xref: /openbmc/linux/kernel/pid_namespace.c (revision 174cd4b1)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/cred.h>
16 #include <linux/err.h>
17 #include <linux/acct.h>
18 #include <linux/slab.h>
19 #include <linux/proc_ns.h>
20 #include <linux/reboot.h>
21 #include <linux/export.h>
22 
23 struct pid_cache {
24 	int nr_ids;
25 	char name[16];
26 	struct kmem_cache *cachep;
27 	struct list_head list;
28 };
29 
30 static LIST_HEAD(pid_caches_lh);
31 static DEFINE_MUTEX(pid_caches_mutex);
32 static struct kmem_cache *pid_ns_cachep;
33 
34 /*
35  * creates the kmem cache to allocate pids from.
36  * @nr_ids: the number of numerical ids this pid will have to carry
37  */
38 
39 static struct kmem_cache *create_pid_cachep(int nr_ids)
40 {
41 	struct pid_cache *pcache;
42 	struct kmem_cache *cachep;
43 
44 	mutex_lock(&pid_caches_mutex);
45 	list_for_each_entry(pcache, &pid_caches_lh, list)
46 		if (pcache->nr_ids == nr_ids)
47 			goto out;
48 
49 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
50 	if (pcache == NULL)
51 		goto err_alloc;
52 
53 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
54 	cachep = kmem_cache_create(pcache->name,
55 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
56 			0, SLAB_HWCACHE_ALIGN, NULL);
57 	if (cachep == NULL)
58 		goto err_cachep;
59 
60 	pcache->nr_ids = nr_ids;
61 	pcache->cachep = cachep;
62 	list_add(&pcache->list, &pid_caches_lh);
63 out:
64 	mutex_unlock(&pid_caches_mutex);
65 	return pcache->cachep;
66 
67 err_cachep:
68 	kfree(pcache);
69 err_alloc:
70 	mutex_unlock(&pid_caches_mutex);
71 	return NULL;
72 }
73 
74 static void proc_cleanup_work(struct work_struct *work)
75 {
76 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
77 	pid_ns_release_proc(ns);
78 }
79 
80 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
81 #define MAX_PID_NS_LEVEL 32
82 
83 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
84 {
85 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
86 }
87 
88 static void dec_pid_namespaces(struct ucounts *ucounts)
89 {
90 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
91 }
92 
93 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
94 	struct pid_namespace *parent_pid_ns)
95 {
96 	struct pid_namespace *ns;
97 	unsigned int level = parent_pid_ns->level + 1;
98 	struct ucounts *ucounts;
99 	int i;
100 	int err;
101 
102 	err = -ENOSPC;
103 	if (level > MAX_PID_NS_LEVEL)
104 		goto out;
105 	ucounts = inc_pid_namespaces(user_ns);
106 	if (!ucounts)
107 		goto out;
108 
109 	err = -ENOMEM;
110 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
111 	if (ns == NULL)
112 		goto out_dec;
113 
114 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
115 	if (!ns->pidmap[0].page)
116 		goto out_free;
117 
118 	ns->pid_cachep = create_pid_cachep(level + 1);
119 	if (ns->pid_cachep == NULL)
120 		goto out_free_map;
121 
122 	err = ns_alloc_inum(&ns->ns);
123 	if (err)
124 		goto out_free_map;
125 	ns->ns.ops = &pidns_operations;
126 
127 	kref_init(&ns->kref);
128 	ns->level = level;
129 	ns->parent = get_pid_ns(parent_pid_ns);
130 	ns->user_ns = get_user_ns(user_ns);
131 	ns->ucounts = ucounts;
132 	ns->nr_hashed = PIDNS_HASH_ADDING;
133 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
134 
135 	set_bit(0, ns->pidmap[0].page);
136 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
137 
138 	for (i = 1; i < PIDMAP_ENTRIES; i++)
139 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
140 
141 	return ns;
142 
143 out_free_map:
144 	kfree(ns->pidmap[0].page);
145 out_free:
146 	kmem_cache_free(pid_ns_cachep, ns);
147 out_dec:
148 	dec_pid_namespaces(ucounts);
149 out:
150 	return ERR_PTR(err);
151 }
152 
153 static void delayed_free_pidns(struct rcu_head *p)
154 {
155 	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
156 
157 	dec_pid_namespaces(ns->ucounts);
158 	put_user_ns(ns->user_ns);
159 
160 	kmem_cache_free(pid_ns_cachep, ns);
161 }
162 
163 static void destroy_pid_namespace(struct pid_namespace *ns)
164 {
165 	int i;
166 
167 	ns_free_inum(&ns->ns);
168 	for (i = 0; i < PIDMAP_ENTRIES; i++)
169 		kfree(ns->pidmap[i].page);
170 	call_rcu(&ns->rcu, delayed_free_pidns);
171 }
172 
173 struct pid_namespace *copy_pid_ns(unsigned long flags,
174 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
175 {
176 	if (!(flags & CLONE_NEWPID))
