1 /* 2 * Pid namespaces 3 * 4 * Authors: 5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 7 * Many thanks to Oleg Nesterov for comments and help 8 * 9 */ 10 11 #include <linux/pid.h> 12 #include <linux/pid_namespace.h> 13 #include <linux/user_namespace.h> 14 #include <linux/syscalls.h> 15 #include <linux/cred.h> 16 #include <linux/err.h> 17 #include <linux/acct.h> 18 #include <linux/slab.h> 19 #include <linux/proc_ns.h> 20 #include <linux/reboot.h> 21 #include <linux/export.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/signal.h> 24 #include <linux/idr.h> 25 26 static DEFINE_MUTEX(pid_caches_mutex); 27 static struct kmem_cache *pid_ns_cachep; 28 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ 29 #define MAX_PID_NS_LEVEL 32 30 /* Write once array, filled from the beginning. */ 31 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; 32 33 /* 34 * creates the kmem cache to allocate pids from. 35 * @level: pid namespace level 36 */ 37 38 static struct kmem_cache *create_pid_cachep(unsigned int level) 39 { 40 /* Level 0 is init_pid_ns.pid_cachep */ 41 struct kmem_cache **pkc = &pid_cache[level - 1]; 42 struct kmem_cache *kc; 43 char name[4 + 10 + 1]; 44 unsigned int len; 45 46 kc = READ_ONCE(*pkc); 47 if (kc) 48 return kc; 49 50 snprintf(name, sizeof(name), "pid_%u", level + 1); 51 len = sizeof(struct pid) + level * sizeof(struct upid); 52 mutex_lock(&pid_caches_mutex); 53 /* Name collision forces to do allocation under mutex. */ 54 if (!*pkc) 55 *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0); 56 mutex_unlock(&pid_caches_mutex); 57 /* current can fail, but someone else can succeed. */ 58 return READ_ONCE(*pkc); 59 } 60 61 static void proc_cleanup_work(struct work_struct *work) 62 { 63 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); 64 pid_ns_release_proc(ns); 65 } 66 67 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 68 { 69 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 70 } 71 72 static void dec_pid_namespaces(struct ucounts *ucounts) 73 { 74 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 75 } 76 77 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 78 struct pid_namespace *parent_pid_ns) 79 { 80 struct pid_namespace *ns; 81 unsigned int level = parent_pid_ns->level + 1; 82 struct ucounts *ucounts; 83 int err; 84 85 err = -EINVAL; 86 if (!in_userns(parent_pid_ns->user_ns, user_ns)) 87 goto out; 88 89 err = -ENOSPC; 90 if (level > MAX_PID_NS_LEVEL) 91 goto out; 92 ucounts = inc_pid_namespaces(user_ns); 93 if (!ucounts) 94 goto out; 95 96 err = -ENOMEM; 97 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 98 if (ns == NULL) 99 goto out_dec; 100 101 idr_init(&ns->idr); 102 103 ns->pid_cachep = create_pid_cachep(level); 104 if (ns->pid_cachep == NULL) 105 goto out_free_idr; 106 107 err = ns_alloc_inum(&ns->ns); 108 if (err) 109 goto out_free_idr; 110 ns->ns.ops = &pidns_operations; 111 112 kref_init(&ns->kref); 113 ns->level = level; 114 ns->parent = get_pid_ns(parent_pid_ns); 115 ns->user_ns = get_user_ns(user_ns); 116 ns->ucounts = ucounts; 117 ns->pid_allocated = PIDNS_ADDING; 118 INIT_WORK(&ns->proc_work, proc_cleanup_work); 119 120 return ns; 121 122 out_free_idr: 123 idr_destroy(&ns->idr); 124 kmem_cache_free(pid_ns_cachep, ns); 125 out_dec: 126 dec_pid_namespaces(ucounts); 127 out: 128 return ERR_PTR(err); 129 } 130 131 static void delayed_free_pidns(struct rcu_head *p) 132 { 133 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 134 135 dec_pid_namespaces(ns->ucounts); 136 put_user_ns(ns->user_ns); 137 138 kmem_cache_free(pid_ns_cachep, ns); 139 } 140 141 static void destroy_pid_namespace(struct pid_namespace *ns) 142 { 143 ns_free_inum(&ns->ns); 144 145 idr_destroy(&ns->idr); 146 call_rcu(&ns->rcu, delayed_free_pidns); 147 } 148 149 struct pid_namespace *copy_pid_ns(unsigned long flags, 150 struct user_namespace *user_ns, struct pid_namespace *old_ns) 151 { 152 if (!