1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Pid namespaces 4 * 5 * Authors: 6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 8 * Many thanks to Oleg Nesterov for comments and help 9 * 10 */ 11 12 #include <linux/pid.h> 13 #include <linux/pid_namespace.h> 14 #include <linux/user_namespace.h> 15 #include <linux/syscalls.h> 16 #include <linux/cred.h> 17 #include <linux/err.h> 18 #include <linux/acct.h> 19 #include <linux/slab.h> 20 #include <linux/proc_ns.h> 21 #include <linux/reboot.h> 22 #include <linux/export.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/signal.h> 25 #include <linux/idr.h> 26 27 static DEFINE_MUTEX(pid_caches_mutex); 28 static struct kmem_cache *pid_ns_cachep; 29 /* Write once array, filled from the beginning. */ 30 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; 31 32 /* 33 * creates the kmem cache to allocate pids from. 34 * @level: pid namespace level 35 */ 36 37 static struct kmem_cache *create_pid_cachep(unsigned int level) 38 { 39 /* Level 0 is init_pid_ns.pid_cachep */ 40 struct kmem_cache **pkc = &pid_cache[level - 1]; 41 struct kmem_cache *kc; 42 char name[4 + 10 + 1]; 43 unsigned int len; 44 45 kc = READ_ONCE(*pkc); 46 if (kc) 47 return kc; 48 49 snprintf(name, sizeof(name), "pid_%u", level + 1); 50 len = sizeof(struct pid) + level * sizeof(struct upid); 51 mutex_lock(&pid_caches_mutex); 52 /* Name collision forces to do allocation under mutex. */ 53 if (!*pkc) 54 *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0); 55 mutex_unlock(&pid_caches_mutex); 56 /* current can fail, but someone else can succeed. */ 57 return READ_ONCE(*pkc); 58 } 59 60 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 61 { 62 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 63 } 64 65 static void dec_pid_namespaces(struct ucounts *ucounts) 66 { 67 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 68 } 69 70 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 71 struct pid_namespace *parent_pid_ns) 72 { 73 struct pid_namespace *ns; 74 unsigned int level = parent_pid_ns->level + 1; 75 struct ucounts *ucounts; 76 int err; 77 78 err = -EINVAL; 79 if (!in_userns(parent_pid_ns->user_ns, user_ns)) 80 goto out; 81 82 err = -ENOSPC; 83 if (level > MAX_PID_NS_LEVEL) 84 goto out; 85 ucounts = inc_pid_namespaces(user_ns); 86 if (!ucounts) 87 goto out; 88 89 err = -ENOMEM; 90 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 91 if (ns == NULL) 92 goto out_dec; 93 94 idr_init(&ns->idr); 95 96 ns->pid_cachep = create_pid_cachep(level); 97 if (ns->pid_cachep == NULL) 98 goto out_free_idr; 99 100 err = ns_alloc_inum(&ns->ns); 101 if (err) 102 goto out_free_idr; 103 ns->ns.ops = &pidns_operations; 104 105 kref_init(&ns->kref); 106 ns->level = level; 107 ns->parent = get_pid_ns(parent_pid_ns); 108 ns->user_ns = get_user_ns(user_ns); 109 ns->ucounts = ucounts; 110 ns->pid_allocated = PIDNS_ADDING; 111 112 return ns; 113 114 out_free_idr: 115 idr_destroy(&ns->idr); 116 kmem_cache_free(pid_ns_cachep, ns); 117 out_dec: 118 dec_pid_namespaces(ucounts); 119 out: 120 return ERR_PTR(err); 121 } 122 123 static void delayed_free_pidns(struct rcu_head *p) 124 { 125 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 126 127 dec_pid_namespaces(ns->ucounts); 128 put_user_ns(ns->user_ns); 129 130 kmem_cache_free(pid_ns_cachep, ns); 131 } 132 133 static void destroy_pid_namespace(struct pid_namespace *ns) 134 { 135 ns_free_inum(&ns->ns); 136 137 idr_destroy(&ns->idr); 138 call_rcu(&ns->rcu, delayed_free_pidns); 139 } 140 141 struct pid_namespace *copy_pid_ns(unsigned long flags, 142 struct user_namespace *user_ns, struct pid_namespace *old_ns) 143 { 144 if (!(flags & CLONE_NEWPID)) 145 return get_pid_ns(old_ns); 146 if (task_active_pid_ns(current) != old_ns) 147 return ERR_PTR(-EINVAL); 148 return create_pid_namespace(user_ns, old_ns); 149 } 150 151 static void free_pid_ns(struct kref *kref) 152 { 153 struct pid_namespace *ns; 154 155 ns = container_of(kref, struct pid_namespace, kref); 156 destroy_pid_namespace(ns); 157 } 158 159 void put_pid_ns(struct pid_namespace *ns) 160 { 161 struct pid_namespace *parent; 162 163 while (ns != &init_pid_ns) { 164 parent = ns->parent; 165 if (!kref_put(&ns->kref, free_pid_ns)) 166 break; 167 ns = parent; 168 } 169 } 170 EXPORT_SYMBOL_GPL(put_pid_ns); 171 172 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 173 { 174 int nr; 175 int rc; 176 struct task_struct *task, *me = current; 177 int init_pids = thread_group_leader(me) ? 