 }
169 
170 struct pid_namespace *copy_pid_ns(unsigned long flags,
171 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
172 {
173 	if (!(flags & CLONE_NEWPID))
174 		return get_pid_ns(old_ns);
175 	if (task_active_pid_ns(current) != old_ns)
176 		return ERR_PTR(-EINVAL);
177 	return create_pid_namespace(user_ns, old_ns);
178 }
179 
180 static void free_pid_ns(struct kref *kref)
181 {
182 	struct pid_namespace *ns;
183 
184 	ns = container_of(kref, struct pid_namespace, kref);
185 	destroy_pid_namespace(ns);
186 }
187 
188 void put_pid_ns(struct pid_namespace *ns)
189 {
190 	struct pid_namespace *parent;
191 
192 	while (ns != &init_pid_ns) {
193 		parent = ns->parent;
194 		if (!kref_put(&ns->kref, free_pid_ns))
195 			break;
196 		ns = parent;
197 	}
198 }
199 EXPORT_SYMBOL_GPL(put_pid_ns);
200 
201 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
202 {
203 	int nr;
204 	int rc;
205 	struct task_struct *task, *me = current;
206 	int init_pids = thread_group_leader(me) ? 1 : 2;
207 
208 	/* Don't allow any more processes into the pid namespace */
209 	disable_pid_allocation(pid_ns);
210 
211 	/*
212 	 * Ignore SIGCHLD causing any terminated children to autoreap.
213 	 * This speeds up the namespace shutdown, plus see the comment
214 	 * below.
215 	 */
216 	spin_lock_irq(&me->sighand->siglock);
217 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
218 	spin_unlock_irq(&me->sighand->siglock);
219 
220 	/*
221 	 * The last thread in the cgroup-init thread group is terminating.
222 	 * Find remaining pid_ts in the namespace, signal and wait for them
223 	 * to exit.
224 	 *
225 	 * Note:  This signals each threads in the namespace - even those that
226 	 * 	  belong to the same thread group, To avoid this, we would have
227 	 * 	  to walk the entire tasklist looking a processes in this
228 	 * 	  namespace, but that could be unnecessarily expensive if the
229 	 * 	  pid namespace has just a few processes. Or we need to
230 	 * 	  maintain a tasklist for each pid namespace.
231 	 *
232 	 */
233 	read_lock(&tasklist_lock);
234 	nr = next_pidmap(pid_ns, 1);
235 	while (nr > 0) {
236 		rcu_read_lock();
237 
238 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
239 		if (task && !__fatal_signal_pending(task))
240 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
241 
242 		rcu_read_unlock();
243 
244 		nr = next_pidmap(pid_ns, nr);
245 	}
246 	read_unlock(&tasklist_lock);
247 
248 	/*
249 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
250 	 * sys_wait4() will also block until our children traced from the
251 	 * parent namespace are detached and become EXIT_DEAD.
252 	 */
253 	do {
254 		clear_thread_flag(TIF_SIGPENDING);
255 		rc = sys_wait4(-1, NULL, __WALL, NULL);
256 	} while (rc != -ECHILD);
257 
258 	/*
259 	 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
260 	 * really care, we could reparent them to the global init. We could
261 	 * exit and reap ->child_reaper even if it is not the last thread in
262 	 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
263 	 * pid_ns can not go away until proc_kill_sb() drops the reference.
264 	 *
265 	 * But this ns can also have other tasks injected by setns()+fork().
266 	 * Again, ignoring the user visible semantics we do not really need
267 	 * to wait until they are all reaped, but they can be reparented to
268 	 * us and thus we need to ensure that pid->child_reaper stays valid
269 	 * until they all go away. See free_pid()->wake_up_process().
270 	 *
271 	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
272 	 * if reparented.
273 	 */
274 	for (;;) {
275 		set_current_state(TASK_UNINTERRUPTIBLE);
276 		if (pid_ns->nr_hashed == init_pids)
277 			break;
278 		schedule();
279 	}
280 	__set_current_state(TASK_RUNNING);
281 
282 	if (pid_ns->reboot)
283 		current->signal->group_exit_code = pid_ns->reboot;
284 
285 	acct_exit_ns(pid_ns);
286 	return;
287 }
288 
289 #ifdef CONFIG_CHECKPOINT_RESTORE
290 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
291 		void __user *buffer, size_t *lenp, loff_t *ppos)
292 {
293 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
294 	struct ctl_table tmp = *table;
295 
296 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
297 		return -EPERM;
298 
299 	/*
300 	 * Writing directly to ns' last_pid field is OK, since this field
301 	 * is volatile in a living namespace anyway and a code writing to
302 	 * it should synchronize its usage with external means.
