1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 William Irwin, IBM 5 * (C) 2004 William Irwin, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/rculist.h> 34 #include <linux/bootmem.h> 35 #include <linux/hash.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 40 #define pid_hashfn(nr, ns) \ 41 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 42 static struct hlist_head *pid_hash; 43 static unsigned int pidhash_shift = 4; 44 struct pid init_struct_pid = INIT_STRUCT_PID; 45 46 int pid_max = PID_MAX_DEFAULT; 47 48 #define RESERVED_PIDS 300 49 50 int pid_max_min = RESERVED_PIDS + 1; 51 int pid_max_max = PID_MAX_LIMIT; 52 53 #define BITS_PER_PAGE (PAGE_SIZE*8) 54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) 55 56 static inline int mk_pid(struct pid_namespace *pid_ns, 57 struct pidmap *map, int off) 58 { 59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 60 } 61 62 #define find_next_offset(map, off) \ 63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 64 65 /* 66 * PID-map pages start out as NULL, they get allocated upon 67 * first use and are never deallocated. This way a low pid_max 68 * value does not cause lots of bitmaps to be allocated, but 69 * the scheme scales to up to 4 million PIDs, runtime. 70 */ 71 struct pid_namespace init_pid_ns = { 72 .kref = { 73 .refcount = ATOMIC_INIT(2), 74 }, 75 .pidmap = { 76 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 77 }, 78 .last_pid = 0, 79 .level = 0, 80 .child_reaper = &init_task, 81 }; 82 EXPORT_SYMBOL_GPL(init_pid_ns); 83 84 int is_container_init(struct task_struct *tsk) 85 { 86 int ret = 0; 87 struct pid *pid; 88 89 rcu_read_lock(); 90 pid = task_pid(tsk); 91 if (pid != NULL && pid->numbers[pid->level].nr == 1) 92 ret = 1; 93 rcu_read_unlock(); 94 95 return ret; 96 } 97 EXPORT_SYMBOL(is_container_init); 98 99 /* 100 * Note: disable interrupts while the pidmap_lock is held as an 101 * interrupt might come in and do read_lock(&tasklist_lock). 102 * 103 * If we don't disable interrupts there is a nasty deadlock between 104 * detach_pid()->free_pid() and another cpu that does 105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 106 * read_lock(&tasklist_lock); 107 * 108 * After we clean up the tasklist_lock and know there are no 109 * irq handlers that take it we can leave the interrupts enabled. 110 * For now it is easier to be safe than to prove it can't happen. 111 */ 112 113 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 114 115 static void free_pidmap(struct upid *upid) 116 { 117 int nr = upid->nr; 118 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; 119 int offset = nr & BITS_PER_PAGE_MASK; 120 121 clear_bit(offset, map->page); 122 atomic_inc(&map->nr_free); 123 } 124 125 /* 126 * If we started walking pids at 'base', is 'a' seen before 'b'? 127 */ 128 static int pid_before(int base, int a, int b) 129 { 130 /* 131 * This is the same as saying 132 * 133 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT 134 * and that mapping orders 'a' and 'b' with respect to 'base'. 135 */ 136 return (unsigned)(a - base) < (unsigned)(b - base); 137 } 138 139 /* 140 * We might be racing with someone else trying to set pid_ns->last_pid. 141 * We want the winner to have the "later" value, because if the 142 * "earlier" value prevails, then a pid may get reused immediately. 143 * 144 * Since pids rollover, it is not sufficient to just pick the bigger 145 * value. We have to consider where we started counting from. 146 * 147 * 'base' is the value of pid_ns->last_pid that we observed when 148 * we started looking for a pid. 149 * 150 * 'pid' is the pid that we eventually found. 151 */ 152 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) 153 { 154 int prev; 155 int last_write = base; 156 do { 157 prev = last_write; 158 last_write = cmpxchg(&pid_ns->last_pid, prev, pid); 159 } while ((prev != last_write) && (pid_before(base, last_write, pid))); 160 } 161 162 static int alloc_pidmap(struct pid_namespace *pid_ns) 163 { 164 int i, offset, max_scan, pid, last = pid_ns->last_pid; 165 struct pidmap *map; 166 167 pid = last + 1; 168 if (pid >= pid_max) 169 pid = RESERVED_PIDS; 170 offset = pid & BITS_PER_PAGE_MASK; 171 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 172 /* 173 * If last_pid points into the middle of the map->page we 174 * want to scan this bitmap block twice, the second time 175 * we start with offset == 0 (or RESERVED_PIDS). 