1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 William Irwin, IBM 5 * (C) 2004 William Irwin, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/bootmem.h> 34 #include <linux/hash.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/init_task.h> 37 #include <linux/syscalls.h> 38 39 #define pid_hashfn(nr, ns) \ 40 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 41 static struct hlist_head *pid_hash; 42 static int pidhash_shift; 43 struct pid init_struct_pid = INIT_STRUCT_PID; 44 45 int pid_max = PID_MAX_DEFAULT; 46 47 #define RESERVED_PIDS 300 48 49 int pid_max_min = RESERVED_PIDS + 1; 50 int pid_max_max = PID_MAX_LIMIT; 51 52 #define BITS_PER_PAGE (PAGE_SIZE*8) 53 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) 54 55 static inline int mk_pid(struct pid_namespace *pid_ns, 56 struct pidmap *map, int off) 57 { 58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 59 } 60 61 #define find_next_offset(map, off) \ 62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 63 64 /* 65 * PID-map pages start out as NULL, they get allocated upon 66 * first use and are never deallocated. This way a low pid_max 67 * value does not cause lots of bitmaps to be allocated, but 68 * the scheme scales to up to 4 million PIDs, runtime. 69 */ 70 struct pid_namespace init_pid_ns = { 71 .kref = { 72 .refcount = ATOMIC_INIT(2), 73 }, 74 .pidmap = { 75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 76 }, 77 .last_pid = 0, 78 .level = 0, 79 .child_reaper = &init_task, 80 }; 81 EXPORT_SYMBOL_GPL(init_pid_ns); 82 83 int is_container_init(struct task_struct *tsk) 84 { 85 int ret = 0; 86 struct pid *pid; 87 88 rcu_read_lock(); 89 pid = task_pid(tsk); 90 if (pid != NULL && pid->numbers[pid->level].nr == 1) 91 ret = 1; 92 rcu_read_unlock(); 93 94 return ret; 95 } 96 EXPORT_SYMBOL(is_container_init); 97 98 /* 99 * Note: disable interrupts while the pidmap_lock is held as an 100 * interrupt might come in and do read_lock(&tasklist_lock). 101 * 102 * If we don't disable interrupts there is a nasty deadlock between 103 * detach_pid()->free_pid() and another cpu that does 104 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 105 * read_lock(&tasklist_lock); 106 * 107 * After we clean up the tasklist_lock and know there are no 108 * irq handlers that take it we can leave the interrupts enabled. 109 * For now it is easier to be safe than to prove it can't happen. 110 */ 111 112 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 113 114 static void free_pidmap(struct pid_namespace *pid_ns, int pid) 115 { 116 struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE; 117 int offset = pid & BITS_PER_PAGE_MASK; 118 119 clear_bit(offset, map->page); 120 atomic_inc(&map->nr_free); 121 } 122 123 static int alloc_pidmap(struct pid_namespace *pid_ns) 124 { 125 int i, offset, max_scan, pid, last = pid_ns->last_pid; 126 struct pidmap *map; 127 128 pid = last + 1; 129 if (pid >= pid_max) 130 pid = RESERVED_PIDS; 131 offset = pid & BITS_PER_PAGE_MASK; 132 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 133 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; 134 for (i = 0; i <= max_scan; ++i) { 135 if (unlikely(!map->page)) { 136 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 137 /* 138 * Free the page if someone raced with us 139 * installing it: 140 */ 141 spin_lock_irq(&pidmap_lock); 142 if (map->page) 143 kfree(page); 144 else 145 map->page = page; 146 spin_unlock_irq(&pidmap_lock); 147 if (unlikely(!map->page)) 148 break; 149 } 150 if (likely(atomic_read(&map->nr_free))) { 151 do { 152 if (!test_and_set_bit(offset, map->page)) { 153 atomic_dec(&map->nr_free); 154 pid_ns->last_pid = pid; 155 return pid; 156 } 157 offset = find_next_offset(map, offset); 158 pid = mk_pid(pid_ns, map, offset); 159 /* 160 * find_next_offset() found a bit, the pid from it 161 * is in-bounds, and if we fell back to the last 162 * bitmap block and the final block was the same 163 * as the starting point, pid is before last_pid. 164 */ 165 } while (offset < BITS_PER_PAGE && pid < pid_max && 166 (i != max_scan || pid < last || 167 !