1 /* 2 * Pid namespaces 3 * 4 * Authors: 5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 7 * Many thanks to Oleg Nesterov for comments and help 8 * 9 */ 10 11 #include <linux/pid.h> 12 #include <linux/pid_namespace.h> 13 #include <linux/user_namespace.h> 14 #include <linux/syscalls.h> 15 #include <linux/cred.h> 16 #include <linux/err.h> 17 #include <linux/acct.h> 18 #include <linux/slab.h> 19 #include <linux/proc_ns.h> 20 #include <linux/reboot.h> 21 #include <linux/export.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/signal.h> 24 25 struct pid_cache { 26 int nr_ids; 27 char name[16]; 28 struct kmem_cache *cachep; 29 struct list_head list; 30 }; 31 32 static LIST_HEAD(pid_caches_lh); 33 static DEFINE_MUTEX(pid_caches_mutex); 34 static struct kmem_cache *pid_ns_cachep; 35 36 /* 37 * creates the kmem cache to allocate pids from. 38 * @nr_ids: the number of numerical ids this pid will have to carry 39 */ 40 41 static struct kmem_cache *create_pid_cachep(int nr_ids) 42 { 43 struct pid_cache *pcache; 44 struct kmem_cache *cachep; 45 46 mutex_lock(&pid_caches_mutex); 47 list_for_each_entry(pcache, &pid_caches_lh, list) 48 if (pcache->nr_ids == nr_ids) 49 goto out; 50 51 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL); 52 if (pcache == NULL) 53 goto err_alloc; 54 55 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids); 56 cachep = kmem_cache_create(pcache->name, 57 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid), 58 0, SLAB_HWCACHE_ALIGN, NULL); 59 if (cachep == NULL) 60 goto err_cachep; 61 62 pcache->nr_ids = nr_ids; 63 pcache->cachep = cachep; 64 list_add(&pcache->list, &pid_caches_lh); 65 out: 66 mutex_unlock(&pid_caches_mutex); 67 return pcache->cachep; 68 69 err_cachep: 70 kfree(pcache); 71 err_alloc: 72 mutex_unlock(&pid_caches_mutex); 73 return NULL; 74 } 75 76 static void proc_cleanup_work(struct work_struct *work) 77 { 78 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); 79 pid_ns_release_proc(ns); 80 } 81 82 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ 83 #define MAX_PID_NS_LEVEL 32 84 85 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 86 { 87 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 88 } 89 90 static void dec_pid_namespaces(struct ucounts *ucounts) 91 { 92 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 93 } 94 95 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 96 struct pid_namespace *parent_pid_ns) 97 { 98 struct pid_namespace *ns; 99 unsigned int level = parent_pid_ns->level + 1; 100 struct ucounts *ucounts; 101 int i; 102 int err; 103 104 err = -EINVAL; 105 if (!in_userns(parent_pid_ns->user_ns, user_ns)) 106 goto out; 107 108 err = -ENOSPC; 109 if (level > MAX_PID_NS_LEVEL) 110 goto out; 111 ucounts = inc_pid_namespaces(user_ns); 112 if (!ucounts) 113 goto out; 114 115 err = -ENOMEM; 116 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 117 if (ns == NULL) 118 goto out_dec; 119 120 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 121 if (!ns->pidmap[0].page) 122 goto out_free; 123 124 ns->pid_cachep = create_pid_cachep(level + 1); 125 if (ns->pid_cachep == NULL) 126 goto out_free_map; 127 128 err = ns_alloc_inum(&ns->ns); 129 if (err) 130 goto out_free_map; 131 ns->ns.ops = &pidns_operations; 132 133 kref_init(&ns->kref); 134 ns->level = level; 135 ns->parent = get_pid_ns(parent_pid_ns); 136 ns->user_ns = get_user_ns(user_ns); 137 ns->ucounts = ucounts; 138 ns->nr_hashed = PIDNS_HASH_ADDING; 139 INIT_WORK(&ns->proc_work, proc_cleanup_work); 140 141 set_bit(0, ns->pidmap[0].page); 142 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1); 143 144 for (i = 1; i < PIDMAP_ENTRIES; i++) 145 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE); 146 147 return ns; 148 149 out_free_map: 150 kfree(ns->pidmap[0].page); 151 out_free: 152 kmem_cache_free(pid_ns_cachep, ns); 153 out_dec: 154 dec_pid_namespaces(ucounts); 155 out: 156 return ERR_PTR(err); 157 } 158 159 static void delayed_free_pidns(struct rcu_head *p) 160 { 161 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 162 163 dec_pid_namespaces(ns->ucounts); 164 put_user_ns(ns->user_ns); 165 166 kmem_cache_free(pid_ns_cachep, ns); 167 } 168 169 static void destroy_pid_namespace(struct pid_namespace *ns) 170 { 171 int i; 172 173 ns_free_inum(&ns->ns); 174 for (i = 0; i < PIDMAP_ENTRIES; i++) 175 kfree(ns->pidmap[i].page); 176 call_rcu(&ns->rcu, delayed_free_pidns); 177 } 178 179 struct pid_namespace *copy_pid_ns(unsigned long flags, 180 struct user_namespace *user_ns, struct pid_namespace *old_ns) 181 { 182 if (!