176 */ 177 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; 178 for (i = 0; i <= max_scan; ++i) { 179 if (unlikely(!map->page)) { 180 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 181 /* 182 * Free the page if someone raced with us 183 * installing it: 184 */ 185 spin_lock_irq(&pidmap_lock); 186 if (!map->page) { 187 map->page = page; 188 page = NULL; 189 } 190 spin_unlock_irq(&pidmap_lock); 191 kfree(page); 192 if (unlikely(!map->page)) 193 break; 194 } 195 if (likely(atomic_read(&map->nr_free))) { 196 do { 197 if (!test_and_set_bit(offset, map->page)) { 198 atomic_dec(&map->nr_free); 199 set_last_pid(pid_ns, last, pid); 200 return pid; 201 } 202 offset = find_next_offset(map, offset); 203 pid = mk_pid(pid_ns, map, offset); 204 } while (offset < BITS_PER_PAGE && pid < pid_max); 205 } 206 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 207 ++map; 208 offset = 0; 209 } else { 210 map = &pid_ns->pidmap[0]; 211 offset = RESERVED_PIDS; 212 if (unlikely(last == offset)) 213 break; 214 } 215 pid = mk_pid(pid_ns, map, offset); 216 } 217 return -1; 218 } 219 220 int next_pidmap(struct pid_namespace *pid_ns, int last) 221 { 222 int offset; 223 struct pidmap *map, *end; 224 225 offset = (last + 1) & BITS_PER_PAGE_MASK; 226 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 227 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 228 for (; map < end; map++, offset = 0) { 229 if (unlikely(!map->page)) 230 continue; 231 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 232 if (offset < BITS_PER_PAGE) 233 return mk_pid(pid_ns, map, offset); 234 } 235 return -1; 236 } 237 238 void put_pid(struct pid *pid) 239 { 240 struct pid_namespace *ns; 241 242 if (!pid) 243 return; 244 245 ns = pid->numbers[pid->level].ns; 246 if ((atomic_read(&pid->count) == 1) || 247 atomic_dec_and_test(&pid->count)) { 248 kmem_cache_free(ns->pid_cachep, pid); 249 put_pid_ns(ns); 250 } 251 } 252 EXPORT_SYMBOL_GPL(put_pid); 253 254 static void delayed_put_pid(struct rcu_head *rhp) 255 { 256 struct pid *pid = container_of(rhp, struct pid, rcu); 257 put_pid(pid); 258 } 259 260 void free_pid(struct pid *pid) 261 { 262 /* We can be called with write_lock_irq(&tasklist_lock) held */ 263 int i; 264 unsigned long flags; 265 266 spin_lock_irqsave(&pidmap_lock, flags); 267 for (i = 0; i <= pid->level; i++) 268 hlist_del_rcu(&pid->numbers[i].pid_chain); 269 spin_unlock_irqrestore(&pidmap_lock, flags); 270 271 for (i = 0; i <= pid->level; i++) 272 free_pidmap(pid->numbers + i); 273 274 call_rcu(&pid->rcu, delayed_put_pid); 275 } 276 277 struct pid *alloc_pid(struct pid_namespace *ns) 278 { 279 struct pid *pid; 280 enum pid_type type; 281 int i, nr; 282 struct pid_namespace *tmp; 283 struct upid *upid; 284 285 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 286 if (!pid) 287 goto out; 288 289 tmp = ns; 290 for (i = ns->level; i >= 0; i--) { 291 nr = alloc_pidmap(tmp); 292 if (nr < 0) 293 goto out_free; 294 295 pid->numbers[i].nr = nr; 296 pid->numbers[i].ns = tmp; 297 tmp = tmp->parent; 298 } 299 300 get_pid_ns(ns); 301 pid->level = ns->level; 302 atomic_set(&pid->count, 1); 303 for (type = 0; type < PIDTYPE_MAX; ++type) 304 INIT_HLIST_HEAD(&pid->tasks[type]); 305 306 upid = pid->numbers + ns->level; 307 spin_lock_irq(&pidmap_lock); 308 for ( ; upid >= pid->numbers; --upid) 309 hlist_add_head_rcu(&upid->pid_chain, 310 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 311 spin_unlock_irq(&pidmap_lock); 312 313 out: 314 return pid; 315 316 out_free: 317 while (++i <= ns->level) 318 free_pidmap(pid->numbers + i); 319 320 kmem_cache_free(ns->pid_cachep, pid); 321 pid = NULL; 322 goto out; 323 } 324 325 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 326 { 327 struct hlist_node *elem; 328 struct upid *pnr; 329 330 hlist_for_each_entry_rcu(pnr, elem, 331 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 332 if (pnr->nr == nr && pnr->ns == ns) 333 return container_of(pnr, struct pid, 334 numbers[ns->level]); 335 336 return NULL; 337 } 338 EXPORT_SYMBOL_GPL(find_pid_ns); 339 340 struct pid *find_vpid(int nr) 341 { 342 return find_pid_ns(nr, current->nsproxy->pid_ns); 343 } 344 EXPORT_SYMBOL_GPL(find_vpid); 345 346 /* 347 * attach_pid() must be called with the tasklist_lock write-held. 348 */ 349 void attach_pid(struct task_struct *task, enum pid_type type, 350 struct pid *pid) 351 { 352 struct pid_link *link; 353 354 link = &task->pids[type]; 355 link->pid = pid; 356 hlist_add_head_rcu(&link->node, &pid->tasks[type]); 357 } 358 359 static void __change_pid(struct task_struct *task, enum pid_type type, 360 struct pid *new) 361 { 362 struct pid_link *link; 363 struct pid *pid; 364 int tmp; 365 366 link = &task->pids[type]; 367 pid = link->pid; 368 369 hlist_del_rcu(&link->node); 370 link->pid = new; 371 372 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 373 if (!hlist_empty(&pid->tasks[tmp])) 374 return; 375 376 free_pid(pid); 377 } 378 379 void detach_pid(struct task_struct *task, enum pid_type