177 		return get_pid_ns(old_ns);
178 	if (task_active_pid_ns(current) != old_ns)
179 		return ERR_PTR(-EINVAL);
180 	return create_pid_namespace(user_ns, old_ns);
181 }
182 
183 static void free_pid_ns(struct kref *kref)
184 {
185 	struct pid_namespace *ns;
186 
187 	ns = container_of(kref, struct pid_namespace, kref);
188 	destroy_pid_namespace(ns);
189 }
190 
191 void put_pid_ns(struct pid_namespace *ns)
192 {
193 	struct pid_namespace *parent;
194 
195 	while (ns != &init_pid_ns) {
196 		parent = ns->parent;
197 		if (!kref_put(&ns->kref, free_pid_ns))
198 			break;
199 		ns = parent;
200 	}
201 }
202 EXPORT_SYMBOL_GPL(put_pid_ns);
203 
204 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
205 {
206 	int nr;
207 	int rc;
208 	struct task_struct *task, *me = current;
209 	int init_pids = thread_group_leader(me) ? 1 : 2;
210 
211 	/* Don't allow any more processes into the pid namespace */
212 	disable_pid_allocation(pid_ns);
213 
214 	/*
215 	 * Ignore SIGCHLD causing any terminated children to autoreap.
216 	 * This speeds up the namespace shutdown, plus see the comment
217 	 * below.
218 	 */
219 	spin_lock_irq(&me->sighand->siglock);
220 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
221 	spin_unlock_irq(&me->sighand->siglock);
222 
223 	/*
224 	 * The last thread in the cgroup-init thread group is terminating.
225 	 * Find remaining pid_ts in the namespace, signal and wait for them
226 	 * to exit.
227 	 *
228 	 * Note:  This signals each threads in the namespace - even those that
229 	 * 	  belong to the same thread group, To avoid this, we would have
230 	 * 	  to walk the entire tasklist looking a processes in this
231 	 * 	  namespace, but that could be unnecessarily expensive if the
232 	 * 	  pid namespace has just a few processes. Or we need to
233 	 * 	  maintain a tasklist for each pid namespace.
234 	 *
235 	 */
236 	read_lock(&tasklist_lock);
237 	nr = next_pidmap(pid_ns, 1);
238 	while (nr > 0) {
239 		rcu_read_lock();
240 
241 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
242 		if (task && !__fatal_signal_pending(task))
243 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
244 
245 		rcu_read_unlock();
246 
247 		nr = next_pidmap(pid_ns, nr);
248 	}
249 	read_unlock(&tasklist_lock);
250 
251 	/*
252 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
253 	 * sys_wait4() will also block until our children traced from the
254 	 * parent namespace are detached and become EXIT_DEAD.
255 	 */
256 	do {
257 		clear_thread_flag(TIF_SIGPENDING);
258 		rc = sys_wait4(-1, NULL, __WALL, NULL);
259 	} while (rc != -ECHILD);
260 
261 	/*
262 	 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
263 	 * really care, we could reparent them to the global init. We could
264 	 * exit and reap ->child_reaper even if it is not the last thread in
265 	 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
266 	 * pid_ns can not go away until proc_kill_sb() drops the reference.
267 	 *
268 	 * But this ns can also have other tasks injected by setns()+fork().
269 	 * Again, ignoring the user visible semantics we do not really need
270 	 * to wait until they are all reaped, but they can be reparented to
271 	 * us and thus we need to ensure that pid->child_reaper stays valid
272 	 * until they all go away. See free_pid()->wake_up_process().
273 	 *
274 	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
275 	 * if reparented.
276 	 */
277 	for (;;) {
278 		set_current_state(TASK_UNINTERRUPTIBLE);
279 		if (pid_ns->nr_hashed == init_pids)
280 			break;
281 		schedule();
282 	}
283 	__set_current_state(TASK_RUNNING);
284 
285 	if (pid_ns->reboot)
286 		current->signal->group_exit_code = pid_ns->reboot;
287 
288 	acct_exit_ns(pid_ns);
289 	return;
290 }
291 
292 #ifdef CONFIG_CHECKPOINT_RESTORE
293 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
294 		void __user *buffer, size_t *lenp, loff_t *ppos)
295 {
296 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
297 	struct ctl_table tmp = *table;
298 
299 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
300 		return -EPERM;
301 
302 	/*
303 	 * Writing directly to ns' last_pid field is OK, since this field
304 	 * is volatile in a living namespace anyway and a code writing to
305 	 * it should synchronize its usage with external means.