(flags & CLONE_NEWPID)) 183 return get_pid_ns(old_ns); 184 if (task_active_pid_ns(current) != old_ns) 185 return ERR_PTR(-EINVAL); 186 return create_pid_namespace(user_ns, old_ns); 187 } 188 189 static void free_pid_ns(struct kref *kref) 190 { 191 struct pid_namespace *ns; 192 193 ns = container_of(kref, struct pid_namespace, kref); 194 destroy_pid_namespace(ns); 195 } 196 197 void put_pid_ns(struct pid_namespace *ns) 198 { 199 struct pid_namespace *parent; 200 201 while (ns != &init_pid_ns) { 202 parent = ns->parent; 203 if (!kref_put(&ns->kref, free_pid_ns)) 204 break; 205 ns = parent; 206 } 207 } 208 EXPORT_SYMBOL_GPL(put_pid_ns); 209 210 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 211 { 212 int nr; 213 int rc; 214 struct task_struct *task, *me = current; 215 int init_pids = thread_group_leader(me) ? 1 : 2; 216 217 /* Don't allow any more processes into the pid namespace */ 218 disable_pid_allocation(pid_ns); 219 220 /* 221 * Ignore SIGCHLD causing any terminated children to autoreap. 222 * This speeds up the namespace shutdown, plus see the comment 223 * below. 224 */ 225 spin_lock_irq(&me->sighand->siglock); 226 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 227 spin_unlock_irq(&me->sighand->siglock); 228 229 /* 230 * The last thread in the cgroup-init thread group is terminating. 231 * Find remaining pid_ts in the namespace, signal and wait for them 232 * to exit. 233 * 234 * Note: This signals each threads in the namespace - even those that 235 * belong to the same thread group, To avoid this, we would have 236 * to walk the entire tasklist looking a processes in this 237 * namespace, but that could be unnecessarily expensive if the 238 * pid namespace has just a few processes. Or we need to 239 * maintain a tasklist for each pid namespace. 240 * 241 */ 242 read_lock(&tasklist_lock); 243 nr = next_pidmap(pid_ns, 1); 244 while (nr > 0) { 245 rcu_read_lock(); 246 247 task = pid_task(find_vpid(nr), PIDTYPE_PID); 248 if (task && !__fatal_signal_pending(task)) 249 send_sig_info(SIGKILL, SEND_SIG_FORCED, task); 250 251 rcu_read_unlock(); 252 253 nr = next_pidmap(pid_ns, nr); 254 } 255 read_unlock(&tasklist_lock); 256 257 /* 258 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 259 * sys_wait4() will also block until our children traced from the 260 * parent namespace are detached and become EXIT_DEAD. 261 */ 262 do { 263 clear_thread_flag(TIF_SIGPENDING); 264 rc = sys_wait4(-1, NULL, __WALL, NULL); 265 } while (rc != -ECHILD); 266 267 /* 268 * sys_wait4() above can't reap the EXIT_DEAD children but we do not 269 * really care, we could reparent them to the global init. We could 270 * exit and reap ->child_reaper even if it is not the last thread in 271 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(), 272 * pid_ns can not go away until proc_kill_sb() drops the reference. 273 * 274 * But this ns can also have other tasks injected by setns()+fork(). 275 * Again, ignoring the user visible semantics we do not really need 276 * to wait until they are all reaped, but they can be reparented to 277 * us and thus we need to ensure that pid->child_reaper stays valid 278 * until they all go away. See free_pid()->wake_up_process(). 279 * 280 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped 281 * if reparented. 282 */ 283 for (;;) { 284 set_current_state(TASK_INTERRUPTIBLE); 285 if (pid_ns->nr_hashed == init_pids) 286 break; 287 schedule(); 288 } 289 __set_current_state(TASK_RUNNING); 290 291 if (pid_ns->reboot) 292 current->signal->group_exit_code = pid_ns->reboot; 293 294 acct_exit_ns(pid_ns); 295 return; 296 } 297 298 #ifdef CONFIG_CHECKPOINT_RESTORE 299 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 300 void __user *buffer, size_t *lenp, loff_t *ppos) 301 { 302 struct pid_namespace *pid_ns = task_active_pid_ns(current); 303 struct ctl_table tmp = *table; 304 305 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) 306 return -EPERM; 307 308 /* 309 * Writing directly to ns' last_pid field is OK, since this field 310 * is volatile in a living namespace anyway and a code writing to 311 * it should synchronize its usage with external means. 