type) 380 { 381 __change_pid(task, type, NULL); 382 } 383 384 void change_pid(struct task_struct *task, enum pid_type type, 385 struct pid *pid) 386 { 387 __change_pid(task, type, pid); 388 attach_pid(task, type, pid); 389 } 390 391 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 392 void transfer_pid(struct task_struct *old, struct task_struct *new, 393 enum pid_type type) 394 { 395 new->pids[type].pid = old->pids[type].pid; 396 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 397 } 398 399 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 400 { 401 struct task_struct *result = NULL; 402 if (pid) { 403 struct hlist_node *first; 404 first = rcu_dereference_check(pid->tasks[type].first, 405 rcu_read_lock_held() || 406 lockdep_tasklist_lock_is_held()); 407 if (first) 408 result = hlist_entry(first, struct task_struct, pids[(type)].node); 409 } 410 return result; 411 } 412 EXPORT_SYMBOL(pid_task); 413 414 /* 415 * Must be called under rcu_read_lock(). 416 */ 417 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 418 { 419 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 420 } 421 422 struct task_struct *find_task_by_vpid(pid_t vnr) 423 { 424 return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns); 425 } 426 427 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 428 { 429 struct pid *pid; 430 rcu_read_lock(); 431 if (type != PIDTYPE_PID) 432 task = task->group_leader; 433 pid = get_pid(task->pids[type].pid); 434 rcu_read_unlock(); 435 return pid; 436 } 437 438 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 439 { 440 struct task_struct *result; 441 rcu_read_lock(); 442 result = pid_task(pid, type); 443 if (result) 444 get_task_struct(result); 445 rcu_read_unlock(); 446 return result; 447 } 448 449 struct pid *find_get_pid(pid_t nr) 450 { 451 struct pid *pid; 452 453 rcu_read_lock(); 454 pid = get_pid(find_vpid(nr)); 455 rcu_read_unlock(); 456 457 return pid; 458 } 459 EXPORT_SYMBOL_GPL(find_get_pid); 460 461 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 462 { 463 struct upid *upid; 464 pid_t nr = 0; 465 466 if (pid && ns->level <= pid->level) { 467 upid = &pid->numbers[ns->level]; 468 if (upid->ns == ns) 469 nr = upid->nr; 470 } 471 return nr; 472 } 473 474 pid_t pid_vnr(struct pid *pid) 475 { 476 return pid_nr_ns(pid, current->nsproxy->pid_ns); 477 } 478 EXPORT_SYMBOL_GPL(pid_vnr); 479 480 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 481 struct pid_namespace *ns) 482 { 483 pid_t nr = 0; 484 485 rcu_read_lock(); 486 if (!ns) 487 ns = current->nsproxy->pid_ns; 488 if (likely(pid_alive(task))) { 489 if (type != PIDTYPE_PID) 490 task = task->group_leader; 491 nr = pid_nr_ns(task->pids[type].pid, ns); 492 } 493 rcu_read_unlock(); 494 495 return nr; 496 } 497 EXPORT_SYMBOL(__task_pid_nr_ns); 498 499 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 500 { 501 return pid_nr_ns(task_tgid(tsk), ns); 502 } 503 EXPORT_SYMBOL(task_tgid_nr_ns); 504 505 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 506 { 507 return ns_of_pid(task_pid(tsk)); 508 } 509 EXPORT_SYMBOL_GPL(task_active_pid_ns); 510 511 /* 512 * Used by proc to find the first pid that is greater than or equal to nr. 513 * 514 * If there is a pid at nr this function is exactly the same as find_pid_ns. 515 */ 516 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 517 { 518 struct pid *pid; 519 520 do { 521 pid = find_pid_ns(nr, ns); 522 if (pid) 523 break; 524 nr = next_pidmap(ns, nr); 525 } while (nr > 0); 526 527 return pid; 528 } 529 530 /* 531 * The pid hash table is scaled according to the amount of memory in the 532 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 533 * more. 534 */ 535 void __init pidhash_init(void) 536 { 537 int i, pidhash_size; 538 539 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, 540 HASH_EARLY | HASH_SMALL, 541 &pidhash_shift, NULL, 4096); 542 pidhash_size = 1 << pidhash_shift; 543 544 for (i = 0; i < pidhash_size; i++) 545 INIT_HLIST_HEAD(&pid_hash[i]); 546 } 547 548 void __init pidmap_init(void) 549 { 550 /* bump default and minimum pid_max based on number of cpus */ 551 pid_max = min(pid_max_max, max_t(int, pid_max, 552 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 553 pid_max_min = max_t(int, pid_max_min, 554 PIDS_PER_CPU_MIN * num_possible_cpus()); 555 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 556 557 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 558 /* Reserve PID 0. We never call free_pidmap(0) */ 559 set_bit(0, init_pid_ns.pidmap[0].page); 560 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 561 562 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 563 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 564 } 565