1 : 2; 178 struct pid *pid; 179 180 /* Don't allow any more processes into the pid namespace */ 181 disable_pid_allocation(pid_ns); 182 183 /* 184 * Ignore SIGCHLD causing any terminated children to autoreap. 185 * This speeds up the namespace shutdown, plus see the comment 186 * below. 187 */ 188 spin_lock_irq(&me->sighand->siglock); 189 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 190 spin_unlock_irq(&me->sighand->siglock); 191 192 /* 193 * The last thread in the cgroup-init thread group is terminating. 194 * Find remaining pid_ts in the namespace, signal and wait for them 195 * to exit. 196 * 197 * Note: This signals each threads in the namespace - even those that 198 * belong to the same thread group, To avoid this, we would have 199 * to walk the entire tasklist looking a processes in this 200 * namespace, but that could be unnecessarily expensive if the 201 * pid namespace has just a few processes. Or we need to 202 * maintain a tasklist for each pid namespace. 203 * 204 */ 205 rcu_read_lock(); 206 read_lock(&tasklist_lock); 207 nr = 2; 208 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { 209 task = pid_task(pid, PIDTYPE_PID); 210 if (task && !__fatal_signal_pending(task)) 211 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); 212 } 213 read_unlock(&tasklist_lock); 214 rcu_read_unlock(); 215 216 /* 217 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 218 * kernel_wait4() will also block until our children traced from the 219 * parent namespace are detached and become EXIT_DEAD. 220 */ 221 do { 222 clear_thread_flag(TIF_SIGPENDING); 223 rc = kernel_wait4(-1, NULL, __WALL, NULL); 224 } while (rc != -ECHILD); 225 226 /* 227 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE 228 * process whose parents processes are outside of the pid 229 * namespace. Such processes are created with setns()+fork(). 230 * 231 * If those EXIT_ZOMBIE processes are not reaped by their 232 * parents before their parents exit, they will be reparented 233 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to 234 * stay valid until they all go away. 235 * 236 * The code relies on the the pid_ns->child_reaper ignoring 237 * SIGCHILD to cause those EXIT_ZOMBIE processes to be 238 * autoreaped if reparented. 239 * 240 * Semantically it is also desirable to wait for EXIT_ZOMBIE 241 * processes before allowing the child_reaper to be reaped, as 242 * that gives the invariant that when the init process of a 243 * pid namespace is reaped all of the processes in the pid 244 * namespace are gone. 245 * 246 * Once all of the other tasks are gone from the pid_namespace 247 * free_pid() will awaken this task. 248 */ 249 for (;;) { 250 set_current_state(TASK_INTERRUPTIBLE); 251 if (pid_ns->pid_allocated == init_pids) 252 break; 253 schedule(); 254 } 255 __set_current_state(TASK_RUNNING); 256 257 if (pid_ns->reboot) 258 current->signal->group_exit_code = pid_ns->reboot; 259 260 acct_exit_ns(pid_ns); 261 return; 262 } 263 264 #ifdef CONFIG_CHECKPOINT_RESTORE 265 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 266 void __user *buffer, size_t *lenp, loff_t *ppos) 267 { 268 struct pid_namespace *pid_ns = task_active_pid_ns(current); 269 struct ctl_table tmp = *table; 270 int ret, next; 271 272 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) 273 return -EPERM; 274 275 /* 276 * Writing directly to ns' last_pid field is OK, since this field 277 * is volatile in a living namespace anyway and a code writing to 278 * it should synchronize its usage with external means. 