xref: /openbmc/linux/kernel/pid_namespace.c (revision 63dc02bd)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/syscalls.h>
14 #include <linux/err.h>
15 #include <linux/acct.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/reboot.h>
19 
20 #define BITS_PER_PAGE		(PAGE_SIZE*8)
21 
22 struct pid_cache {
23 	int nr_ids;
24 	char name[16];
25 	struct kmem_cache *cachep;
26 	struct list_head list;
27 };
28 
29 static LIST_HEAD(pid_caches_lh);
30 static DEFINE_MUTEX(pid_caches_mutex);
31 static struct kmem_cache *pid_ns_cachep;
32 
33 /*
34  * creates the kmem cache to allocate pids from.
35  * @nr_ids: the number of numerical ids this pid will have to carry
36  */
37 
38 static struct kmem_cache *create_pid_cachep(int nr_ids)
39 {
40 	struct pid_cache *pcache;
41 	struct kmem_cache *cachep;
42 
43 	mutex_lock(&pid_caches_mutex);
44 	list_for_each_entry(pcache, &pid_caches_lh, list)
45 		if (pcache->nr_ids == nr_ids)
46 			goto out;
47 
48 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
49 	if (pcache == NULL)
50 		goto err_alloc;
51 
52 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
53 	cachep = kmem_cache_create(pcache->name,
54 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
55 			0, SLAB_HWCACHE_ALIGN, NULL);
56 	if (cachep == NULL)
57 		goto err_cachep;
58 
59 	pcache->nr_ids = nr_ids;
60 	pcache->cachep = cachep;
61 	list_add(&pcache->list, &pid_caches_lh);
62 out:
63 	mutex_unlock(&pid_caches_mutex);
64 	return pcache->cachep;
65 
66 err_cachep:
67 	kfree(pcache);
68 err_alloc:
69 	mutex_unlock(&pid_caches_mutex);
70 	return NULL;
71 }
72 
73 static struct pid_namespace *create_pid_namespace(struct pid_namespace *parent_pid_ns)
74 {
75 	struct pid_namespace *ns;
76 	unsigned int level = parent_pid_ns->level + 1;
77 	int i, err = -ENOMEM;
78 
79 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
80 	if (ns == NULL)
81 		goto out;
82 
83 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
84 	if (!ns->pidmap[0].page)
85 		goto out_free;
86 
87 	ns->pid_cachep = create_pid_cachep(level + 1);
88 	if (ns->pid_cachep == NULL)
89 		goto out_free_map;
90 
91 	kref_init(&ns->kref);
92 	ns->level = level;
93 	ns->parent = get_pid_ns(parent_pid_ns);
94 
95 	set_bit(0, ns->pidmap[0].page);
96 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
97 
98 	for (i = 1; i < PIDMAP_ENTRIES; i++)
99 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
100 
101 	err = pid_ns_prepare_proc(ns);
102 	if (err)
103 		goto out_put_parent_pid_ns;
104 
105 	return ns;
106 
107 out_put_parent_pid_ns:
108 	put_pid_ns(parent_pid_ns);
109 out_free_map:
110 	kfree(ns->pidmap[0].page);
111 out_free:
112 	kmem_cache_free(pid_ns_cachep, ns);
113 out:
114 	return ERR_PTR(err);
115 }
116 
117 static void destroy_pid_namespace(struct pid_namespace *ns)
118 {
119 	int i;
120 
121 	for (i = 0; i < PIDMAP_ENTRIES; i++)
122 		kfree(ns->pidmap[i].page);
123 	kmem_cache_free(pid_ns_cachep, ns);
124 }
125 
126 struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
127 {
128 	if (!(flags & CLONE_NEWPID))
129 		return get_pid_ns(old_ns);
130 	if (flags & (CLONE_THREAD|CLONE_PARENT))
131 		return ERR_PTR(-EINVAL);
132 	return create_pid_namespace(old_ns);
133 }
134 
135 void free_pid_ns(struct kref *kref)
136 {
137 	struct pid_namespace *ns, *parent;
138 
139 	ns = container_of(kref, struct pid_namespace, kref);
140 
141 	parent = ns->parent;
142 	destroy_pid_namespace(ns);
143 
144 	if (parent != NULL)
145 		put_pid_ns(parent);
146 }
147 
148 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
149 {
150 	int nr;
151 	int rc;
152 	struct task_struct *task;
153 
154 	/*
155 	 * The last thread in the cgroup-init thread group is terminating.
