1 /* 2 * Pid namespaces 3 * 4 * Authors: 5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 7 * Many thanks to Oleg Nesterov for comments and help 8 * 9 */ 10 11 #include <linux/pid.h> 12 #include <linux/pid_namespace.h> 13 #include <linux/user_namespace.h> 14 #include <linux/syscalls.h> 15 #include <linux/cred.h> 16 #include <linux/err.h> 17 #include <linux/acct.h> 18 #include <linux/slab.h> 19 #include <linux/proc_ns.h> 20 #include <linux/reboot.h> 21 #include <linux/export.h> 22 23 struct pid_cache { 24 int nr_ids; 25 char name[16]; 26 struct kmem_cache *cachep; 27 struct list_head list; 28 }; 29 30 static LIST_HEAD(pid_caches_lh); 31 static DEFINE_MUTEX(pid_caches_mutex); 32 static struct kmem_cache *pid_ns_cachep; 33 34 /* 35 * creates the kmem cache to allocate pids from. 36 * @nr_ids: the number of numerical ids this pid will have to carry 37 */ 38 39 static struct kmem_cache *create_pid_cachep(int nr_ids) 40 { 41 struct pid_cache *pcache; 42 struct kmem_cache *cachep; 43 44 mutex_lock(&pid_caches_mutex); 45 list_for_each_entry(pcache, &pid_caches_lh, list) 46 if (pcache->nr_ids == nr_ids) 47 goto out; 48 49 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL); 50 if (pcache == NULL) 51 goto err_alloc; 52 53 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids); 54 cachep = kmem_cache_create(pcache->name, 55 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid), 56 0, SLAB_HWCACHE_ALIGN, NULL); 57 if (cachep == NULL) 58 goto err_cachep; 59 60 pcache->nr_ids = nr_ids; 61 pcache->cachep = cachep; 62 list_add(&pcache->list, &pid_caches_lh); 63 out: 64 mutex_unlock(&pid_caches_mutex); 65 return pcache->cachep; 66 67 err_cachep: 68 kfree(pcache); 69 err_alloc: 70 mutex_unlock(&pid_caches_mutex); 71 return NULL; 72 } 73 74 static void proc_cleanup_work(struct work_struct *work) 75 { 76 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); 77 pid_ns_release_proc(ns); 78 } 79 80 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ 81 #define MAX_PID_NS_LEVEL 32 82 83 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 84 { 85 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 86 } 87 88 static void dec_pid_namespaces(struct ucounts *ucounts) 89 { 90 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 91 } 92 93 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 94 struct pid_namespace *parent_pid_ns) 95 { 96 struct pid_namespace *ns; 97 unsigned int level = parent_pid_ns->level + 1; 98 struct ucounts *ucounts; 99 int i; 100 int err; 101 102 err = -ENOSPC; 103 if (level > MAX_PID_NS_LEVEL) 104 goto out; 105 ucounts = inc_pid_namespaces(user_ns); 106 if (!ucounts) 107 goto out; 108 109 err = -ENOMEM; 110 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 111 if (ns == NULL) 112 goto out_dec; 113 114 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 115 if (!ns->pidmap[0].page) 116 goto out_free; 117 118 ns->pid_cachep = create_pid_cachep(level + 1); 119 if (ns->pid_cachep == NULL) 120 goto out_free_map; 121 122 err = ns_alloc_inum(&ns->ns); 123 if (err) 124 goto out_free_map; 125 ns->ns.ops = &pidns_operations; 126 127 kref_init(&ns->kref); 128 ns->level = level; 129 ns->parent = get_pid_ns(parent_pid_ns); 130 ns->user_ns = get_user_ns(user_ns); 131 ns->ucounts = ucounts; 132 ns->nr_hashed = PIDNS_HASH_ADDING; 133 INIT_WORK(&ns->proc_work, proc_cleanup_work); 134 135 set_bit(0, ns->pidmap[0].page); 136 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1); 137 138 for (i = 1; i < PIDMAP_ENTRIES; i++) 139 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE); 140 141 return ns; 142 143 out_free_map: 144 kfree(ns->pidmap[0].page); 145 out_free: 146 kmem_cache_free(pid_ns_cachep, ns); 147 out_dec: 148 dec_pid_namespaces(ucounts); 149 out: 150 return ERR_PTR(err); 151 } 152 153 static void delayed_free_pidns(struct rcu_head *p) 154 { 155 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 156 157 dec_pid_namespaces(ns->ucounts); 158 put_user_ns(ns->user_ns); 159 160 kmem_cache_free(pid_ns_cachep, ns); 161 } 162 163 static void destroy_pid_namespace(struct pid_namespace *ns) 164 { 165 int i; 166 167 ns_free_inum(&ns->ns); 168 for (i = 0; i < PIDMAP_ENTRIES; i++) 169 kfree(ns->pidmap[i].page); 170 call_rcu(&ns->rcu, delayed_free_pidns); 171 } 172 173 struct pid_namespace *copy_pid_ns(unsigned long flags, 174 struct user_namespace *user_ns, struct pid_namespace *old_ns) 175 { 176 if (!