xref: /openbmc/linux/kernel/pid_namespace.c (revision 160b8e75)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/cred.h>
16 #include <linux/err.h>
17 #include <linux/acct.h>
18 #include <linux/slab.h>
19 #include <linux/proc_ns.h>
20 #include <linux/reboot.h>
21 #include <linux/export.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/signal.h>
24 #include <linux/idr.h>
25 
26 struct pid_cache {
27 	int nr_ids;
28 	char name[16];
29 	struct kmem_cache *cachep;
30 	struct list_head list;
31 };
32 
33 static LIST_HEAD(pid_caches_lh);
34 static DEFINE_MUTEX(pid_caches_mutex);
35 static struct kmem_cache *pid_ns_cachep;
36 
37 /*
38  * creates the kmem cache to allocate pids from.
39  * @nr_ids: the number of numerical ids this pid will have to carry
40  */
41 
42 static struct kmem_cache *create_pid_cachep(int nr_ids)
43 {
44 	struct pid_cache *pcache;
45 	struct kmem_cache *cachep;
46 
47 	mutex_lock(&pid_caches_mutex);
48 	list_for_each_entry(pcache, &pid_caches_lh, list)
49 		if (pcache->nr_ids == nr_ids)
50 			goto out;
51 
52 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
53 	if (pcache == NULL)
54 		goto err_alloc;
55 
56 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
57 	cachep = kmem_cache_create(pcache->name,
58 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
59 			0, SLAB_HWCACHE_ALIGN, NULL);
60 	if (cachep == NULL)
61 		goto err_cachep;
62 
63 	pcache->nr_ids = nr_ids;
64 	pcache->cachep = cachep;
65 	list_add(&pcache->list, &pid_caches_lh);
66 out:
67 	mutex_unlock(&pid_caches_mutex);
68 	return pcache->cachep;
69 
70 err_cachep:
71 	kfree(pcache);
72 err_alloc:
73 	mutex_unlock(&pid_caches_mutex);
74 	return NULL;
75 }
76 
77 static void proc_cleanup_work(struct work_struct *work)
78 {
79 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
80 	pid_ns_release_proc(ns);
81 }
82 
83 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
84 #define MAX_PID_NS_LEVEL 32
85 
86 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
87 {
88 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
89 }
90 
91 static void dec_pid_namespaces(struct ucounts *ucounts)
92 {
93 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
94 }
95 
96 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
97 	struct pid_namespace *parent_pid_ns)
98 {
99 	struct pid_namespace *ns;
100 	unsigned int level = parent_pid_ns->level + 1;
101 	struct ucounts *ucounts;
102 	int err;
103 
104 	err = -EINVAL;
105 	if (!in_userns(parent_pid_ns->user_ns, user_ns))
106 		goto out;
107 
108 	err = -ENOSPC;
109 	if (level > MAX_PID_NS_LEVEL)
110 		goto out;
111 	ucounts = inc_pid_namespaces(user_ns);
112 	if (!ucounts)
113 		goto out;
114 
115 	err = -ENOMEM;
116 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
117 	if (ns == NULL)
118 		goto out_dec;
119 
120 	idr_init(&ns->idr);
121 
122 	ns->pid_cachep = create_pid_cachep(level + 1);
123 	if (ns->pid_cachep == NULL)
124 		goto out_free_idr;
125 
126 	err = ns_alloc_inum(&ns->ns);
127 	if (err)
128 		goto out_free_idr;
129 	ns->ns.ops = &pidns_operations;
130 
131 	kref_init(&ns->kref);
132 	ns->level = level;
133 	ns->parent = get_pid_ns(parent_pid_ns);
134 	ns->user_ns = get_user_ns(user_ns);
135 	ns->ucounts = ucounts;
136 	ns->pid_allocated = PIDNS_ADDING;
137 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
138 
139 	return ns;
140 
141 out_free_idr:
142 	idr_destroy(&ns->idr);
143 	kmem_cache_free(pid_ns_cachep, ns);
144 out_dec:
145 	dec_pid_namespaces(ucounts);
146 out:
147 	return ERR_PTR(err);
148 }
149 
150 static void delayed_free_pidns(struct rcu_head *p)
151 {
152 	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
153 
154 	dec_pid_namespaces(ns->ucounts);
155 	put_user_ns(ns->user_ns);
156 
157 	kmem_cache_free(pid_ns_cachep, ns);
158 }
159 
160 static void destroy_pid_namespace(struct pid_namespace *ns)
161 {
162 	ns_free_inum(&ns->ns);
163 
164 	idr_destroy(&ns->idr);
165 	call_rcu(&ns->rcu, delayed_free_pidns);
166 }
167 
168 struct pid_namespace *copy_pid_ns(unsigned long flags,
169 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
170 {
171 	if (!(flags & CLONE_NEWPID))
172 		return get_pid_ns(old_ns);
173 	if (task_active_pid_ns(current) != old_ns)
174 		return ERR_PTR(-EINVAL);
175 	return create_pid_namespace(user_ns, old_ns);
176 }
177 
178 static void free_pid_ns(struct kref *kref)
179 {
180 	struct pid_namespace *ns;
181 
182 	ns = container_of(kref, struct pid_namespace, kref);
183 	destroy_pid_namespace(ns);
184 }
185 
186 void put_pid_ns(struct pid_namespace *ns)
187 {
188 	struct pid_namespace *parent;
189 
190 	while (ns != &init_pid_ns) {
191 		parent = ns->parent;
192 		if (!kref_put(&ns->kref, free_pid_ns))
193 			break;
194 		ns = parent;
195 	}
196 }
197 EXPORT_SYMBOL_GPL(put_pid_ns);
198 
199 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
200 {
201 	int nr;
202 	int rc;
203 	struct task_struct *task, *me = current;
204 	int init_pids = thread_group_leader(me) ? 1 : 2;
205 	struct pid *pid;
206 
207 	/* Don't allow any more processes into the pid namespace */
208 	disable_pid_allocation(pid_ns);
209 
210 	/*
211 	 * Ignore SIGCHLD causing any terminated children to autoreap.
