1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Pid namespaces
4 *
5 * Authors:
6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8 * Many thanks to Oleg Nesterov for comments and help
9 *
10 */
11
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26 #include "pid_sysctl.h"
27
28 static DEFINE_MUTEX(pid_caches_mutex);
29 static struct kmem_cache *pid_ns_cachep;
30 /* Write once array, filled from the beginning. */
31 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
32
33 /*
34 * creates the kmem cache to allocate pids from.
35 * @level: pid namespace level
36 */
37
create_pid_cachep(unsigned int level)38 static struct kmem_cache *create_pid_cachep(unsigned int level)
39 {
40 /* Level 0 is init_pid_ns.pid_cachep */
41 struct kmem_cache **pkc = &pid_cache[level - 1];
42 struct kmem_cache *kc;
43 char name[4 + 10 + 1];
44 unsigned int len;
45
46 kc = READ_ONCE(*pkc);
47 if (kc)
48 return kc;
49
50 snprintf(name, sizeof(name), "pid_%u", level + 1);
51 len = struct_size_t(struct pid, numbers, level + 1);
52 mutex_lock(&pid_caches_mutex);
53 /* Name collision forces to do allocation under mutex. */
54 if (!*pkc)
55 *pkc = kmem_cache_create(name, len, 0,
56 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
57 mutex_unlock(&pid_caches_mutex);
58 /* current can fail, but someone else can succeed. */
59 return READ_ONCE(*pkc);
60 }
61
inc_pid_namespaces(struct user_namespace * ns)62 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
63 {
64 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
65 }
66
dec_pid_namespaces(struct ucounts * ucounts)67 static void dec_pid_namespaces(struct ucounts *ucounts)
68 {
69 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
70 }
71
create_pid_namespace(struct user_namespace * user_ns,struct pid_namespace * parent_pid_ns)72 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
73 struct pid_namespace *parent_pid_ns)
74 {
75 struct pid_namespace *ns;
76 unsigned int level = parent_pid_ns->level + 1;
77 struct ucounts *ucounts;
78 int err;
79
80 err = -EINVAL;
81 if (!in_userns(parent_pid_ns->user_ns, user_ns))
82 goto out;
83
84 err = -ENOSPC;
85 if (level > MAX_PID_NS_LEVEL)
86 goto out;
87 ucounts = inc_pid_namespaces(user_ns);
88 if (!ucounts)
89 goto out;
90
91 err = -ENOMEM;
92 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
93 if (ns == NULL)
94 goto out_dec;
95
96 idr_init(&ns->idr);
97
98 ns->pid_cachep = create_pid_cachep(level);
99 if (ns->pid_cachep == NULL)
100 goto out_free_idr;
101
102 err = ns_alloc_inum(&ns->ns);
103 if (err)
104 goto out_free_idr;
105 ns->ns.ops = &pidns_operations;
106
107 refcount_set(&ns->ns.count, 1);
108 ns->level = level;
109 ns->parent = get_pid_ns(parent_pid_ns);
110 ns->user_ns = get_user_ns(user_ns);
111 ns->ucounts = ucounts;
112 ns->pid_allocated = PIDNS_ADDING;
113 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
114 ns->memfd_noexec_scope = pidns_memfd_noexec_scope(parent_pid_ns);
115 #endif
116 return ns;
117
118 out_free_idr:
119 idr_destroy(&ns->idr);
120 kmem_cache_free(pid_ns_cachep, ns);
121 out_dec:
122 dec_pid_namespaces(ucounts);
123 out:
124 return ERR_PTR(err);
125 }
126
delayed_free_pidns(struct rcu_head * p)127 static void delayed_free_pidns(struct rcu_head *p)
128 {
129 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
130
131 dec_pid_namespaces(ns->ucounts);
132 put_user_ns(ns->user_ns);
133
134 kmem_cache_free(pid_ns_cachep, ns);
135 }
136
destroy_pid_namespace(struct pid_namespace * ns)137 static void destroy_pid_namespace(struct pid_namespace *ns)
138 {
139 ns_free_inum(&ns->ns);
140
141 idr_destroy(&ns->idr);
