xref: /openbmc/linux/kernel/pid.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /*
2  * Generic pidhash and scalable, time-bounded PID allocator
3  *
4  * (C) 2002-2003 Nadia Yvette Chambers, IBM
5  * (C) 2004 Nadia Yvette Chambers, Oracle
6  * (C) 2002-2004 Ingo Molnar, Red Hat
7  *
8  * pid-structures are backing objects for tasks sharing a given ID to chain
9  * against. There is very little to them aside from hashing them and
10  * parking tasks using given ID's on a list.
11  *
12  * The hash is always changed with the tasklist_lock write-acquired,
13  * and the hash is only accessed with the tasklist_lock at least
14  * read-acquired, so there's no additional SMP locking needed here.
15  *
16  * We have a list of bitmap pages, which bitmaps represent the PID space.
17  * Allocating and freeing PIDs is completely lockless. The worst-case
18  * allocation scenario when all but one out of 1 million PIDs possible are
19  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21  *
22  * Pid namespaces:
23  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25  *     Many thanks to Oleg Nesterov for comments and help
26  *
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41 #include <linux/sched/task.h>
42 #include <linux/idr.h>
43 
44 struct pid init_struct_pid = {
45 	.count 		= ATOMIC_INIT(1),
46 	.tasks		= {
47 		{ .first = NULL },
48 		{ .first = NULL },
49 		{ .first = NULL },
50 	},
51 	.level		= 0,
52 	.numbers	= { {
53 		.nr		= 0,
54 		.ns		= &init_pid_ns,
55 	}, }
56 };
57 
58 int pid_max = PID_MAX_DEFAULT;
59 
60 #define RESERVED_PIDS		300
61 
62 int pid_max_min = RESERVED_PIDS + 1;
63 int pid_max_max = PID_MAX_LIMIT;
64 
65 /*
66  * PID-map pages start out as NULL, they get allocated upon
67  * first use and are never deallocated. This way a low pid_max
68  * value does not cause lots of bitmaps to be allocated, but
69  * the scheme scales to up to 4 million PIDs, runtime.
70  */
71 struct pid_namespace init_pid_ns = {
72 	.kref = KREF_INIT(2),
73 	.idr = IDR_INIT,
74 	.pid_allocated = PIDNS_ADDING,
75 	.level = 0,
76 	.child_reaper = &init_task,
77 	.user_ns = &init_user_ns,
78 	.ns.inum = PROC_PID_INIT_INO,
79 #ifdef CONFIG_PID_NS
80 	.ns.ops = &pidns_operations,
81 #endif
82 };
83 EXPORT_SYMBOL_GPL(init_pid_ns);
84 
85 /*
86  * Note: disable interrupts while the pidmap_lock is held as an
87  * interrupt might come in and do read_lock(&tasklist_lock).
88  *
89  * If we don't disable interrupts there is a nasty deadlock between
90  * detach_pid()->free_pid() and another cpu that does
91  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
92  * read_lock(&tasklist_lock);
93  *
94  * After we clean up the tasklist_lock and know there are no
95  * irq handlers that take it we can leave the interrupts enabled.
96  * For now it is easier to be safe than to prove it can't happen.
97  */
98 
99 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
100 
101 void put_pid(struct pid *pid)
102 {
103 	struct pid_namespace *ns;
104 
105 	if (!pid)
106 		return;
107 
108 	ns = pid->numbers[pid->level].ns;
109 	if ((atomic_read(&pid->count) == 1) ||
110 	     atomic_dec_and_test(&pid->count)) {
111 		kmem_cache_free(ns->pid_cachep, pid);
112 		put_pid_ns(ns);
113 	}
114 }
115 EXPORT_SYMBOL_GPL(put_pid);
116 
117 static void delayed_put_pid(struct rcu_head *rhp)
118 {
119 	struct pid *pid = container_of(rhp, struct pid, rcu);
120 	put_pid(pid);
121 }
122 
123 void free_pid(struct pid *pid)
124 {
125 	/* We can be called with write_lock_irq(&tasklist_lock) held */
126 	int i;
127 	unsigned long flags;
128 
129 	spin_lock_irqsave(&pidmap_lock, flags);
130 	for (i = 0; i <= pid->level; i++) {
131 		struct upid *upid = pid->numbers + i;
132 		struct pid_namespace *ns = upid->ns;
133 		switch (--ns->pid_allocated) {
134 		case 2:
135 		case 1:
136 			/* When all that is left in the pid namespace
137 			 * is the reaper wake up the reaper.  The reaper
138 			 * may be sleeping in zap_pid_ns_processes().