212 	 * This speeds up the namespace shutdown, plus see the comment
213 	 * below.
214 	 */
215 	spin_lock_irq(&me->sighand->siglock);
216 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
217 	spin_unlock_irq(&me->sighand->siglock);
218 
219 	/*
220 	 * The last thread in the cgroup-init thread group is terminating.
221 	 * Find remaining pid_ts in the namespace, signal and wait for them
222 	 * to exit.
223 	 *
224 	 * Note:  This signals each threads in the namespace - even those that
225 	 * 	  belong to the same thread group, To avoid this, we would have
226 	 * 	  to walk the entire tasklist looking a processes in this
227 	 * 	  namespace, but that could be unnecessarily expensive if the
228 	 * 	  pid namespace has just a few processes. Or we need to
229 	 * 	  maintain a tasklist for each pid namespace.
230 	 *
231 	 */
232 	rcu_read_lock();
233 	read_lock(&tasklist_lock);
234 	nr = 2;
235 	idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
236 		task = pid_task(pid, PIDTYPE_PID);
237 		if (task && !__fatal_signal_pending(task))
238 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
239 	}
240 	read_unlock(&tasklist_lock);
241 	rcu_read_unlock();
242 
243 	/*
244 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
245 	 * sys_wait4() will also block until our children traced from the
246 	 * parent namespace are detached and become EXIT_DEAD.
247 	 */
248 	do {
249 		clear_thread_flag(TIF_SIGPENDING);
250 		rc = sys_wait4(-1, NULL, __WALL, NULL);
251 	} while (rc != -ECHILD);
252 
253 	/*
254 	 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
255 	 * really care, we could reparent them to the global init. We could
256 	 * exit and reap ->child_reaper even if it is not the last thread in
257 	 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
258 	 * pid_ns can not go away until proc_kill_sb() drops the reference.
259 	 *
260 	 * But this ns can also have other tasks injected by setns()+fork().
261 	 * Again, ignoring the user visible semantics we do not really need
262 	 * to wait until they are all reaped, but they can be reparented to
263 	 * us and thus we need to ensure that pid->child_reaper stays valid
264 	 * until they all go away. See free_pid()->wake_up_process().
265 	 *
266 	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
267 	 * if reparented.
268 	 */
269 	for (;;) {
270 		set_current_state(TASK_INTERRUPTIBLE);
271 		if (pid_ns->pid_allocated == init_pids)
272 			break;
273 		schedule();
274 	}
275 	__set_current_state(TASK_RUNNING);
276 
277 	if (pid_ns->reboot)
278 		current->signal->group_exit_code = pid_ns->reboot;
279 
280 	acct_exit_ns(pid_ns);
281 	return;
282 }
283 
284 #ifdef CONFIG_CHECKPOINT_RESTORE
285 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
286 		void __user *buffer, size_t *lenp, loff_t *ppos)
287 {
288 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
289 	struct ctl_table tmp = *table;
290 	int ret, next;
291 
292 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
293 		return -EPERM;
294 
295 	/*
296 	 * Writing directly to ns' last_pid field is OK, since this field
297 	 * is volatile in a living namespace anyway and a code writing to
298 	 * it should synchronize its usage with external means.