142 call_rcu(&ns->rcu, delayed_free_pidns);
143 }
144
copy_pid_ns(unsigned long flags,struct user_namespace * user_ns,struct pid_namespace * old_ns)145 struct pid_namespace *copy_pid_ns(unsigned long flags,
146 struct user_namespace *user_ns, struct pid_namespace *old_ns)
147 {
148 if (!(flags & CLONE_NEWPID))
149 return get_pid_ns(old_ns);
150 if (task_active_pid_ns(current) != old_ns)
151 return ERR_PTR(-EINVAL);
152 return create_pid_namespace(user_ns, old_ns);
153 }
154
put_pid_ns(struct pid_namespace * ns)155 void put_pid_ns(struct pid_namespace *ns)
156 {
157 struct pid_namespace *parent;
158
159 while (ns != &init_pid_ns) {
160 parent = ns->parent;
161 if (!refcount_dec_and_test(&ns->ns.count))
162 break;
163 destroy_pid_namespace(ns);
164 ns = parent;
165 }
166 }
167 EXPORT_SYMBOL_GPL(put_pid_ns);
168
zap_pid_ns_processes(struct pid_namespace * pid_ns)169 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
170 {
171 int nr;
172 int rc;
173 struct task_struct *task, *me = current;
174 int init_pids = thread_group_leader(me) ? 1 : 2;
175 struct pid *pid;
176
177 /* Don't allow any more processes into the pid namespace */
178 disable_pid_allocation(pid_ns);
179
180 /*
181 * Ignore SIGCHLD causing any terminated children to autoreap.
182 * This speeds up the namespace shutdown, plus see the comment
183 * below.
184 */
185 spin_lock_irq(&me->sighand->siglock);
186 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
187 spin_unlock_irq(&me->sighand->siglock);
188
189 /*
190 * The last thread in the cgroup-init thread group is terminating.
191 * Find remaining pid_ts in the namespace, signal and wait for them
192 * to exit.
193 *
194 * Note: This signals each threads in the namespace - even those that
195 * belong to the same thread group, To avoid this, we would have
196 * to walk the entire tasklist looking a processes in this
197 * namespace, but that could be unnecessarily expensive if the
198 * pid namespace has just a few processes. Or we need to
199 * maintain a tasklist for each pid namespace.
200 *
201 */
202 rcu_read_lock();
203 read_lock(&tasklist_lock);
204 nr = 2;
205 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
206 task = pid_task(pid, PIDTYPE_PID);
207 if (task && !__fatal_signal_pending(task))
208 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
209 }
210 read_unlock(&tasklist_lock);
211 rcu_read_unlock();
212
213 /*
214 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
215 * kernel_wait4() will also block until our children traced from the
216 * parent namespace are detached and become EXIT_DEAD.
217 */
218 do {
219 clear_thread_flag(TIF_SIGPENDING);
220 clear_thread_flag(TIF_NOTIFY_SIGNAL);
221 rc = kernel_wait4(-1, NULL, __WALL, NULL);
222 } while (rc != -ECHILD);
223
224 /*
225 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
226 * process whose parents processes are outside of the pid
227 * namespace. Such processes are created with setns()+fork().
228 *
229 * If those EXIT_ZOMBIE processes are not reaped by their
230 * parents before their parents exit, they will be reparented
231 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to
232 * stay valid until they all go away.
233 *
234 * The code relies on the pid_ns->child_reaper ignoring
235 * SIGCHILD to cause those EXIT_ZOMBIE processes to be
236 * autoreaped if reparented.
237 *
238 * Semantically it is also desirable to wait for EXIT_ZOMBIE
239 * processes before allowing the child_reaper to be reaped, as
240 * that gives the invariant that when the init process of a
241 * pid namespace is reaped all of the processes in the pid
242 * namespace are gone.