(flags & CLONE_NEWPID)) 153 return get_pid_ns(old_ns); 154 if (task_active_pid_ns(current) != old_ns) 155 return ERR_PTR(-EINVAL); 156 return create_pid_namespace(user_ns, old_ns); 157 } 158 159 static void free_pid_ns(struct kref *kref) 160 { 161 struct pid_namespace *ns; 162 163 ns = container_of(kref, struct pid_namespace, kref); 164 destroy_pid_namespace(ns); 165 } 166 167 void put_pid_ns(struct pid_namespace *ns) 168 { 169 struct pid_namespace *parent; 170 171 while (ns != &init_pid_ns) { 172 parent = ns->parent; 173 if (!kref_put(&ns->kref, free_pid_ns)) 174 break; 175 ns = parent; 176 } 177 } 178 EXPORT_SYMBOL_GPL(put_pid_ns); 179 180 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 181 { 182 int nr; 183 int rc; 184 struct task_struct *task, *me = current; 185 int init_pids = thread_group_leader(me) ? 1 : 2; 186 struct pid *pid; 187 188 /* Don't allow any more processes into the pid namespace */ 189 disable_pid_allocation(pid_ns); 190 191 /* 192 * Ignore SIGCHLD causing any terminated children to autoreap. 193 * This speeds up the namespace shutdown, plus see the comment 194 * below. 195 */ 196 spin_lock_irq(&me->sighand->siglock); 197 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 198 spin_unlock_irq(&me->sighand->siglock); 199 200 /* 201 * The last thread in the cgroup-init thread group is terminating. 202 * Find remaining pid_ts in the namespace, signal and wait for them 203 * to exit. 204 * 205 * Note: This signals each threads in the namespace - even those that 206 * belong to the same thread group, To avoid this, we would have 207 * to walk the entire tasklist looking a processes in this 208 * namespace, but that could be unnecessarily expensive if the 209 * pid namespace has just a few processes. Or we need to 210 * maintain a tasklist for each pid namespace. 211 * 212 */ 213 rcu_read_lock(); 214 read_lock(&tasklist_lock); 215 nr = 2; 216 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { 217 task = pid_task(pid, PIDTYPE_PID); 218 if (task && !__fatal_signal_pending(task)) 219 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); 220 } 221 read_unlock(&tasklist_lock); 222 rcu_read_unlock(); 223 224 /* 225 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 226 * kernel_wait4() will also block until our children traced from the 227 * parent namespace are detached and become EXIT_DEAD. 228 */ 229 do { 230 clear_thread_flag(TIF_SIGPENDING); 231 rc = kernel_wait4(-1, NULL, __WALL, NULL); 232 } while (rc != -ECHILD); 233 234 /* 235 * kernel_wait4() above can't reap the EXIT_DEAD children but we do not 236 * really care, we could reparent them to the global init. We could 237 * exit and reap ->child_reaper even if it is not the last thread in 238 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(), 239 * pid_ns can not go away until proc_kill_sb() drops the reference. 240 * 241 * But this ns can also have other tasks injected by setns()+fork(). 242 * Again, ignoring the user visible semantics we do not really need 243 * to wait until they are all reaped, but they can be reparented to 244 * us and thus we need to ensure that pid->child_reaper stays valid 245 * until they all go away. See free_pid()->wake_up_process(). 246 * 247 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped 248 * if reparented. 249 */ 250 for (;;) { 251 set_current_state(TASK_INTERRUPTIBLE); 252 if (pid_ns->pid_allocated == init_pids) 253 break; 254 schedule(); 255 } 256 __set_current_state(TASK_RUNNING); 257 258 if (pid_ns->reboot) 259 current->signal->group_exit_code = pid_ns->reboot; 260 261 acct_exit_ns(pid_ns); 262 return; 263 } 264 265 #ifdef CONFIG_CHECKPOINT_RESTORE 266 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 267 void __user *buffer, size_t *lenp, loff_t *ppos) 268 { 269 struct pid_namespace *pid_ns = task_active_pid_ns(current); 270 struct ctl_table tmp = *table; 271 int ret, next; 272 273 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) 274 return -EPERM; 275 276 /* 277 * Writing directly to ns' last_pid field is OK, since this field 278 * is volatile in a living namespace anyway and a code writing to 279 * it should synchronize its usage with external means. 