299 	 */
300 
301 	next = idr_get_cursor(&pid_ns->idr) - 1;
302 
303 	tmp.data = &next;
304 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
305 	if (!ret && write)
306 		idr_set_cursor(&pid_ns->idr, next + 1);
307 
308 	return ret;
309 }
310 
311 extern int pid_max;
312 static int zero = 0;
313 static struct ctl_table pid_ns_ctl_table[] = {
314 	{
315 		.procname = "ns_last_pid",
316 		.maxlen = sizeof(int),
317 		.mode = 0666, /* permissions are checked in the handler */
318 		.proc_handler = pid_ns_ctl_handler,
319 		.extra1 = &zero,
320 		.extra2 = &pid_max,
321 	},
322 	{ }
323 };
324 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
325 #endif	/* CONFIG_CHECKPOINT_RESTORE */
326 
327 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
328 {
329 	if (pid_ns == &init_pid_ns)
330 		return 0;
331 
332 	switch (cmd) {
333 	case LINUX_REBOOT_CMD_RESTART2:
334 	case LINUX_REBOOT_CMD_RESTART:
335 		pid_ns->reboot = SIGHUP;
336 		break;
337 
338 	case LINUX_REBOOT_CMD_POWER_OFF:
339 	case LINUX_REBOOT_CMD_HALT:
340 		pid_ns->reboot = SIGINT;
341 		break;
342 	default:
343 		return -EINVAL;
344 	}
345 
346 	read_lock(&tasklist_lock);
347 	force_sig(SIGKILL, pid_ns->child_reaper);
348 	read_unlock(&tasklist_lock);
349 
350 	do_exit(0);
351 
352 	/* Not reached */
353 	return 0;
354 }
355 
356 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
357 {
358 	return container_of(ns, struct pid_namespace, ns);
359 }
360 
361 static struct ns_common *pidns_get(struct task_struct *task)
362 {
363 	struct pid_namespace *ns;
364 
365 	rcu_read_lock();
366 	ns = task_active_pid_ns(task);
367 	if (ns)
368 		get_pid_ns(ns);
369 	rcu_read_unlock();
370 
371 	return ns ? &ns->ns : NULL;
372 }
373 
374 static struct ns_common *pidns_for_children_get(struct task_struct *task)
375 {
376 	struct pid_namespace *ns = NULL;
377 
378 	task_lock(task);
379 	if (task->nsproxy) {
380 		ns = task->nsproxy->pid_ns_for_children;
381 		get_pid_ns(ns);
382 	}
383 	task_unlock(task);
384 
385 	if (ns) {
386 		read_lock(&tasklist_lock);
387 		if (!ns->child_reaper) {
388 			put_pid_ns(ns);
389 			ns = NULL;
390 		}
391 		read_unlock(&tasklist_lock);
392 	}
393 
394 	return ns ? &ns->ns : NULL;
395 }
396 
397 static void pidns_put(struct ns_common *ns)
398 {
399 	put_pid_ns(to_pid_ns(ns));
400 }
401 
402 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
403 {
404 	struct pid_namespace *active = task_active_pid_ns(current);
405 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
406 
407 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
408 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
409 		return -EPERM;
410 
411 	/*
412 	 * Only allow entering the current active pid namespace
413 	 * or a child of the current active pid namespace.
414 	 *
415 	 * This is required for fork to return a usable pid value and
416 	 * this maintains the property that processes and their
417 	 * children can not escape their current pid namespace.
418 	 */
419 	if (new->level < active->level)
420 		return -EINVAL;
421 
422 	ancestor = new;
423 	while (ancestor->level > active->level)
424 		ancestor = ancestor->parent;
425 	if (ancestor != active)
426 		return -EINVAL;
427 
428 	put_pid_ns(nsproxy->pid_ns_for_children);
429 	nsproxy->pid_ns_for_children = get_pid_ns(new);
430 	return 0;
431 }
432 
433 static struct ns_common *pidns_get_parent(struct ns_common *ns)
434 {
435 	struct pid_namespace *active = task_active_pid_ns(current);
436 	struct pid_namespace *pid_ns, *p;
437 
438 	/* See if the parent is in the current namespace */
439 	pid_ns = p = to_pid_ns(ns)->parent;
440 	for (;;) {
441 		if (!p)
442 			return ERR_PTR(-EPERM);
443 		if (p == active)
444 			break;
445 		p = p->parent;
446 	}
447 
448 	return &get_pid_ns(pid_ns)->ns;
449 }
450 
451 static struct user_namespace *pidns_owner(struct ns_common *ns)
452 {
453 	return to_pid_ns(ns)->user_ns;
454 }
455 
456 const struct proc_ns_operations pidns_operations = {
457 	.name		= "pid",
458 	.type		= CLONE_NEWPID,
459 	.get		= pidns_get,
460 	.put		= pidns_put,
461 	.install	= pidns_install,
462 	.owner		= pidns_owner,
463 	.get_parent	= pidns_get_parent,
464 };
465 
466 const struct proc_ns_operations pidns_for_children_operations = {
467 	.name		= "pid_for_children",
468 	.real_ns_name	= "pid",
469 	.type		= CLONE_NEWPID,
470 	.get		= pidns_for_children_get,
471 	.put		= pidns_put,
472 	.install	= pidns_install,
473 	.owner		= pidns_owner,
474 	.get_parent	= pidns_get_parent,
475 };
476 
477 static __init int pid_namespaces_init(void)
478 {
479 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
480 
481 #ifdef CONFIG_CHECKPOINT_RESTORE
482 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
483 #endif
484 	return 0;
485 }
486 
487 __initcall(pid_namespaces_init);
488