243 *
244 * Once all of the other tasks are gone from the pid_namespace
245 * free_pid() will awaken this task.
246 */
247 for (;;) {
248 set_current_state(TASK_INTERRUPTIBLE);
249 if (pid_ns->pid_allocated == init_pids)
250 break;
251 /*
252 * Release tasks_rcu_exit_srcu to avoid following deadlock:
253 *
254 * 1) TASK A unshare(CLONE_NEWPID)
255 * 2) TASK A fork() twice -> TASK B (child reaper for new ns)
256 * and TASK C
257 * 3) TASK B exits, kills TASK C, waits for TASK A to reap it
258 * 4) TASK A calls synchronize_rcu_tasks()
259 * -> synchronize_srcu(tasks_rcu_exit_srcu)
260 * 5) *DEADLOCK*
261 *
262 * It is considered safe to release tasks_rcu_exit_srcu here
263 * because we assume the current task can not be concurrently
264 * reaped at this point.
265 */
266 exit_tasks_rcu_stop();
267 schedule();
268 exit_tasks_rcu_start();
269 }
270 __set_current_state(TASK_RUNNING);
271
272 if (pid_ns->reboot)
273 current->signal->group_exit_code = pid_ns->reboot;
274
275 acct_exit_ns(pid_ns);
276 return;
277 }
278
279 #ifdef CONFIG_CHECKPOINT_RESTORE
pid_ns_ctl_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)280 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
281 void *buffer, size_t *lenp, loff_t *ppos)
282 {
283 struct pid_namespace *pid_ns = task_active_pid_ns(current);
284 struct ctl_table tmp = *table;
285 int ret, next;
286
287 if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
288 return -EPERM;
289
290 /*
291 * Writing directly to ns' last_pid field is OK, since this field
292 * is volatile in a living namespace anyway and a code writing to
293 * it should synchronize its usage with external means.
294 */
295
296 next = idr_get_cursor(&pid_ns->idr) - 1;
297
298 tmp.data = &next;
299 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
300 if (!ret && write)
301 idr_set_cursor(&pid_ns->idr, next + 1);
302
303 return ret;
304 }
305
306 extern int pid_max;
307 static struct ctl_table pid_ns_ctl_table[] = {
308 {
309 .procname = "ns_last_pid",
310 .maxlen = sizeof(int),
311 .mode = 0666, /* permissions are checked in the handler */
312 .proc_handler = pid_ns_ctl_handler,
313 .extra1 = SYSCTL_ZERO,
314 .extra2 = &pid_max,
315 },
316 { }
317 };
318 #endif /* CONFIG_CHECKPOINT_RESTORE */
319
reboot_pid_ns(struct pid_namespace * pid_ns,int cmd)320 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
321 {
322 if (pid_ns == &init_pid_ns)
323 return 0;
324
325 switch (cmd) {
326 case LINUX_REBOOT_CMD_RESTART2:
327 case LINUX_REBOOT_CMD_RESTART:
328 pid_ns->reboot = SIGHUP;
329 break;
330
331 case LINUX_REBOOT_CMD_POWER_OFF:
332 case LINUX_REBOOT_CMD_HALT:
333 pid_ns->reboot = SIGINT;
334 break;
335 default:
336 return -EINVAL;
337 }
338
339 read_lock(&tasklist_lock);
340 send_sig(SIGKILL, pid_ns->child_reaper, 1);
341 read_unlock(&tasklist_lock);
342
343 do_exit(0);
344
345 /* Not reached */
346 return 0;
347 }
348
to_pid_ns(struct ns_common * ns)349 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
350 {
351 return container_of(ns, struct pid_namespace, ns);
352 }
353
pidns_get(struct task_struct * task)354 static struct ns_common *pidns_get(struct task_struct *task)
355 {
356 struct pid_namespace *ns;
357
358 rcu_read_lock();
359 ns = task_active_pid_ns(task);
360 if (ns)
361 get_pid_ns(ns);
362 rcu_read_unlock();
363