280 */ 281 282 next = idr_get_cursor(&pid_ns->idr) - 1; 283 284 tmp.data = &next; 285 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 286 if (!ret && write) 287 idr_set_cursor(&pid_ns->idr, next + 1); 288 289 return ret; 290 } 291 292 extern int pid_max; 293 static int zero = 0; 294 static struct ctl_table pid_ns_ctl_table[] = { 295 { 296 .procname = "ns_last_pid", 297 .maxlen = sizeof(int), 298 .mode = 0666, /* permissions are checked in the handler */ 299 .proc_handler = pid_ns_ctl_handler, 300 .extra1 = &zero, 301 .extra2 = &pid_max, 302 }, 303 { } 304 }; 305 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 306 #endif /* CONFIG_CHECKPOINT_RESTORE */ 307 308 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 309 { 310 if (pid_ns == &init_pid_ns) 311 return 0; 312 313 switch (cmd) { 314 case LINUX_REBOOT_CMD_RESTART2: 315 case LINUX_REBOOT_CMD_RESTART: 316 pid_ns->reboot = SIGHUP; 317 break; 318 319 case LINUX_REBOOT_CMD_POWER_OFF: 320 case LINUX_REBOOT_CMD_HALT: 321 pid_ns->reboot = SIGINT; 322 break; 323 default: 324 return -EINVAL; 325 } 326 327 read_lock(&tasklist_lock); 328 force_sig(SIGKILL, pid_ns->child_reaper); 329 read_unlock(&tasklist_lock); 330 331 do_exit(0); 332 333 /* Not reached */ 334 return 0; 335 } 336 337 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 338 { 339 return container_of(ns, struct pid_namespace, ns); 340 } 341 342 static struct ns_common *pidns_get(struct task_struct *task) 343 { 344 struct pid_namespace *ns; 345 346 rcu_read_lock(); 347 ns = task_active_pid_ns(task); 348 if (ns) 349 get_pid_ns(ns); 350 rcu_read_unlock(); 351 352 return ns ? &ns->ns : NULL; 353 } 354 355 static struct ns_common *pidns_for_children_get(struct task_struct *task) 356 { 357 struct pid_namespace *ns = NULL; 358 359 task_lock(task); 360 if (task->nsproxy) { 361 ns = task->nsproxy->pid_ns_for_children; 362 get_pid_ns(ns); 363 } 364 task_unlock(task); 365 366 if (ns) { 367 read_lock(&tasklist_lock); 368 if (!ns->child_reaper) { 369 put_pid_ns(ns); 370 ns = NULL; 371 } 372 read_unlock(&tasklist_lock); 373 } 374 375 return ns ? &ns->ns : NULL; 376 } 377 378 static void pidns_put(struct ns_common *ns) 379 { 380 put_pid_ns(to_pid_ns(ns)); 381 } 382 383 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns) 384 { 385 struct pid_namespace *active = task_active_pid_ns(current); 386 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 387 388 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 389 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 390 return -EPERM; 391 392 /* 393 * Only allow entering the current active pid namespace 394 * or a child of the current active pid namespace. 395 * 396 * This is required for fork to return a usable pid value and 397 * this maintains the property that processes and their 398 * children can not escape their current pid namespace. 399 */ 400 if (new->level < active->level) 401 return -EINVAL; 402 403 ancestor = new; 404 while (ancestor->level > active->level) 405 ancestor = ancestor->parent; 406 if (ancestor != active) 407 return -EINVAL; 408 409 put_pid_ns(nsproxy->pid_ns_for_children); 410 nsproxy->pid_ns_for_children = get_pid_ns(new); 411 return 0; 412 } 413 414 static struct ns_common *pidns_get_parent(struct ns_common *ns) 415 { 416 struct pid_namespace *active = task_active_pid_ns(current); 417 struct pid_namespace *pid_ns, *p; 418 419 /* See if the parent is in the current namespace */ 420 pid_ns = p = to_pid_ns(ns)->parent; 421 for (;;) { 422 if (!p) 423 return ERR_PTR(-EPERM); 424 if (p == active) 425 break; 426 p = p->parent; 427 } 428 429 return &get_pid_ns(pid_ns)->ns; 430 } 431 432 static struct user_namespace *pidns_owner(struct ns_common *ns) 433 { 434 return to_pid_ns(ns)->user_ns; 435 } 436 437 const struct proc_ns_operations pidns_operations = { 438 .name = "pid", 439 .type = CLONE_NEWPID, 440 .get = pidns_get, 441 .put = pidns_put, 442 .install = pidns_install, 443 .owner = pidns_owner, 444 .get_parent = pidns_get_parent, 445 }; 446 447 const struct proc_ns_operations pidns_for_children_operations = { 448 .name = "pid_for_children", 449 .real_ns_name = "pid", 450 .type = CLONE_NEWPID, 451 .get = pidns_for_children_get, 452 .put = pidns_put, 453 .install = pidns_install, 454 .owner = pidns_owner, 455 .get_parent = pidns_get_parent, 456 }; 457 458 static __init int pid_namespaces_init(void) 459 { 460 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 461 462 #ifdef CONFIG_CHECKPOINT_RESTORE 463 register_sysctl_paths(kern_path, pid_ns_ctl_table); 464 #endif 465 return 0; 466 } 467 468 __initcall(pid_namespaces_init); 469