306 	 */
307 
308 	tmp.data = &pid_ns->last_pid;
309 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
310 }
311 
312 extern int pid_max;
313 static int zero = 0;
314 static struct ctl_table pid_ns_ctl_table[] = {
315 	{
316 		.procname = "ns_last_pid",
317 		.maxlen = sizeof(int),
318 		.mode = 0666, /* permissions are checked in the handler */
319 		.proc_handler = pid_ns_ctl_handler,
320 		.extra1 = &zero,
321 		.extra2 = &pid_max,
322 	},
323 	{ }
324 };
325 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
326 #endif	/* CONFIG_CHECKPOINT_RESTORE */
327 
328 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
329 {
330 	if (pid_ns == &init_pid_ns)
331 		return 0;
332 
333 	switch (cmd) {
334 	case LINUX_REBOOT_CMD_RESTART2:
335 	case LINUX_REBOOT_CMD_RESTART:
336 		pid_ns->reboot = SIGHUP;
337 		break;
338 
339 	case LINUX_REBOOT_CMD_POWER_OFF:
340 	case LINUX_REBOOT_CMD_HALT:
341 		pid_ns->reboot = SIGINT;
342 		break;
343 	default:
344 		return -EINVAL;
345 	}
346 
347 	read_lock(&tasklist_lock);
348 	force_sig(SIGKILL, pid_ns->child_reaper);
349 	read_unlock(&tasklist_lock);
350 
351 	do_exit(0);
352 
353 	/* Not reached */
354 	return 0;
355 }
356 
357 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
358 {
359 	return container_of(ns, struct pid_namespace, ns);
360 }
361 
362 static struct ns_common *pidns_get(struct task_struct *task)
363 {
364 	struct pid_namespace *ns;
365 
366 	rcu_read_lock();
367 	ns = task_active_pid_ns(task);
368 	if (ns)
369 		get_pid_ns(ns);
370 	rcu_read_unlock();
371 
372 	return ns ? &ns->ns : NULL;
373 }
374 
375 static void pidns_put(struct ns_common *ns)
376 {
377 	put_pid_ns(to_pid_ns(ns));
378 }
379 
380 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
381 {
382 	struct pid_namespace *active = task_active_pid_ns(current);
383 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
384 
385 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
386 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
387 		return -EPERM;
388 
389 	/*
390 	 * Only allow entering the current active pid namespace
391 	 * or a child of the current active pid namespace.
392 	 *
393 	 * This is required for fork to return a usable pid value and
394 	 * this maintains the property that processes and their
395 	 * children can not escape their current pid namespace.
396 	 */
397 	if (new->level < active->level)
398 		return -EINVAL;
399 
400 	ancestor = new;
401 	while (ancestor->level > active->level)
402 		ancestor = ancestor->parent;
403 	if (ancestor != active)
404 		return -EINVAL;
405 
406 	put_pid_ns(nsproxy->pid_ns_for_children);
407 	nsproxy->pid_ns_for_children = get_pid_ns(new);
408 	return 0;
409 }
410 
411 static struct ns_common *pidns_get_parent(struct ns_common *ns)
412 {
413 	struct pid_namespace *active = task_active_pid_ns(current);
414 	struct pid_namespace *pid_ns, *p;
415 
416 	/* See if the parent is in the current namespace */
417 	pid_ns = p = to_pid_ns(ns)->parent;
418 	for (;;) {
419 		if (!p)
420 			return ERR_PTR(-EPERM);
421 		if (p == active)
422 			break;
423 		p = p->parent;
424 	}
425 
426 	return &get_pid_ns(pid_ns)->ns;
427 }
428 
429 static struct user_namespace *pidns_owner(struct ns_common *ns)
430 {
431 	return to_pid_ns(ns)->user_ns;
432 }
433 
434 const struct proc_ns_operations pidns_operations = {
435 	.name		= "pid",
436 	.type		= CLONE_NEWPID,
437 	.get		= pidns_get,
438 	.put		= pidns_put,
439 	.install	= pidns_install,
440 	.owner		= pidns_owner,
441 	.get_parent	= pidns_get_parent,
442 };
443 
444 static __init int pid_namespaces_init(void)
445 {
446 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
447 
448 #ifdef CONFIG_CHECKPOINT_RESTORE
449 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
450 #endif
451 	return 0;
452 }
453 
454 __initcall(pid_namespaces_init);
455