((last+1) & BITS_PER_PAGE_MASK))); 168 } 169 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 170 ++map; 171 offset = 0; 172 } else { 173 map = &pid_ns->pidmap[0]; 174 offset = RESERVED_PIDS; 175 if (unlikely(last == offset)) 176 break; 177 } 178 pid = mk_pid(pid_ns, map, offset); 179 } 180 return -1; 181 } 182 183 int next_pidmap(struct pid_namespace *pid_ns, int last) 184 { 185 int offset; 186 struct pidmap *map, *end; 187 188 offset = (last + 1) & BITS_PER_PAGE_MASK; 189 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 190 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 191 for (; map < end; map++, offset = 0) { 192 if (unlikely(!map->page)) 193 continue; 194 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 195 if (offset < BITS_PER_PAGE) 196 return mk_pid(pid_ns, map, offset); 197 } 198 return -1; 199 } 200 201 void put_pid(struct pid *pid) 202 { 203 struct pid_namespace *ns; 204 205 if (!pid) 206 return; 207 208 ns = pid->numbers[pid->level].ns; 209 if ((atomic_read(&pid->count) == 1) || 210 atomic_dec_and_test(&pid->count)) { 211 kmem_cache_free(ns->pid_cachep, pid); 212 put_pid_ns(ns); 213 } 214 } 215 EXPORT_SYMBOL_GPL(put_pid); 216 217 static void delayed_put_pid(struct rcu_head *rhp) 218 { 219 struct pid *pid = container_of(rhp, struct pid, rcu); 220 put_pid(pid); 221 } 222 223 void free_pid(struct pid *pid) 224 { 225 /* We can be called with write_lock_irq(&tasklist_lock) held */ 226 int i; 227 unsigned long flags; 228 229 spin_lock_irqsave(&pidmap_lock, flags); 230 for (i = 0; i <= pid->level; i++) 231 hlist_del_rcu(&pid->numbers[i].pid_chain); 232 spin_unlock_irqrestore(&pidmap_lock, flags); 233 234 for (i = 0; i <= pid->level; i++) 235 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr); 236 237 call_rcu(&pid->rcu, delayed_put_pid); 238 } 239 240 struct pid *alloc_pid(struct pid_namespace *ns) 241 { 242 struct pid *pid; 243 enum pid_type type; 244 int i, nr; 245 struct pid_namespace *tmp; 246 struct upid *upid; 247 248 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 249 if (!pid) 250 goto out; 251 252 tmp = ns; 253 for (i = ns->level; i >= 0; i--) { 254 nr = alloc_pidmap(tmp); 255 if (nr < 0) 256 goto out_free; 257 258 pid->numbers[i].nr = nr; 259 pid->numbers[i].ns = tmp; 260 tmp = tmp->parent; 261 } 262 263 get_pid_ns(ns); 264 pid->level = ns->level; 265 atomic_set(&pid->count, 1); 266 for (type = 0; type < PIDTYPE_MAX; ++type) 267 INIT_HLIST_HEAD(&pid->tasks[type]); 268 269 spin_lock_irq(&pidmap_lock); 270 for (i = ns->level; i >= 0; i--) { 271 upid = &pid->numbers[i]; 272 hlist_add_head_rcu(&upid->pid_chain, 273 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 274 } 275 spin_unlock_irq(&pidmap_lock); 276 277 out: 278 return pid; 279 280 out_free: 281 for (i++; i <= ns->level; i++) 282 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr); 283 284 kmem_cache_free(ns->pid_cachep, pid); 285 pid = NULL; 286 goto out; 287 } 288 289 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 290 { 291 struct hlist_node *elem; 292 struct upid *pnr; 293 294 hlist_for_each_entry_rcu(pnr, elem, 295 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 296 if (pnr->nr == nr && pnr->ns == ns) 297 return container_of(pnr, struct pid, 298 numbers[ns->level]); 299 300 return NULL; 301 } 302 EXPORT_SYMBOL_GPL(find_pid_ns); 303 304 struct pid *find_vpid(int nr) 305 { 306 return find_pid_ns(nr, current->nsproxy->pid_ns); 307 } 308 EXPORT_SYMBOL_GPL(find_vpid); 309 310 struct pid *find_pid(int nr) 311 { 312 return find_pid_ns(nr, &init_pid_ns); 313 } 314 EXPORT_SYMBOL_GPL(find_pid); 315 316 /* 317 * attach_pid() must be called with the tasklist_lock write-held. 318 */ 319 int attach_pid(struct task_struct *task, enum pid_type type, 320 struct pid *pid) 321 { 322 struct pid_link *link; 323 324 link = &task->pids[type]; 325 link->pid = pid; 326 hlist_add_head_rcu(&link->node, &pid->tasks[type]); 327 328 return 0; 329 } 330 331 void detach_pid(struct task_struct *task, enum pid_type type) 332 { 333 struct pid_link *link; 334 struct pid *pid; 335 int tmp; 336 337 link = &task->pids[type]; 338 pid = link->pid; 339 340 hlist_del_rcu(&link->node); 341 link->pid = NULL; 342 343 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 344 if (!hlist_empty(&pid->tasks[tmp])) 345 return; 346 347 free_pid(pid); 348 } 349 350 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 351 void transfer_pid(struct task_struct *old, struct task_struct *new, 352 enum pid_type type) 353 { 354 new->pids[type].pid = old->pids[type].pid; 355 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 356 old->pids[type].pid = NULL; 357 } 358 359 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 