303 	 */
304 
305 	tmp.data = &pid_ns->last_pid;
306 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
307 }
308 
309 extern int pid_max;
310 static int zero = 0;
311 static struct ctl_table pid_ns_ctl_table[] = {
312 	{
313 		.procname = "ns_last_pid",
314 		.maxlen = sizeof(int),
315 		.mode = 0666, /* permissions are checked in the handler */
316 		.proc_handler = pid_ns_ctl_handler,
317 		.extra1 = &zero,
318 		.extra2 = &pid_max,
319 	},
320 	{ }
321 };
322 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
323 #endif	/* CONFIG_CHECKPOINT_RESTORE */
324 
325 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
326 {
327 	if (pid_ns == &init_pid_ns)
328 		return 0;
329 
330 	switch (cmd) {
331 	case LINUX_REBOOT_CMD_RESTART2:
332 	case LINUX_REBOOT_CMD_RESTART:
333 		pid_ns->reboot = SIGHUP;
334 		break;
335 
336 	case LINUX_REBOOT_CMD_POWER_OFF:
337 	case LINUX_REBOOT_CMD_HALT:
338 		pid_ns->reboot = SIGINT;
339 		break;
340 	default:
341 		return -EINVAL;
342 	}
343 
344 	read_lock(&tasklist_lock);
345 	force_sig(SIGKILL, pid_ns->child_reaper);
346 	read_unlock(&tasklist_lock);
347 
348 	do_exit(0);
349 
350 	/* Not reached */
351 	return 0;
352 }
353 
354 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
355 {
356 	return container_of(ns, struct pid_namespace, ns);
357 }
358 
359 static struct ns_common *pidns_get(struct task_struct *task)
360 {
361 	struct pid_namespace *ns;
362 
363 	rcu_read_lock();
364 	ns = task_active_pid_ns(task);
365 	if (ns)
366 		get_pid_ns(ns);
367 	rcu_read_unlock();
368 
369 	return ns ? &ns->ns : NULL;
370 }
371 
372 static void pidns_put(struct ns_common *ns)
373 {
374 	put_pid_ns(to_pid_ns(ns));
375 }
376 
377 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
378 {
379 	struct pid_namespace *active = task_active_pid_ns(current);
380 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
381 
382 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
383 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
384 		return -EPERM;
385 
386 	/*
387 	 * Only allow entering the current active pid namespace
388 	 * or a child of the current active pid namespace.
389 	 *
390 	 * This is required for fork to return a usable pid value and
391 	 * this maintains the property that processes and their
392 	 * children can not escape their current pid namespace.
393 	 */
394 	if (new->level < active->level)
395 		return -EINVAL;
396 
397 	ancestor = new;
398 	while (ancestor->level > active->level)
399 		ancestor = ancestor->parent;
400 	if (ancestor != active)
401 		return -EINVAL;
402 
403 	put_pid_ns(nsproxy->pid_ns_for_children);
404 	nsproxy->pid_ns_for_children = get_pid_ns(new);
405 	return 0;
406 }
407 
408 static struct ns_common *pidns_get_parent(struct ns_common *ns)
409 {
410 	struct pid_namespace *active = task_active_pid_ns(current);
411 	struct pid_namespace *pid_ns, *p;
412 
413 	/* See if the parent is in the current namespace */
414 	pid_ns = p = to_pid_ns(ns)->parent;
415 	for (;;) {
416 		if (!p)
417 			return ERR_PTR(-EPERM);
418 		if (p == active)
419 			break;
420 		p = p->parent;
421 	}
422 
423 	return &get_pid_ns(pid_ns)->ns;
424 }
425 
426 static struct user_namespace *pidns_owner(struct ns_common *ns)
427 {
428 	return to_pid_ns(ns)->user_ns;
429 }
430 
431 const struct proc_ns_operations pidns_operations = {
432 	.name		= "pid",
433 	.type		= CLONE_NEWPID,
434 	.get		= pidns_get,
435 	.put		= pidns_put,
436 	.install	= pidns_install,
437 	.owner		= pidns_owner,
438 	.get_parent	= pidns_get_parent,
439 };
440 
441 static __init int pid_namespaces_init(void)
442 {
443 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
444 
445 #ifdef CONFIG_CHECKPOINT_RESTORE
446 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
447 #endif
448 	return 0;
449 }
450 
451 __initcall(pid_namespaces_init);
452