(flags & CLONE_NEWPID)) 177 return get_pid_ns(old_ns); 178 if (task_active_pid_ns(current) != old_ns) 179 return ERR_PTR(-EINVAL); 180 return create_pid_namespace(user_ns, old_ns); 181 } 182 183 static void free_pid_ns(struct kref *kref) 184 { 185 struct pid_namespace *ns; 186 187 ns = container_of(kref, struct pid_namespace, kref); 188 destroy_pid_namespace(ns); 189 } 190 191 void put_pid_ns(struct pid_namespace *ns) 192 { 193 struct pid_namespace *parent; 194 195 while (ns != &init_pid_ns) { 196 parent = ns->parent; 197 if (!kref_put(&ns->kref, free_pid_ns)) 198 break; 199 ns = parent; 200 } 201 } 202 EXPORT_SYMBOL_GPL(put_pid_ns); 203 204 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 205 { 206 int nr; 207 int rc; 208 struct task_struct *task, *me = current; 209 int init_pids = thread_group_leader(me) ? 1 : 2; 210 211 /* Don't allow any more processes into the pid namespace */ 212 disable_pid_allocation(pid_ns); 213 214 /* 215 * Ignore SIGCHLD causing any terminated children to autoreap. 216 * This speeds up the namespace shutdown, plus see the comment 217 * below. 218 */ 219 spin_lock_irq(&me->sighand->siglock); 220 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 221 spin_unlock_irq(&me->sighand->siglock); 222 223 /* 224 * The last thread in the cgroup-init thread group is terminating. 225 * Find remaining pid_ts in the namespace, signal and wait for them 226 * to exit. 227 * 228 * Note: This signals each threads in the namespace - even those that 229 * belong to the same thread group, To avoid this, we would have 230 * to walk the entire tasklist looking a processes in this 231 * namespace, but that could be unnecessarily expensive if the 232 * pid namespace has just a few processes. Or we need to 233 * maintain a tasklist for each pid namespace. 234 * 235 */ 236 read_lock(&tasklist_lock); 237 nr = next_pidmap(pid_ns, 1); 238 while (nr > 0) { 239 rcu_read_lock(); 240 241 task = pid_task(find_vpid(nr), PIDTYPE_PID); 242 if (task && !__fatal_signal_pending(task)) 243 send_sig_info(SIGKILL, SEND_SIG_FORCED, task); 244 245 rcu_read_unlock(); 246 247 nr = next_pidmap(pid_ns, nr); 248 } 249 read_unlock(&tasklist_lock); 250 251 /* 252 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 253 * sys_wait4() will also block until our children traced from the 254 * parent namespace are detached and become EXIT_DEAD. 255 */ 256 do { 257 clear_thread_flag(TIF_SIGPENDING); 258 rc = sys_wait4(-1, NULL, __WALL, NULL); 259 } while (rc != -ECHILD); 260 261 /* 262 * sys_wait4() above can't reap the EXIT_DEAD children but we do not 263 * really care, we could reparent them to the global init. We could 264 * exit and reap ->child_reaper even if it is not the last thread in 265 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(), 266 * pid_ns can not go away until proc_kill_sb() drops the reference. 267 * 268 * But this ns can also have other tasks injected by setns()+fork(). 269 * Again, ignoring the user visible semantics we do not really need 270 * to wait until they are all reaped, but they can be reparented to 271 * us and thus we need to ensure that pid->child_reaper stays valid 272 * until they all go away. See free_pid()->wake_up_process(). 273 * 274 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped 275 * if reparented. 276 */ 277 for (;;) { 278 set_current_state(TASK_UNINTERRUPTIBLE); 279 if (pid_ns->nr_hashed == init_pids) 280 break; 281 schedule(); 282 } 283 __set_current_state(TASK_RUNNING); 284 285 if (pid_ns->reboot) 286 current->signal->group_exit_code = pid_ns->reboot; 287 288 acct_exit_ns(pid_ns); 289 return; 290 } 291 292 #ifdef CONFIG_CHECKPOINT_RESTORE 293 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 294 void __user *buffer, size_t *lenp, loff_t *ppos) 295 { 296 struct pid_namespace *pid_ns = task_active_pid_ns(current); 297 struct ctl_table tmp = *table; 298 299 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) 300 return -EPERM; 301 302 /* 303 * Writing directly to ns' last_pid field is OK, since this field 304 * is volatile in a living namespace anyway and a code writing to 305 * it should synchronize its usage with external means. 