1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 Nadia Yvette Chambers, IBM 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/export.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/rculist.h> 34 #include <linux/bootmem.h> 35 #include <linux/hash.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/proc_fs.h> 41 42 #define pid_hashfn(nr, ns) \ 43 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 44 static struct hlist_head *pid_hash; 45 static unsigned int pidhash_shift = 4; 46 struct pid init_struct_pid = INIT_STRUCT_PID; 47 48 int pid_max = PID_MAX_DEFAULT; 49 50 #define RESERVED_PIDS 300 51 52 int pid_max_min = RESERVED_PIDS + 1; 53 int pid_max_max = PID_MAX_LIMIT; 54 55 static inline int mk_pid(struct pid_namespace *pid_ns, 56 struct pidmap *map, int off) 57 { 58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 59 } 60 61 #define find_next_offset(map, off) \ 62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 63 64 /* 65 * PID-map pages start out as NULL, they get allocated upon 66 * first use and are never deallocated. This way a low pid_max 67 * value does not cause lots of bitmaps to be allocated, but 68 * the scheme scales to up to 4 million PIDs, runtime. 69 */ 70 struct pid_namespace init_pid_ns = { 71 .kref = { 72 .refcount = ATOMIC_INIT(2), 73 }, 74 .pidmap = { 75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 76 }, 77 .last_pid = 0, 78 .level = 0, 79 .child_reaper = &init_task, 80 .user_ns = &init_user_ns, 81 .proc_inum = PROC_PID_INIT_INO, 82 }; 83 EXPORT_SYMBOL_GPL(init_pid_ns); 84 85 /* 86 * Note: disable interrupts while the pidmap_lock is held as an 87 * interrupt might come in and do read_lock(&tasklist_lock). 88 * 89 * If we don't disable interrupts there is a nasty deadlock between 90 * detach_pid()->free_pid() and another cpu that does 91 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 92 * read_lock(&tasklist_lock); 93 * 94 * After we clean up the tasklist_lock and know there are no 95 * irq handlers that take it we can leave the interrupts enabled. 96 * For now it is easier to be safe than to prove it can't happen. 97 */ 98 99 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 100 101 static void free_pidmap(struct upid *upid) 102 { 103 int nr = upid->nr; 104 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; 105 int offset = nr & BITS_PER_PAGE_MASK; 106 107 clear_bit(offset, map->page); 108 atomic_inc(&map->nr_free); 109 } 110 111 /* 112 * If we started walking pids at 'base', is 'a' seen before 'b'? 113 */ 114 static int pid_before(int base, int a, int b) 115 { 116 /* 117 * This is the same as saying 118 * 119 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT 120 * and that mapping orders 'a' and 'b' with respect to 'base'. 121 */ 122 return (unsigned)(a - base) < (unsigned)(b - base); 123 } 124 125 /* 126 * We might be racing with someone else trying to set pid_ns->last_pid 127 * at the pid allocation time (there's also a sysctl for this, but racing 128 * with this one is OK, see comment in kernel/pid_namespace.c about it). 129 * We want the winner to have the "later" value, because if the 130 * "earlier" value prevails, then a pid may get reused immediately. 131 * 132 * Since pids rollover, it is not sufficient to just pick the bigger 133 * value. We have to consider where we started counting from. 134 * 135 * 'base' is the value of pid_ns->last_pid that we observed when 136 * we started looking for a pid. 137 * 138 * 'pid' is the pid that we eventually found. 