xref: /openbmc/linux/kernel/pid_namespace.c (revision 089a49b6)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/err.h>
16 #include <linux/acct.h>
17 #include <linux/slab.h>
18 #include <linux/proc_ns.h>
19 #include <linux/reboot.h>
20 #include <linux/export.h>
21 
22 struct pid_cache {
23 	int nr_ids;
24 	char name[16];
25 	struct kmem_cache *cachep;
26 	struct list_head list;
27 };
28 
29 static LIST_HEAD(pid_caches_lh);
30 static DEFINE_MUTEX(pid_caches_mutex);
31 static struct kmem_cache *pid_ns_cachep;
32 
33 /*
34  * creates the kmem cache to allocate pids from.
35  * @nr_ids: the number of numerical ids this pid will have to carry
36  */
37 
38 static struct kmem_cache *create_pid_cachep(int nr_ids)
39 {
40 	struct pid_cache *pcache;
41 	struct kmem_cache *cachep;
42 
43 	mutex_lock(&pid_caches_mutex);
44 	list_for_each_entry(pcache, &pid_caches_lh, list)
45 		if (pcache->nr_ids == nr_ids)
46 			goto out;
47 
48 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
49 	if (pcache == NULL)
50 		goto err_alloc;
51 
52 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
53 	cachep = kmem_cache_create(pcache->name,
54 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
55 			0, SLAB_HWCACHE_ALIGN, NULL);
56 	if (cachep == NULL)
57 		goto err_cachep;
58 
59 	pcache->nr_ids = nr_ids;
60 	pcache->cachep = cachep;
61 	list_add(&pcache->list, &pid_caches_lh);
62 out:
63 	mutex_unlock(&pid_caches_mutex);
64 	return pcache->cachep;
65 
66 err_cachep:
67 	kfree(pcache);
68 err_alloc:
69 	mutex_unlock(&pid_caches_mutex);
70 	return NULL;
71 }
72 
73 static void proc_cleanup_work(struct work_struct *work)
74 {
75 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
76 	pid_ns_release_proc(ns);
77 }
78 
79 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
80 #define MAX_PID_NS_LEVEL 32
81 
82 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
83 	struct pid_namespace *parent_pid_ns)
84 {
85 	struct pid_namespace *ns;
86 	unsigned int level = parent_pid_ns->level + 1;
87 	int i;
88 	int err;
89 
90 	if (level > MAX_PID_NS_LEVEL) {
91 		err = -EINVAL;
92 		goto out;
93 	}
94 
95 	err = -ENOMEM;
96 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
97 	if (ns == NULL)
98 		goto out;
99 
100 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
101 	if (!ns->pidmap[0].page)
102 		goto out_free;
103 
104 	ns->pid_cachep = create_pid_cachep(level + 1);
105 	if (ns->pid_cachep == NULL)
106 		goto out_free_map;
107 
108 	err = proc_alloc_inum(&ns->proc_inum);
109 	if (err)
110 		goto out_free_map;
111 
112 	kref_init(&ns->kref);
113 	ns->level = level;
114 	ns->parent = get_pid_ns(parent_pid_ns);
115 	ns->user_ns = get_user_ns(user_ns);
116 	ns->nr_hashed = PIDNS_HASH_ADDING;
117 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
118 
119 	set_bit(0, ns->pidmap[0].page);
120 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
121 
122 	for (i = 1; i < PIDMAP_ENTRIES; i++)
123 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
124 
125 	return ns;
126 
127 out_free_map:
128 	kfree(ns->pidmap[0].page);
129 out_free:
130 	kmem_cache_free(pid_ns_cachep, ns);
131 out:
132 	return ERR_PTR(err);
133 }
134 
135 static void destroy_pid_namespace(struct pid_namespace *ns)
136 {
137 	int i;
138 
139 	proc_free_inum(ns->proc_inum);
140 	for (i = 0; i < PIDMAP_ENTRIES; i++)
141 		kfree(ns->pidmap[i].page);
142 	put_user_ns(ns->user_ns);
143 	kmem_cache_free(pid_ns_cachep, ns);
144 }
145 
146 struct pid_namespace *copy_pid_ns(unsigned long flags,