312 */ 313 314 tmp.data = &pid_ns->last_pid; 315 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 316 } 317 318 extern int pid_max; 319 static int zero = 0; 320 static struct ctl_table pid_ns_ctl_table[] = { 321 { 322 .procname = "ns_last_pid", 323 .maxlen = sizeof(int), 324 .mode = 0666, /* permissions are checked in the handler */ 325 .proc_handler = pid_ns_ctl_handler, 326 .extra1 = &zero, 327 .extra2 = &pid_max, 328 }, 329 { } 330 }; 331 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 332 #endif /* CONFIG_CHECKPOINT_RESTORE */ 333 334 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 335 { 336 if (pid_ns == &init_pid_ns) 337 return 0; 338 339 switch (cmd) { 340 case LINUX_REBOOT_CMD_RESTART2: 341 case LINUX_REBOOT_CMD_RESTART: 342 pid_ns->reboot = SIGHUP; 343 break; 344 345 case LINUX_REBOOT_CMD_POWER_OFF: 346 case LINUX_REBOOT_CMD_HALT: 347 pid_ns->reboot = SIGINT; 348 break; 349 default: 350 return -EINVAL; 351 } 352 353 read_lock(&tasklist_lock); 354 force_sig(SIGKILL, pid_ns->child_reaper); 355 read_unlock(&tasklist_lock); 356 357 do_exit(0); 358 359 /* Not reached */ 360 return 0; 361 } 362 363 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 364 { 365 return container_of(ns, struct pid_namespace, ns); 366 } 367 368 static struct ns_common *pidns_get(struct task_struct *task) 369 { 370 struct pid_namespace *ns; 371 372 rcu_read_lock(); 373 ns = task_active_pid_ns(task); 374 if (ns) 375 get_pid_ns(ns); 376 rcu_read_unlock(); 377 378 return ns ? &ns->ns : NULL; 379 } 380 381 static struct ns_common *pidns_for_children_get(struct task_struct *task) 382 { 383 struct pid_namespace *ns = NULL; 384 385 task_lock(task); 386 if (task->nsproxy) { 387 ns = task->nsproxy->pid_ns_for_children; 388 get_pid_ns(ns); 389 } 390 task_unlock(task); 391 392 if (ns) { 393 read_lock(&tasklist_lock); 394 if (!ns->child_reaper) { 395 put_pid_ns(ns); 396 ns = NULL; 397 } 398 read_unlock(&tasklist_lock); 399 } 400 401 return ns ? &ns->ns : NULL; 402 } 403 404 static void pidns_put(struct ns_common *ns) 405 { 406 put_pid_ns(to_pid_ns(ns)); 407 } 408 409 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns) 410 { 411 struct pid_namespace *active = task_active_pid_ns(current); 412 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 413 414 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 415 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 416 return -EPERM; 417 418 /* 419 * Only allow entering the current active pid namespace 420 * or a child of the current active pid namespace. 421 * 422 * This is required for fork to return a usable pid value and 423 * this maintains the property that processes and their 424 * children can not escape their current pid namespace. 425 */ 426 if (new->level < active->level) 427 return -EINVAL; 428 429 ancestor = new; 430 while (ancestor->level > active->level) 431 ancestor = ancestor->parent; 432 if (ancestor != active) 433 return -EINVAL; 434 435 put_pid_ns(nsproxy->pid_ns_for_children); 436 nsproxy->pid_ns_for_children = get_pid_ns(new); 437 return 0; 438 } 439 440 static struct ns_common *pidns_get_parent(struct ns_common *ns) 441 { 442 struct pid_namespace *active = task_active_pid_ns(current); 443 struct pid_namespace *pid_ns, *p; 444 445 /* See if the parent is in the current namespace */ 446 pid_ns = p = to_pid_ns(ns)->parent; 447 for (;;) { 448 if (!p) 449 return ERR_PTR(-EPERM); 450 if (p == active) 451 break; 452 p = p->parent; 453 } 454 455 return &get_pid_ns(pid_ns)->ns; 456 } 457 458 static struct user_namespace *pidns_owner(struct ns_common *ns) 459 { 460 return to_pid_ns(ns)->user_ns; 461 } 462 463 const struct proc_ns_operations pidns_operations = { 464 .name = "pid", 465 .type = CLONE_NEWPID, 466 .get = pidns_get, 467 .put = pidns_put, 468 .install = pidns_install, 469 .owner = pidns_owner, 470 .get_parent = pidns_get_parent, 471 }; 472 473 const struct proc_ns_operations pidns_for_children_operations = { 474 .name = "pid_for_children", 475 .real_ns_name = "pid", 476 .type = CLONE_NEWPID, 477 .get = pidns_for_children_get, 478 .put = pidns_put, 479 .install = pidns_install, 480 .owner = pidns_owner, 481 .get_parent = pidns_get_parent, 482 }; 483 484 static __init int pid_namespaces_init(void) 485 { 486 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 487 488 #ifdef CONFIG_CHECKPOINT_RESTORE 489 register_sysctl_paths(kern_path, pid_ns_ctl_table); 490 #endif 491 return 0; 492 } 493 494 __initcall(pid_namespaces_init); 495