364 return ns ? &ns->ns : NULL;
365 }
366
pidns_for_children_get(struct task_struct * task)367 static struct ns_common *pidns_for_children_get(struct task_struct *task)
368 {
369 struct pid_namespace *ns = NULL;
370
371 task_lock(task);
372 if (task->nsproxy) {
373 ns = task->nsproxy->pid_ns_for_children;
374 get_pid_ns(ns);
375 }
376 task_unlock(task);
377
378 if (ns) {
379 read_lock(&tasklist_lock);
380 if (!ns->child_reaper) {
381 put_pid_ns(ns);
382 ns = NULL;
383 }
384 read_unlock(&tasklist_lock);
385 }
386
387 return ns ? &ns->ns : NULL;
388 }
389
pidns_put(struct ns_common * ns)390 static void pidns_put(struct ns_common *ns)
391 {
392 put_pid_ns(to_pid_ns(ns));
393 }
394
pidns_install(struct nsset * nsset,struct ns_common * ns)395 static int pidns_install(struct nsset *nsset, struct ns_common *ns)
396 {
397 struct nsproxy *nsproxy = nsset->nsproxy;
398 struct pid_namespace *active = task_active_pid_ns(current);
399 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
400
401 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
402 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
403 return -EPERM;
404
405 /*
406 * Only allow entering the current active pid namespace
407 * or a child of the current active pid namespace.
408 *
409 * This is required for fork to return a usable pid value and
410 * this maintains the property that processes and their
411 * children can not escape their current pid namespace.
412 */
413 if (new->level < active->level)
414 return -EINVAL;
415
416 ancestor = new;
417 while (ancestor->level > active->level)
418 ancestor = ancestor->parent;
419 if (ancestor != active)
420 return -EINVAL;
421
422 put_pid_ns(nsproxy->pid_ns_for_children);
423 nsproxy->pid_ns_for_children = get_pid_ns(new);
424 return 0;
425 }
426
pidns_get_parent(struct ns_common * ns)427 static struct ns_common *pidns_get_parent(struct ns_common *ns)
428 {
429 struct pid_namespace *active = task_active_pid_ns(current);
430 struct pid_namespace *pid_ns, *p;
431
432 /* See if the parent is in the current namespace */
433 pid_ns = p = to_pid_ns(ns)->parent;
434 for (;;) {
435 if (!p)
436 return ERR_PTR(-EPERM);
437 if (p == active)
438 break;
439 p = p->parent;
440 }
441
442 return &get_pid_ns(pid_ns)->ns;
443 }
444
pidns_owner(struct ns_common * ns)445 static struct user_namespace *pidns_owner(struct ns_common *ns)
446 {
447 return to_pid_ns(ns)->user_ns;
448 }
449
450 const struct proc_ns_operations pidns_operations = {
451 .name = "pid",
452 .type = CLONE_NEWPID,
453 .get = pidns_get,
454 .put = pidns_put,
455 .install = pidns_install,
456 .owner = pidns_owner,
457 .get_parent = pidns_get_parent,
458 };
459
460 const struct proc_ns_operations pidns_for_children_operations = {
461 .name = "pid_for_children",
462 .real_ns_name = "pid",
463 .type = CLONE_NEWPID,
464 .get = pidns_for_children_get,
465 .put = pidns_put,
466 .install = pidns_install,
467 .owner = pidns_owner,
468 .get_parent = pidns_get_parent,
469 };
470
pid_namespaces_init(void)471 static __init int pid_namespaces_init(void)
472 {
473 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
474
475 #ifdef CONFIG_CHECKPOINT_RESTORE
476 register_sysctl_init("kernel", pid_ns_ctl_table);
477 #endif
478
479 register_pid_ns_sysctl_table_vm();
480 return 0;
481 }
482
483 __initcall(pid_namespaces_init);
484