139 */ 140 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) 141 { 142 int prev; 143 int last_write = base; 144 do { 145 prev = last_write; 146 last_write = cmpxchg(&pid_ns->last_pid, prev, pid); 147 } while ((prev != last_write) && (pid_before(base, last_write, pid))); 148 } 149 150 static int alloc_pidmap(struct pid_namespace *pid_ns) 151 { 152 int i, offset, max_scan, pid, last = pid_ns->last_pid; 153 struct pidmap *map; 154 155 pid = last + 1; 156 if (pid >= pid_max) 157 pid = RESERVED_PIDS; 158 offset = pid & BITS_PER_PAGE_MASK; 159 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 160 /* 161 * If last_pid points into the middle of the map->page we 162 * want to scan this bitmap block twice, the second time 163 * we start with offset == 0 (or RESERVED_PIDS). 164 */ 165 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; 166 for (i = 0; i <= max_scan; ++i) { 167 if (unlikely(!map->page)) { 168 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 169 /* 170 * Free the page if someone raced with us 171 * installing it: 172 */ 173 spin_lock_irq(&pidmap_lock); 174 if (!map->page) { 175 map->page = page; 176 page = NULL; 177 } 178 spin_unlock_irq(&pidmap_lock); 179 kfree(page); 180 if (unlikely(!map->page)) 181 break; 182 } 183 if (likely(atomic_read(&map->nr_free))) { 184 for ( ; ; ) { 185 if (!test_and_set_bit(offset, map->page)) { 186 atomic_dec(&map->nr_free); 187 set_last_pid(pid_ns, last, pid); 188 return pid; 189 } 190 offset = find_next_offset(map, offset); 191 if (offset >= BITS_PER_PAGE) 192 break; 193 pid = mk_pid(pid_ns, map, offset); 194 if (pid >= pid_max) 195 break; 196 } 197 } 198 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 199 ++map; 200 offset = 0; 201 } else { 202 map = &pid_ns->pidmap[0]; 203 offset = RESERVED_PIDS; 204 if (unlikely(last == offset)) 205 break; 206 } 207 pid = mk_pid(pid_ns, map, offset); 208 } 209 return -1; 210 } 211 212 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last) 213 { 214 int offset; 215 struct pidmap *map, *end; 216 217 if (last >= PID_MAX_LIMIT) 218 return -1; 219 220 offset = (last + 1) & BITS_PER_PAGE_MASK; 221 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 222 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 223 for (; map < end; map++, offset = 0) { 224 if (unlikely(!map->page)) 225 continue; 226 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 227 if (offset < BITS_PER_PAGE) 228 return mk_pid(pid_ns, map, offset); 229 } 230 return -1; 231 } 232 233 void put_pid(struct pid *pid) 234 { 235 struct pid_namespace *ns; 236 237 if (!pid) 238 return; 239 240 ns = pid->numbers[pid->level].ns; 241 if ((atomic_read(&pid->count) == 1) || 242 atomic_dec_and_test(&pid->count)) { 243 kmem_cache_free(ns->pid_cachep, pid); 244 put_pid_ns(ns); 245 } 246 } 247 EXPORT_SYMBOL_GPL(put_pid); 248 249 static void delayed_put_pid(struct rcu_head *rhp) 250 { 251 struct pid *pid = container_of(rhp, struct pid, rcu); 252 put_pid(pid); 253 } 254 255 void free_pid(struct pid *pid) 256 { 257 /* We can be called with write_lock_irq(&tasklist_lock) held */ 258 int i; 259 unsigned long flags; 260 261 spin_lock_irqsave(&pidmap_lock, flags); 262 for (i = 0; i <= pid->level; i++) { 263 struct upid *upid = pid->numbers + i; 264 struct pid_namespace *ns = upid->ns; 265 hlist_del_rcu(&upid->pid_chain); 266 switch(--ns->nr_hashed) { 267 case 1: 268 /* When all that is left in the pid namespace 269 * is the reaper wake up the reaper. The reaper 270 * may be sleeping in zap_pid_ns_processes(). 271 */ 272 wake_up_process(ns->child_reaper); 273 break; 274 case 0: 275 schedule_work(&ns->proc_work); 276 break; 277 } 278 } 279 spin_unlock_irqrestore(&pidmap_lock, flags); 280 281 for (i = 0; i <= pid->level; i++) 282 free_pidmap(pid->numbers + i); 283 284 call_rcu(&pid->rcu, delayed_put_pid); 285 } 286 287 struct pid *alloc_pid(struct pid_namespace *ns) 288 { 289 struct pid *pid; 290 enum pid_type type; 291 int i, nr; 292 struct pid_namespace *tmp; 293 struct upid *upid; 294 295 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 296 if (!pid) 297 goto out; 298 299 tmp = ns; 300 pid->level = ns->level; 301 for (i = ns->level; i >= 0; i--) { 302 nr = alloc_pidmap(tmp); 303 if (nr < 0) 304 goto out_free; 305 306 pid->numbers[i].nr = nr; 307 pid->numbers[i].ns = tmp; 308 tmp = tmp->parent; 309 } 310 311 if (unlikely(is_child_reaper(pid))) { 312 if (pid_ns_prepare_proc(ns)) 313 goto out_free; 314 } 315 316 get_pid_ns(ns); 317 atomic_set(&pid->count, 1); 318 for (type = 0; type < PIDTYPE_MAX; ++type) 319 INIT_HLIST_HEAD(&pid->tasks[type]); 320 321 upid = pid->numbers + ns->level; 322 spin_lock_irq(&pidmap_lock); 323 if (!