306 */ 307 308 tmp.data = &pid_ns->last_pid; 309 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 310 } 311 312 extern int pid_max; 313 static int zero = 0; 314 static struct ctl_table pid_ns_ctl_table[] = { 315 { 316 .procname = "ns_last_pid", 317 .maxlen = sizeof(int), 318 .mode = 0666, /* permissions are checked in the handler */ 319 .proc_handler = pid_ns_ctl_handler, 320 .extra1 = &zero, 321 .extra2 = &pid_max, 322 }, 323 { } 324 }; 325 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 326 #endif /* CONFIG_CHECKPOINT_RESTORE */ 327 328 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 329 { 330 if (pid_ns == &init_pid_ns) 331 return 0; 332 333 switch (cmd) { 334 case LINUX_REBOOT_CMD_RESTART2: 335 case LINUX_REBOOT_CMD_RESTART: 336 pid_ns->reboot = SIGHUP; 337 break; 338 339 case LINUX_REBOOT_CMD_POWER_OFF: 340 case LINUX_REBOOT_CMD_HALT: 341 pid_ns->reboot = SIGINT; 342 break; 343 default: 344 return -EINVAL; 345 } 346 347 read_lock(&tasklist_lock); 348 force_sig(SIGKILL, pid_ns->child_reaper); 349 read_unlock(&tasklist_lock); 350 351 do_exit(0); 352 353 /* Not reached */ 354 return 0; 355 } 356 357 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 358 { 359 return container_of(ns, struct pid_namespace, ns); 360 } 361 362 static struct ns_common *pidns_get(struct task_struct *task) 363 { 364 struct pid_namespace *ns; 365 366 rcu_read_lock(); 367 ns = task_active_pid_ns(task); 368 if (ns) 369 get_pid_ns(ns); 370 rcu_read_unlock(); 371 372 return ns ? &ns->ns : NULL; 373 } 374 375 static void pidns_put(struct ns_common *ns) 376 { 377 put_pid_ns(to_pid_ns(ns)); 378 } 379 380 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns) 381 { 382 struct pid_namespace *active = task_active_pid_ns(current); 383 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 384 385 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 386 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 387 return -EPERM; 388 389 /* 390 * Only allow entering the current active pid namespace 391 * or a child of the current active pid namespace. 392 * 393 * This is required for fork to return a usable pid value and 394 * this maintains the property that processes and their 395 * children can not escape their current pid namespace. 396 */ 397 if (new->level < active->level) 398 return -EINVAL; 399 400 ancestor = new; 401 while (ancestor->level > active->level) 402 ancestor = ancestor->parent; 403 if (ancestor != active) 404 return -EINVAL; 405 406 put_pid_ns(nsproxy->pid_ns_for_children); 407 nsproxy->pid_ns_for_children = get_pid_ns(new); 408 return 0; 409 } 410 411 static struct ns_common *pidns_get_parent(struct ns_common *ns) 412 { 413 struct pid_namespace *active = task_active_pid_ns(current); 414 struct pid_namespace *pid_ns, *p; 415 416 /* See if the parent is in the current namespace */ 417 pid_ns = p = to_pid_ns(ns)->parent; 418 for (;;) { 419 if (!p) 420 return ERR_PTR(-EPERM); 421 if (p == active) 422 break; 423 p = p->parent; 424 } 425 426 return &get_pid_ns(pid_ns)->ns; 427 } 428 429 static struct user_namespace *pidns_owner(struct ns_common *ns) 430 { 431 return to_pid_ns(ns)->user_ns; 432 } 433 434 const struct proc_ns_operations pidns_operations = { 435 .name = "pid", 436 .type = CLONE_NEWPID, 437 .get = pidns_get, 438 .put = pidns_put, 439 .install = pidns_install, 440 .owner = pidns_owner, 441 .get_parent = pidns_get_parent, 442 }; 443 444 static __init int pid_namespaces_init(void) 445 { 446 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 447 448 #ifdef CONFIG_CHECKPOINT_RESTORE 449 register_sysctl_paths(kern_path, pid_ns_ctl_table); 450 #endif 451 return 0; 452 } 453 454 __initcall(pid_namespaces_init); 455