xref: /openbmc/linux/kernel/pid.c (revision c1d45424)
1 /*
2  * Generic pidhash and scalable, time-bounded PID allocator
3  *
4  * (C) 2002-2003 Nadia Yvette Chambers, IBM
5  * (C) 2004 Nadia Yvette Chambers, Oracle
6  * (C) 2002-2004 Ingo Molnar, Red Hat
7  *
8  * pid-structures are backing objects for tasks sharing a given ID to chain
9  * against. There is very little to them aside from hashing them and
10  * parking tasks using given ID's on a list.
11  *
12  * The hash is always changed with the tasklist_lock write-acquired,
13  * and the hash is only accessed with the tasklist_lock at least
14  * read-acquired, so there's no additional SMP locking needed here.
15  *
16  * We have a list of bitmap pages, which bitmaps represent the PID space.
17  * Allocating and freeing PIDs is completely lockless. The worst-case
18  * allocation scenario when all but one out of 1 million PIDs possible are
19  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21  *
22  * Pid namespaces:
23  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25  *     Many thanks to Oleg Nesterov for comments and help
26  *
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41 
42 #define pid_hashfn(nr, ns)	\
43 	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
44 static struct hlist_head *pid_hash;
45 static unsigned int pidhash_shift = 4;
46 struct pid init_struct_pid = INIT_STRUCT_PID;
47 
48 int pid_max = PID_MAX_DEFAULT;
49 
50 #define RESERVED_PIDS		300
51 
52 int pid_max_min = RESERVED_PIDS + 1;
53 int pid_max_max = PID_MAX_LIMIT;
54 
55 static inline int mk_pid(struct pid_namespace *pid_ns,
56 		struct pidmap *map, int off)
57 {
58 	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
59 }
60 
61 #define find_next_offset(map, off)					\
62 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
63 
64 /*
65  * PID-map pages start out as NULL, they get allocated upon
66  * first use and are never deallocated. This way a low pid_max
67  * value does not cause lots of bitmaps to be allocated, but
68  * the scheme scales to up to 4 million PIDs, runtime.
69  */
70 struct pid_namespace init_pid_ns = {
71 	.kref = {
72 		.refcount       = ATOMIC_INIT(2),
73 	},
74 	.pidmap = {
75 		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
76 	},
77 	.last_pid = 0,
78 	.nr_hashed = PIDNS_HASH_ADDING,
79 	.level = 0,
80 	.child_reaper = &init_task,
81 	.user_ns = &init_user_ns,
82 	.proc_inum = PROC_PID_INIT_INO,
83 };
84 EXPORT_SYMBOL_GPL(init_pid_ns);
85 
86 /*
87  * Note: disable interrupts while the pidmap_lock is held as an
88  * interrupt might come in and do read_lock(&tasklist_lock).
89  *
90  * If we don't disable interrupts there is a nasty deadlock between
91  * detach_pid()->free_pid() and another cpu that does
92  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
93  * read_lock(&tasklist_lock);
94  *
95  * After we clean up the tasklist_lock and know there are no
96  * irq handlers that take it we can leave the interrupts enabled.
97  * For now it is easier to be safe than to prove it can't happen.
98  */
99 
100 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
101 
102 static void free_pidmap(struct upid *upid)
103 {
104 	int nr = upid->nr;
105 	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
106 	int offset = nr & BITS_PER_PAGE_MASK;
107 
108 	clear_bit(offset, map->page);
109 	atomic_inc(&map->nr_free);
110 }
111 
112 /*
113  * If we started walking pids at 'base', is 'a' seen before 'b'?
114  */
115 static int pid_before(int base, int a, int b)
116 {
117 	/*
118 	 * This is the same as saying
119 	 *
120 	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
121 	 * and that mapping orders 'a' and 'b' with respect to 'base'.
122 	 */
123 	return (unsigned)(a - base) < (unsigned)(b - base);
124 }
125 
126 /*
127  * We might be racing with someone else trying to set pid_ns->last_pid
128  * at the pid allocation time (there's also a sysctl for this, but racing
129  * with this one is OK, see comment in kernel/pid_namespace.c about it).
130  * We want the winner to have the "later" value, because if the
131  * "earlier" value prevails, then a pid may get reused immediately.
132  *
133  * Since pids rollover, it is not sufficient to just pick the bigger
134  * value.  We have to consider where we started counting from.
135  *
136  * 'base' is the value of pid_ns->last_pid that we observed when
137  * we started looking for a pid.
138  *
139  * 'pid' is the pid that we eventually found.