147 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
148 {
149 	if (!(flags & CLONE_NEWPID))
150 		return get_pid_ns(old_ns);
151 	if (task_active_pid_ns(current) != old_ns)
152 		return ERR_PTR(-EINVAL);
153 	return create_pid_namespace(user_ns, old_ns);
154 }
155 
156 static void free_pid_ns(struct kref *kref)
157 {
158 	struct pid_namespace *ns;
159 
160 	ns = container_of(kref, struct pid_namespace, kref);
161 	destroy_pid_namespace(ns);
162 }
163 
164 void put_pid_ns(struct pid_namespace *ns)
165 {
166 	struct pid_namespace *parent;
167 
168 	while (ns != &init_pid_ns) {
169 		parent = ns->parent;
170 		if (!kref_put(&ns->kref, free_pid_ns))
171 			break;
172 		ns = parent;
173 	}
174 }
175 EXPORT_SYMBOL_GPL(put_pid_ns);
176 
177 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
178 {
179 	int nr;
180 	int rc;
181 	struct task_struct *task, *me = current;
182 	int init_pids = thread_group_leader(me) ? 1 : 2;
183 
184 	/* Don't allow any more processes into the pid namespace */
185 	disable_pid_allocation(pid_ns);
186 
187 	/* Ignore SIGCHLD causing any terminated children to autoreap */
188 	spin_lock_irq(&me->sighand->siglock);
189 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
190 	spin_unlock_irq(&me->sighand->siglock);
191 
192 	/*
193 	 * The last thread in the cgroup-init thread group is terminating.
194 	 * Find remaining pid_ts in the namespace, signal and wait for them
195 	 * to exit.
196 	 *
197 	 * Note:  This signals each threads in the namespace - even those that
198 	 * 	  belong to the same thread group, To avoid this, we would have
199 	 * 	  to walk the entire tasklist looking a processes in this
200 	 * 	  namespace, but that could be unnecessarily expensive if the
201 	 * 	  pid namespace has just a few processes. Or we need to
202 	 * 	  maintain a tasklist for each pid namespace.
203 	 *
204 	 */
205 	read_lock(&tasklist_lock);
206 	nr = next_pidmap(pid_ns, 1);
207 	while (nr > 0) {
208 		rcu_read_lock();
209 
210 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
211 		if (task && !__fatal_signal_pending(task))
212 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
213 
214 		rcu_read_unlock();
215 
216 		nr = next_pidmap(pid_ns, nr);
217 	}
218 	read_unlock(&tasklist_lock);
219 
220 	/* Firstly reap the EXIT_ZOMBIE children we may have. */
221 	do {
222 		clear_thread_flag(TIF_SIGPENDING);
223 		rc = sys_wait4(-1, NULL, __WALL, NULL);
224 	} while (rc != -ECHILD);
225 
226 	/*
227 	 * sys_wait4() above can't reap the TASK_DEAD children.
228 	 * Make sure they all go away, see free_pid().
229 	 */
230 	for (;;) {
231 		set_current_state(TASK_UNINTERRUPTIBLE);
232 		if (pid_ns->nr_hashed == init_pids)
233 			break;
234 		schedule();
235 	}
236 	__set_current_state(TASK_RUNNING);
237 
238 	if (pid_ns->reboot)
239 		current->signal->group_exit_code = pid_ns->reboot;
240 
241 	acct_exit_ns(pid_ns);
242 	return;
243 }
244 
245 #ifdef CONFIG_CHECKPOINT_RESTORE
246 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
247 		void __user *buffer, size_t *lenp, loff_t *ppos)
248 {
249 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
250 	struct ctl_table tmp = *table;
251 
252 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
253 		return -EPERM;
254 
255 	/*
256 	 * Writing directly to ns' last_pid field is OK, since this field
257 	 * is volatile in a living namespace anyway and a code writing to
258 	 * it should synchronize its usage with external means.