156 	 * Find remaining pid_ts in the namespace, signal and wait for them
157 	 * to exit.
158 	 *
159 	 * Note:  This signals each threads in the namespace - even those that
160 	 * 	  belong to the same thread group, To avoid this, we would have
161 	 * 	  to walk the entire tasklist looking a processes in this
162 	 * 	  namespace, but that could be unnecessarily expensive if the
163 	 * 	  pid namespace has just a few processes. Or we need to
164 	 * 	  maintain a tasklist for each pid namespace.
165 	 *
166 	 */
167 	read_lock(&tasklist_lock);
168 	nr = next_pidmap(pid_ns, 1);
169 	while (nr > 0) {
170 		rcu_read_lock();
171 
172 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
173 		if (task && !__fatal_signal_pending(task))
174 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
175 
176 		rcu_read_unlock();
177 
178 		nr = next_pidmap(pid_ns, nr);
179 	}
180 	read_unlock(&tasklist_lock);
181 
182 	do {
183 		clear_thread_flag(TIF_SIGPENDING);
184 		rc = sys_wait4(-1, NULL, __WALL, NULL);
185 	} while (rc != -ECHILD);
186 
187 	if (pid_ns->reboot)
188 		current->signal->group_exit_code = pid_ns->reboot;
189 
190 	acct_exit_ns(pid_ns);
191 	return;
192 }
193 
194 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
195 		void __user *buffer, size_t *lenp, loff_t *ppos)
196 {
197 	struct ctl_table tmp = *table;
198 
199 	if (write && !capable(CAP_SYS_ADMIN))
200 		return -EPERM;
201 
202 	/*
203 	 * Writing directly to ns' last_pid field is OK, since this field
204 	 * is volatile in a living namespace anyway and a code writing to
205 	 * it should synchronize its usage with external means.
206 	 */
207 
208 	tmp.data = &current->nsproxy->pid_ns->last_pid;
209 	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
210 }
211 
212 static struct ctl_table pid_ns_ctl_table[] = {
213 	{
214 		.procname = "ns_last_pid",
215 		.maxlen = sizeof(int),
216 		.mode = 0666, /* permissions are checked in the handler */
217 		.proc_handler = pid_ns_ctl_handler,
218 	},
219 	{ }
220 };
221 
222 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
223 
224 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
225 {
226 	if (pid_ns == &init_pid_ns)
227 		return 0;
228 
229 	switch (cmd) {
230 	case LINUX_REBOOT_CMD_RESTART2:
231 	case LINUX_REBOOT_CMD_RESTART:
232 		pid_ns->reboot = SIGHUP;
233 		break;
234 
235 	case LINUX_REBOOT_CMD_POWER_OFF:
236 	case LINUX_REBOOT_CMD_HALT:
237 		pid_ns->reboot = SIGINT;
238 		break;
239 	default:
240 		return -EINVAL;
241 	}
242 
243 	read_lock(&tasklist_lock);
244 	force_sig(SIGKILL, pid_ns->child_reaper);
245 	read_unlock(&tasklist_lock);
246 
247 	do_exit(0);
248 
249 	/* Not reached */
250 	return 0;
251 }
252 
253 static __init int pid_namespaces_init(void)
254 {
255 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
256 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
257 	return 0;
258 }
259 
260 __initcall(pid_namespaces_init);
261