360 { 361 struct task_struct *result = NULL; 362 if (pid) { 363 struct hlist_node *first; 364 first = rcu_dereference(pid->tasks[type].first); 365 if (first) 366 result = hlist_entry(first, struct task_struct, pids[(type)].node); 367 } 368 return result; 369 } 370 EXPORT_SYMBOL(pid_task); 371 372 /* 373 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 374 */ 375 struct task_struct *find_task_by_pid_type_ns(int type, int nr, 376 struct pid_namespace *ns) 377 { 378 return pid_task(find_pid_ns(nr, ns), type); 379 } 380 381 EXPORT_SYMBOL(find_task_by_pid_type_ns); 382 383 struct task_struct *find_task_by_pid(pid_t nr) 384 { 385 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns); 386 } 387 EXPORT_SYMBOL(find_task_by_pid); 388 389 struct task_struct *find_task_by_vpid(pid_t vnr) 390 { 391 return find_task_by_pid_type_ns(PIDTYPE_PID, vnr, 392 current->nsproxy->pid_ns); 393 } 394 EXPORT_SYMBOL(find_task_by_vpid); 395 396 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 397 { 398 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns); 399 } 400 EXPORT_SYMBOL(find_task_by_pid_ns); 401 402 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 403 { 404 struct pid *pid; 405 rcu_read_lock(); 406 pid = get_pid(task->pids[type].pid); 407 rcu_read_unlock(); 408 return pid; 409 } 410 411 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 412 { 413 struct task_struct *result; 414 rcu_read_lock(); 415 result = pid_task(pid, type); 416 if (result) 417 get_task_struct(result); 418 rcu_read_unlock(); 419 return result; 420 } 421 422 struct pid *find_get_pid(pid_t nr) 423 { 424 struct pid *pid; 425 426 rcu_read_lock(); 427 pid = get_pid(find_vpid(nr)); 428 rcu_read_unlock(); 429 430 return pid; 431 } 432 433 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 434 { 435 struct upid *upid; 436 pid_t nr = 0; 437 438 if (pid && ns->level <= pid->level) { 439 upid = &pid->numbers[ns->level]; 440 if (upid->ns == ns) 441 nr = upid->nr; 442 } 443 return nr; 444 } 445 446 pid_t pid_vnr(struct pid *pid) 447 { 448 return pid_nr_ns(pid, current->nsproxy->pid_ns); 449 } 450 EXPORT_SYMBOL_GPL(pid_vnr); 451 452 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 453 { 454 return pid_nr_ns(task_pid(tsk), ns); 455 } 456 EXPORT_SYMBOL(task_pid_nr_ns); 457 458 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 459 { 460 return pid_nr_ns(task_tgid(tsk), ns); 461 } 462 EXPORT_SYMBOL(task_tgid_nr_ns); 463 464 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 465 { 466 return pid_nr_ns(task_pgrp(tsk), ns); 467 } 468 EXPORT_SYMBOL(task_pgrp_nr_ns); 469 470 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 471 { 472 return pid_nr_ns(task_session(tsk), ns); 473 } 474 EXPORT_SYMBOL(task_session_nr_ns); 475 476 /* 477 * Used by proc to find the first pid that is greater then or equal to nr. 478 * 479 * If there is a pid at nr this function is exactly the same as find_pid. 480 */ 481 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 482 { 483 struct pid *pid; 484 485 do { 486 pid = find_pid_ns(nr, ns); 487 if (pid) 488 break; 489 nr = next_pidmap(ns, nr); 490 } while (nr > 0); 491 492 return pid; 493 } 494 EXPORT_SYMBOL_GPL(find_get_pid); 495 496 /* 497 * The pid hash table is scaled according to the amount of memory in the 498 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 499 * more. 500 */ 501 void __init pidhash_init(void) 502 { 503 int i, pidhash_size; 504 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); 505 506 pidhash_shift = max(4, fls(megabytes * 4)); 507 pidhash_shift = min(12, pidhash_shift); 508 pidhash_size = 1 << pidhash_shift; 509 510 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", 511 pidhash_size, pidhash_shift, 512 pidhash_size * sizeof(struct hlist_head)); 513 514 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); 515 if (!pid_hash) 516 panic("Could not alloc pidhash!\n"); 517 for (i = 0; i < pidhash_size; i++) 518 INIT_HLIST_HEAD(&pid_hash[i]); 519 } 520 521 void __init pidmap_init(void) 522 { 523 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 524 /* Reserve PID 0. We never call free_pidmap(0) */ 525 set_bit(0, init_pid_ns.pidmap[0].page); 526 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 527 528 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 529 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 530 } 531