(ns->nr_hashed & PIDNS_HASH_ADDING)) 324 goto out_unlock; 325 for ( ; upid >= pid->numbers; --upid) { 326 hlist_add_head_rcu(&upid->pid_chain, 327 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 328 upid->ns->nr_hashed++; 329 } 330 spin_unlock_irq(&pidmap_lock); 331 332 out: 333 return pid; 334 335 out_unlock: 336 spin_unlock_irq(&pidmap_lock); 337 out_free: 338 while (++i <= ns->level) 339 free_pidmap(pid->numbers + i); 340 341 kmem_cache_free(ns->pid_cachep, pid); 342 pid = NULL; 343 goto out; 344 } 345 346 void disable_pid_allocation(struct pid_namespace *ns) 347 { 348 spin_lock_irq(&pidmap_lock); 349 ns->nr_hashed &= ~PIDNS_HASH_ADDING; 350 spin_unlock_irq(&pidmap_lock); 351 } 352 353 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 354 { 355 struct upid *pnr; 356 357 hlist_for_each_entry_rcu(pnr, 358 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 359 if (pnr->nr == nr && pnr->ns == ns) 360 return container_of(pnr, struct pid, 361 numbers[ns->level]); 362 363 return NULL; 364 } 365 EXPORT_SYMBOL_GPL(find_pid_ns); 366 367 struct pid *find_vpid(int nr) 368 { 369 return find_pid_ns(nr, task_active_pid_ns(current)); 370 } 371 EXPORT_SYMBOL_GPL(find_vpid); 372 373 /* 374 * attach_pid() must be called with the tasklist_lock write-held. 375 */ 376 void attach_pid(struct task_struct *task, enum pid_type type, 377 struct pid *pid) 378 { 379 struct pid_link *link; 380 381 link = &task->pids[type]; 382 link->pid = pid; 383 hlist_add_head_rcu(&link->node, &pid->tasks[type]); 384 } 385 386 static void __change_pid(struct task_struct *task, enum pid_type type, 387 struct pid *new) 388 { 389 struct pid_link *link; 390 struct pid *pid; 391 int tmp; 392 393 link = &task->pids[type]; 394 pid = link->pid; 395 396 hlist_del_rcu(&link->node); 397 link->pid = new; 398 399 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 400 if (!hlist_empty(&pid->tasks[tmp])) 401 return; 402 403 free_pid(pid); 404 } 405 406 void detach_pid(struct task_struct *task, enum pid_type type) 407 { 408 __change_pid(task, type, NULL); 409 } 410 411 void change_pid(struct task_struct *task, enum pid_type type, 412 struct pid *pid) 413 { 414 __change_pid(task, type, pid); 415 attach_pid(task, type, pid); 416 } 417 418 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 419 void transfer_pid(struct task_struct *old, struct task_struct *new, 420 enum pid_type type) 421 { 422 new->pids[type].pid = old->pids[type].pid; 423 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 424 } 425 426 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 427 { 428 struct task_struct *result = NULL; 429 if (pid) { 430 struct hlist_node *first; 431 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 432 lockdep_tasklist_lock_is_held()); 433 if (first) 434 result = hlist_entry(first, struct task_struct, pids[(type)].node); 435 } 436 return result; 437 } 438 EXPORT_SYMBOL(pid_task); 439 440 /* 441 * Must be called under rcu_read_lock(). 