279 */ 280 281 next = idr_get_cursor(&pid_ns->idr) - 1; 282 283 tmp.data = &next; 284 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 285 if (!ret && write) 286 idr_set_cursor(&pid_ns->idr, next + 1); 287 288 return ret; 289 } 290 291 extern int pid_max; 292 static struct ctl_table pid_ns_ctl_table[] = { 293 { 294 .procname = "ns_last_pid", 295 .maxlen = sizeof(int), 296 .mode = 0666, /* permissions are checked in the handler */ 297 .proc_handler = pid_ns_ctl_handler, 298 .extra1 = SYSCTL_ZERO, 299 .extra2 = &pid_max, 300 }, 301 { } 302 }; 303 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 304 #endif /* CONFIG_CHECKPOINT_RESTORE */ 305 306 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 307 { 308 if (pid_ns == &init_pid_ns) 309 return 0; 310 311 switch (cmd) { 312 case LINUX_REBOOT_CMD_RESTART2: 313 case LINUX_REBOOT_CMD_RESTART: 314 pid_ns->reboot = SIGHUP; 315 break; 316 317 case LINUX_REBOOT_CMD_POWER_OFF: 318 case LINUX_REBOOT_CMD_HALT: 319 pid_ns->reboot = SIGINT; 320 break; 321 default: 322 return -EINVAL; 323 } 324 325 read_lock(&tasklist_lock); 326 send_sig(SIGKILL, pid_ns->child_reaper, 1); 327 read_unlock(&tasklist_lock); 328 329 do_exit(0); 330 331 /* Not reached */ 332 return 0; 333 } 334 335 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 336 { 337 return container_of(ns, struct pid_namespace, ns); 338 } 339 340 static struct ns_common *pidns_get(struct task_struct *task) 341 { 342 struct pid_namespace *ns; 343 344 rcu_read_lock(); 345 ns = task_active_pid_ns(task); 346 if (ns) 347 get_pid_ns(ns); 348 rcu_read_unlock(); 349 350 return ns ? &ns->ns : NULL; 351 } 352 353 static struct ns_common *pidns_for_children_get(struct task_struct *task) 354 { 355 struct pid_namespace *ns = NULL; 356 357 task_lock(task); 358 if (task->nsproxy) { 359 ns = task->nsproxy->pid_ns_for_children; 360 get_pid_ns(ns); 361 } 362 task_unlock(task); 363 364 if (ns) { 365 read_lock(&tasklist_lock); 366 if (!ns->child_reaper) { 367 put_pid_ns(ns); 368 ns = NULL; 369 } 370 read_unlock(&tasklist_lock); 371 } 372 373 return ns ? &ns->ns : NULL; 374 } 375 376 static void pidns_put(struct ns_common *ns) 377 { 378 put_pid_ns(to_pid_ns(ns)); 379 } 380 381 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns) 382 { 383 struct pid_namespace *active = task_active_pid_ns(current); 384 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 385 386 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 387 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 388 return -EPERM; 389 390 /* 391 * Only allow entering the current active pid namespace 392 * or a child of the current active pid namespace. 393 * 394 * This is required for fork to return a usable pid value and 395 * this maintains the property that processes and their 396 * children can not escape their current pid namespace. 397 */ 398 if (new->level < active->level) 399 return -EINVAL; 400 401 ancestor = new; 402 while (ancestor->level > active->level) 403 ancestor = ancestor->parent; 404 if (ancestor != active) 405 return -EINVAL; 406 407 put_pid_ns(nsproxy->pid_ns_for_children); 408 nsproxy->pid_ns_for_children = get_pid_ns(new); 409 return 0; 410 } 411 412 static struct ns_common *pidns_get_parent(struct ns_common *ns) 413 { 414 struct pid_namespace *active = task_active_pid_ns(current); 415 struct pid_namespace *pid_ns, *p; 416 417 /* See if the parent is in the current namespace */ 418 pid_ns = p = to_pid_ns(ns)->parent; 419 for (;;) { 420 if (!p) 421 return ERR_PTR(-EPERM); 422 if (p == active) 423 break; 424 p = p->parent; 425 } 426 427 return &get_pid_ns(pid_ns)->ns; 428 } 429 430 static struct user_namespace *pidns_owner(struct ns_common *ns) 431 { 432 return to_pid_ns(ns)->user_ns; 433 } 434 435 const struct proc_ns_operations pidns_operations = { 436 .name = "pid", 437 .type = CLONE_NEWPID, 438 .get = pidns_get, 439 .put = pidns_put, 440 .install = pidns_install, 441 .owner = pidns_owner, 442 .get_parent = pidns_get_parent, 443 }; 444 445 const struct proc_ns_operations pidns_for_children_operations = { 446 .name = "pid_for_children", 447 .real_ns_name = "pid", 448 .type = CLONE_NEWPID, 449 .get = pidns_for_children_get, 450 .put = pidns_put, 451 .install = pidns_install, 452 .owner = pidns_owner, 453 .get_parent = pidns_get_parent, 454 }; 455 456 static __init int pid_namespaces_init(void) 457 { 458 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 459 460 #ifdef CONFIG_CHECKPOINT_RESTORE 461 register_sysctl_paths(kern_path, pid_ns_ctl_table); 462 #endif 463 return 0; 464 } 465 466 __initcall(pid_namespaces_init); 467