259 	 */
260 
261 	tmp.data = &pid_ns->last_pid;
262 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
263 }
264 
265 extern int pid_max;
266 static int zero = 0;
267 static struct ctl_table pid_ns_ctl_table[] = {
268 	{
269 		.procname = "ns_last_pid",
270 		.maxlen = sizeof(int),
271 		.mode = 0666, /* permissions are checked in the handler */
272 		.proc_handler = pid_ns_ctl_handler,
273 		.extra1 = &zero,
274 		.extra2 = &pid_max,
275 	},
276 	{ }
277 };
278 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
279 #endif	/* CONFIG_CHECKPOINT_RESTORE */
280 
281 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
282 {
283 	if (pid_ns == &init_pid_ns)
284 		return 0;
285 
286 	switch (cmd) {
287 	case LINUX_REBOOT_CMD_RESTART2:
288 	case LINUX_REBOOT_CMD_RESTART:
289 		pid_ns->reboot = SIGHUP;
290 		break;
291 
292 	case LINUX_REBOOT_CMD_POWER_OFF:
293 	case LINUX_REBOOT_CMD_HALT:
294 		pid_ns->reboot = SIGINT;
295 		break;
296 	default:
297 		return -EINVAL;
298 	}
299 
300 	read_lock(&tasklist_lock);
301 	force_sig(SIGKILL, pid_ns->child_reaper);
302 	read_unlock(&tasklist_lock);
303 
304 	do_exit(0);
305 
306 	/* Not reached */
307 	return 0;
308 }
309 
310 static void *pidns_get(struct task_struct *task)
311 {
312 	struct pid_namespace *ns;
313 
314 	rcu_read_lock();
315 	ns = get_pid_ns(task_active_pid_ns(task));
316 	rcu_read_unlock();
317 
318 	return ns;
319 }
320 
321 static void pidns_put(void *ns)
322 {
323 	put_pid_ns(ns);
324 }
325 
326 static int pidns_install(struct nsproxy *nsproxy, void *ns)
327 {
328 	struct pid_namespace *active = task_active_pid_ns(current);
329 	struct pid_namespace *ancestor, *new = ns;
330 
331 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
332 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
333 		return -EPERM;
334 
335 	/*
336 	 * Only allow entering the current active pid namespace
337 	 * or a child of the current active pid namespace.
338 	 *
339 	 * This is required for fork to return a usable pid value and
340 	 * this maintains the property that processes and their
341 	 * children can not escape their current pid namespace.
342 	 */
343 	if (new->level < active->level)
344 		return -EINVAL;
345 
346 	ancestor = new;
347 	while (ancestor->level > active->level)
348 		ancestor = ancestor->parent;
349 	if (ancestor != active)
350 		return -EINVAL;
351 
352 	put_pid_ns(nsproxy->pid_ns_for_children);
353 	nsproxy->pid_ns_for_children = get_pid_ns(new);
354 	return 0;
355 }
356 
357 static unsigned int pidns_inum(void *ns)
358 {
359 	struct pid_namespace *pid_ns = ns;
360 	return pid_ns->proc_inum;
361 }
362 
363 const struct proc_ns_operations pidns_operations = {
364 	.name		= "pid",
365 	.type		= CLONE_NEWPID,
366 	.get		= pidns_get,
367 	.put		= pidns_put,
368 	.install	= pidns_install,
369 	.inum		= pidns_inum,
370 };
371 
372 static __init int pid_namespaces_init(void)
373 {
374 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
375 
376 #ifdef CONFIG_CHECKPOINT_RESTORE
377 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
378 #endif
379 	return 0;
380 }
381 
382 __initcall(pid_namespaces_init);
383