140  */
141 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
142 {
143 	int prev;
144 	int last_write = base;
145 	do {
146 		prev = last_write;
147 		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
148 	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
149 }
150 
151 static int alloc_pidmap(struct pid_namespace *pid_ns)
152 {
153 	int i, offset, max_scan, pid, last = pid_ns->last_pid;
154 	struct pidmap *map;
155 
156 	pid = last + 1;
157 	if (pid >= pid_max)
158 		pid = RESERVED_PIDS;
159 	offset = pid & BITS_PER_PAGE_MASK;
160 	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
161 	/*
162 	 * If last_pid points into the middle of the map->page we
163 	 * want to scan this bitmap block twice, the second time
164 	 * we start with offset == 0 (or RESERVED_PIDS).
165 	 */
166 	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
167 	for (i = 0; i <= max_scan; ++i) {
168 		if (unlikely(!map->page)) {
169 			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
170 			/*
171 			 * Free the page if someone raced with us
172 			 * installing it:
173 			 */
174 			spin_lock_irq(&pidmap_lock);
175 			if (!map->page) {
176 				map->page = page;
177 				page = NULL;
178 			}
179 			spin_unlock_irq(&pidmap_lock);
180 			kfree(page);
181 			if (unlikely(!map->page))
182 				break;
183 		}
184 		if (likely(atomic_read(&map->nr_free))) {
185 			for ( ; ; ) {
186 				if (!test_and_set_bit(offset, map->page)) {
187 					atomic_dec(&map->nr_free);
188 					set_last_pid(pid_ns, last, pid);
189 					return pid;
190 				}
191 				offset = find_next_offset(map, offset);
192 				if (offset >= BITS_PER_PAGE)
193 					break;
194 				pid = mk_pid(pid_ns, map, offset);
195 				if (pid >= pid_max)
196 					break;
197 			}
198 		}
199 		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
200 			++map;
201 			offset = 0;
202 		} else {
203 			map = &pid_ns->pidmap[0];
204 			offset = RESERVED_PIDS;
205 			if (unlikely(last == offset))
206 				break;
207 		}
208 		pid = mk_pid(pid_ns, map, offset);
209 	}
210 	return -1;
211 }
212 
213 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
214 {
215 	int offset;
216 	struct pidmap *map, *end;
217 
218 	if (last >= PID_MAX_LIMIT)
219 		return -1;
220 
221 	offset = (last + 1) & BITS_PER_PAGE_MASK;
222 	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
223 	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
224 	for (; map < end; map++, offset = 0) {
225 		if (unlikely(!map->page))
226 			continue;
227 		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
228 		if (offset < BITS_PER_PAGE)
229 			return mk_pid(pid_ns, map, offset);
230 	}
231 	return -1;
232 }
233 
234 void put_pid(struct pid *pid)
235 {
236 	struct pid_namespace *ns;
237 
238 	if (!pid)
239 		return;
240 
241 	ns = pid->numbers[pid->level].ns;
242 	if ((atomic_read(&pid->count) == 1) ||
243 	     atomic_dec_and_test(&pid->count)) {
244 		kmem_cache_free(ns->pid_cachep, pid);
245 		put_pid_ns(ns);
246 	}
247 }
248 EXPORT_SYMBOL_GPL(put_pid);
249 
250 static void delayed_put_pid(struct rcu_head *rhp)
251 {
252 	struct pid *pid = container_of(rhp, struct pid, rcu);
253 	put_pid(pid);
254 }
255 
256 void free_pid(struct pid *pid)
257 {
258 	/* We can be called with write_lock_irq(&tasklist_lock) held */
259 	int i;
260 	unsigned long flags;
261 
262 	spin_lock_irqsave(&pidmap_lock, flags);
263 	for (i = 0; i <= pid->level; i++) {
264 		struct upid *upid = pid->numbers + i;
265 		struct pid_namespace *ns = upid->ns;
266 		hlist_del_rcu(&upid->pid_chain);
267 		switch(--ns->nr_hashed) {
268 		case 1:
269 			/* When all that is left in the pid namespace
270 			 * is the reaper wake up the reaper.  The reaper
271 			 * may be sleeping in zap_pid_ns_processes().