442 */ 443 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 444 { 445 rcu_lockdep_assert(rcu_read_lock_held(), 446 "find_task_by_pid_ns() needs rcu_read_lock()" 447 " protection"); 448 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 449 } 450 451 struct task_struct *find_task_by_vpid(pid_t vnr) 452 { 453 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 454 } 455 456 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 457 { 458 struct pid *pid; 459 rcu_read_lock(); 460 if (type != PIDTYPE_PID) 461 task = task->group_leader; 462 pid = get_pid(task->pids[type].pid); 463 rcu_read_unlock(); 464 return pid; 465 } 466 EXPORT_SYMBOL_GPL(get_task_pid); 467 468 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 469 { 470 struct task_struct *result; 471 rcu_read_lock(); 472 result = pid_task(pid, type); 473 if (result) 474 get_task_struct(result); 475 rcu_read_unlock(); 476 return result; 477 } 478 EXPORT_SYMBOL_GPL(get_pid_task); 479 480 struct pid *find_get_pid(pid_t nr) 481 { 482 struct pid *pid; 483 484 rcu_read_lock(); 485 pid = get_pid(find_vpid(nr)); 486 rcu_read_unlock(); 487 488 return pid; 489 } 490 EXPORT_SYMBOL_GPL(find_get_pid); 491 492 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 493 { 494 struct upid *upid; 495 pid_t nr = 0; 496 497 if (pid && ns->level <= pid->level) { 498 upid = &pid->numbers[ns->level]; 499 if (upid->ns == ns) 500 nr = upid->nr; 501 } 502 return nr; 503 } 504 EXPORT_SYMBOL_GPL(pid_nr_ns); 505 506 pid_t pid_vnr(struct pid *pid) 507 { 508 return pid_nr_ns(pid, task_active_pid_ns(current)); 509 } 510 EXPORT_SYMBOL_GPL(pid_vnr); 511 512 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 513 struct pid_namespace *ns) 514 { 515 pid_t nr = 0; 516 517 rcu_read_lock(); 518 if (!ns) 519 ns = task_active_pid_ns(current); 520 if (likely(pid_alive(task))) { 521 if (type != PIDTYPE_PID) 522 task = task->group_leader; 523 nr = pid_nr_ns(task->pids[type].pid, ns); 524 } 525 rcu_read_unlock(); 526 527 return nr; 528 } 529 EXPORT_SYMBOL(__task_pid_nr_ns); 530 531 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 532 { 533 return pid_nr_ns(task_tgid(tsk), ns); 534 } 535 EXPORT_SYMBOL(task_tgid_nr_ns); 536 537 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 538 { 539 return ns_of_pid(task_pid(tsk)); 540 } 541 EXPORT_SYMBOL_GPL(task_active_pid_ns); 542 543 /* 544 * Used by proc to find the first pid that is greater than or equal to nr. 545 * 546 * If there is a pid at nr this function is exactly the same as find_pid_ns. 547 */ 548 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 549 { 550 struct pid *pid; 551 552 do { 553 pid = find_pid_ns(nr, ns); 554 if (pid) 555 break; 556 nr = next_pidmap(ns, nr); 557 } while (nr > 0); 558 559 return pid; 560 } 561 562 /* 563 * The pid hash table is scaled according to the amount of memory in the 564 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 565 * more. 566 */ 567 void __init pidhash_init(void) 568 { 569 unsigned int i, pidhash_size; 570 571 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, 572 HASH_EARLY | HASH_SMALL, 573 &pidhash_shift, NULL, 574 0, 4096); 575 pidhash_size = 1U << pidhash_shift; 576 577 for (i = 0; i < pidhash_size; i++) 578 INIT_HLIST_HEAD(&pid_hash[i]); 579 } 580 581 void __init pidmap_init(void) 582 { 583 /* Veryify no one has done anything silly */ 584 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING); 585 586 /* bump default and minimum pid_max based on number of cpus */ 587 pid_max = min(pid_max_max, max_t(int, pid_max, 588 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 589 pid_max_min = max_t(int, pid_max_min, 590 PIDS_PER_CPU_MIN * num_possible_cpus()); 591 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 592 593 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 594 /* Reserve PID 0. We never call free_pidmap(0) */ 595 set_bit(0, init_pid_ns.pidmap[0].page); 596 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 597 init_pid_ns.nr_hashed = PIDNS_HASH_ADDING; 598 599 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 600 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 601 } 602