272 			 */
273 			wake_up_process(ns->child_reaper);
274 			break;
275 		case 0:
276 			schedule_work(&ns->proc_work);
277 			break;
278 		}
279 	}
280 	spin_unlock_irqrestore(&pidmap_lock, flags);
281 
282 	for (i = 0; i <= pid->level; i++)
283 		free_pidmap(pid->numbers + i);
284 
285 	call_rcu(&pid->rcu, delayed_put_pid);
286 }
287 
288 struct pid *alloc_pid(struct pid_namespace *ns)
289 {
290 	struct pid *pid;
291 	enum pid_type type;
292 	int i, nr;
293 	struct pid_namespace *tmp;
294 	struct upid *upid;
295 
296 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
297 	if (!pid)
298 		goto out;
299 
300 	tmp = ns;
301 	pid->level = ns->level;
302 	for (i = ns->level; i >= 0; i--) {
303 		nr = alloc_pidmap(tmp);
304 		if (nr < 0)
305 			goto out_free;
306 
307 		pid->numbers[i].nr = nr;
308 		pid->numbers[i].ns = tmp;
309 		tmp = tmp->parent;
310 	}
311 
312 	if (unlikely(is_child_reaper(pid))) {
313 		if (pid_ns_prepare_proc(ns))
314 			goto out_free;
315 	}
316 
317 	get_pid_ns(ns);
318 	atomic_set(&pid->count, 1);
319 	for (type = 0; type < PIDTYPE_MAX; ++type)
320 		INIT_HLIST_HEAD(&pid->tasks[type]);
321 
322 	upid = pid->numbers + ns->level;
323 	spin_lock_irq(&pidmap_lock);
324 	if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
325 		goto out_unlock;
326 	for ( ; upid >= pid->numbers; --upid) {
327 		hlist_add_head_rcu(&upid->pid_chain,
328 				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
329 		upid->ns->nr_hashed++;
330 	}
331 	spin_unlock_irq(&pidmap_lock);
332 
333 out:
334 	return pid;
335 
336 out_unlock:
337 	spin_unlock_irq(&pidmap_lock);
338 out_free:
339 	while (++i <= ns->level)
340 		free_pidmap(pid->numbers + i);
341 
342 	kmem_cache_free(ns->pid_cachep, pid);
343 	pid = NULL;
344 	goto out;
345 }
346 
347 void disable_pid_allocation(struct pid_namespace *ns)
348 {
349 	spin_lock_irq(&pidmap_lock);
350 	ns->nr_hashed &= ~PIDNS_HASH_ADDING;
351 	spin_unlock_irq(&pidmap_lock);
352 }
353 
354 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
355 {
356 	struct upid *pnr;
357 
358 	hlist_for_each_entry_rcu(pnr,
359 			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
360 		if (pnr->nr == nr && pnr->ns == ns)
361 			return container_of(pnr, struct pid,
362 					numbers[ns->level]);
363 
364 	return NULL;
365 }
366 EXPORT_SYMBOL_GPL(find_pid_ns);
367 
368 struct pid *find_vpid(int nr)
369 {
370 	return find_pid_ns(nr, task_active_pid_ns(current));
371 }
372 EXPORT_SYMBOL_GPL(find_vpid);
373 
374 /*
375  * attach_pid() must be called with the tasklist_lock write-held.
376  */
377 void attach_pid(struct task_struct *task, enum pid_type type)
378 {
379 	struct pid_link *link = &task->pids[type];
380 	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
381 }
382 
383 static void __change_pid(struct task_struct *task, enum pid_type type,
384 			struct pid *new)
385 {
386 	struct pid_link *link;
387 	struct pid *pid;
388 	int tmp;
389 
390 	link = &task->pids[type];
391 	pid = link->pid;
392 
393 	hlist_del_rcu(&link->node);
394 	link->pid = new;
395 
396 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
397 		if (!hlist_empty(&pid->tasks[tmp]))
398 			return;
399 
400 	free_pid(pid);
401 }
402 
403 void detach_pid(struct task_struct *task, enum pid_type type)
404 {
405 	__change_pid(task, type, NULL);
406 }
407 
408 void change_pid(struct task_struct *task, enum pid_type type,
409 		struct pid *pid)
410 {
411 	__change_pid(task, type, pid);
412 	attach_pid(task, type);
413 }
414 
415 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
416 void transfer_pid(struct task_struct *old, struct task_struct *new,
417 			   enum pid_type type)
418 {
419 	new->pids[type].pid = old->pids[type].pid;
420 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
421 }
422 
423 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
424 {
425 	struct task_struct *result = NULL;
426 	if (pid) {
427 		struct hlist_node *first;
428 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
429 					      lockdep_tasklist_lock_is_held());
430 		if (first)
431 			result = hlist_entry(first, struct task_struct, pids[(type)].node);
432 	}
433 	return result;
434 }
435 EXPORT_SYMBOL(pid_task);
436 
437 /*
438  * Must be called under rcu_read_lock().
439  */
440 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
441 {
442 	rcu_lockdep_assert(rcu_read_lock_held(),
443 			   "find_task_by_pid_ns() needs rcu_read_lock()"
444 			   " protection");
445 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
446 }
447 
448 struct task_struct *find_task_by_vpid(pid_t vnr)
449 {
450 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
451 }
452 
453 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
454 {
455 	struct pid *pid;
456 	rcu_read_lock();
457 	if (type != PIDTYPE_PID)
458 		task = task->group_leader;
459 	pid = get_pid(task->pids[type].pid);
460 	rcu_read_unlock();
461 	return pid;
462 }
463 EXPORT_SYMBOL_GPL(get_task_pid);
464 
465 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
466 {
467 	struct task_struct *result;
468 	rcu_read_lock();
469 	result = pid_task(pid, type);
470 	if (result)
471 		get_task_struct(result);
472 	rcu_read_unlock();
473 	return result;
474 }
475 EXPORT_SYMBOL_GPL(get_pid_task);
476 
477 struct pid *find_get_pid(pid_t nr)
478 {
479 	struct pid *pid;
480 
481 	rcu_read_lock();
482 	pid = get_pid(find_vpid(nr));
483 	rcu_read_unlock();
484 
485 	return pid;
486 }
487 EXPORT_SYMBOL_GPL(find_get_pid);
488 
489 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
490 {
491 	struct upid *upid;
492 	pid_t nr = 0;
493 
494 	if (pid && ns->level <= pid->level) {
495 		upid = &pid->numbers[ns->level];
496 		if (upid->ns == ns)
497 			nr = upid->nr;
498 	}
499 	return nr;
500 }
501 EXPORT_SYMBOL_GPL(pid_nr_ns);
502 
503 pid_t pid_vnr(struct pid *pid)
504 {
505 	return pid_nr_ns(pid, task_active_pid_ns(current));
506 }
507 EXPORT_SYMBOL_GPL(pid_vnr);
508 
509 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
510 			struct pid_namespace *ns)
511 {
512 	pid_t nr = 0;
513 
514 	rcu_read_lock();
515 	if (!ns)
516 		ns = task_active_pid_ns(current);
517 	if (likely(pid_alive(task))) {
518 		if (type != PIDTYPE_PID)
519 			task = task->group_leader;
520 		nr = pid_nr_ns(task->pids[type].pid, ns);
521 	}
522 	rcu_read_unlock();
523 
524 	return nr;
525 }
526 EXPORT_SYMBOL(__task_pid_nr_ns);
527 
528 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
529 {
530 	return pid_nr_ns(task_tgid(tsk), ns);
531 }
532 EXPORT_SYMBOL(task_tgid_nr_ns);
533 
534 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
535 {
536 	return ns_of_pid(task_pid(tsk));
537 }
538 EXPORT_SYMBOL_GPL(task_active_pid_ns);
539 
540 /*
541  * Used by proc to find the first pid that is greater than or equal to nr.
542  *
543  * If there is a pid at nr this function is exactly the same as find_pid_ns.
544  */
545 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
546 {
547 	struct pid *pid;
548 
549 	do {
550 		pid = find_pid_ns(nr, ns);
551 		if (pid)
552 			break;
553 		nr = next_pidmap(ns, nr);
554 	} while (nr > 0);
555 
556 	return pid;
557 }
558 
559 /*
560  * The pid hash table is scaled according to the amount of memory in the
561  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
562  * more.
563  */
564 void __init pidhash_init(void)
565 {
566 	unsigned int i, pidhash_size;
567 
568 	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
569 					   HASH_EARLY | HASH_SMALL,
570 					   &pidhash_shift, NULL,
571 					   0, 4096);
572 	pidhash_size = 1U << pidhash_shift;
573 
574 	for (i = 0; i < pidhash_size; i++)
575 		INIT_HLIST_HEAD(&pid_hash[i]);
576 }
577 
578 void __init pidmap_init(void)
579 {
580 	/* Veryify no one has done anything silly */
581 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
582 
583 	/* bump default and minimum pid_max based on number of cpus */
584 	pid_max = min(pid_max_max, max_t(int, pid_max,
585 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
586 	pid_max_min = max_t(int, pid_max_min,
587 				PIDS_PER_CPU_MIN * num_possible_cpus());
588 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
589 
590 	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
591 	/* Reserve PID 0. We never call free_pidmap(0) */
592 	set_bit(0, init_pid_ns.pidmap[0].page);
593 	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
594 
595 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
596 			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
597 }
598