139 			 */
140 			wake_up_process(ns->child_reaper);
141 			break;
142 		case PIDNS_ADDING:
143 			/* Handle a fork failure of the first process */
144 			WARN_ON(ns->child_reaper);
145 			ns->pid_allocated = 0;
146 			/* fall through */
147 		case 0:
148 			schedule_work(&ns->proc_work);
149 			break;
150 		}
151 
152 		idr_remove(&ns->idr, upid->nr);
153 	}
154 	spin_unlock_irqrestore(&pidmap_lock, flags);
155 
156 	call_rcu(&pid->rcu, delayed_put_pid);
157 }
158 
159 struct pid *alloc_pid(struct pid_namespace *ns)
160 {
161 	struct pid *pid;
162 	enum pid_type type;
163 	int i, nr;
164 	struct pid_namespace *tmp;
165 	struct upid *upid;
166 	int retval = -ENOMEM;
167 
168 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
169 	if (!pid)
170 		return ERR_PTR(retval);
171 
172 	tmp = ns;
173 	pid->level = ns->level;
174 
175 	for (i = ns->level; i >= 0; i--) {
176 		int pid_min = 1;
177 
178 		idr_preload(GFP_KERNEL);
179 		spin_lock_irq(&pidmap_lock);
180 
181 		/*
182 		 * init really needs pid 1, but after reaching the maximum
183 		 * wrap back to RESERVED_PIDS
184 		 */
185 		if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
186 			pid_min = RESERVED_PIDS;
187 
188 		/*
189 		 * Store a null pointer so find_pid_ns does not find
190 		 * a partially initialized PID (see below).
191 		 */
192 		nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
193 				      pid_max, GFP_ATOMIC);
194 		spin_unlock_irq(&pidmap_lock);
195 		idr_preload_end();
196 
197 		if (nr < 0) {
198 			retval = nr;
199 			goto out_free;
200 		}
201 
202 		pid->numbers[i].nr = nr;
203 		pid->numbers[i].ns = tmp;
204 		tmp = tmp->parent;
205 	}
206 
207 	if (unlikely(is_child_reaper(pid))) {
208 		if (pid_ns_prepare_proc(ns))
209 			goto out_free;
210 	}
211 
212 	get_pid_ns(ns);
213 	atomic_set(&pid->count, 1);
214 	for (type = 0; type < PIDTYPE_MAX; ++type)
215 		INIT_HLIST_HEAD(&pid->tasks[type]);
216 
217 	upid = pid->numbers + ns->level;
218 	spin_lock_irq(&pidmap_lock);
219 	if (!(ns->pid_allocated & PIDNS_ADDING))
220 		goto out_unlock;
221 	for ( ; upid >= pid->numbers; --upid) {
222 		/* Make the PID visible to find_pid_ns. */
223 		idr_replace(&upid->ns->idr, pid, upid->nr);
224 		upid->ns->pid_allocated++;
225 	}
226 	spin_unlock_irq(&pidmap_lock);
227 
228 	return pid;
229 
230 out_unlock:
231 	spin_unlock_irq(&pidmap_lock);
232 	put_pid_ns(ns);
233 
234 out_free:
235 	spin_lock_irq(&pidmap_lock);
236 	while (++i <= ns->level)
237 		idr_remove(&ns->idr, (pid->numbers + i)->nr);
238 
239 	/* On failure to allocate the first pid, reset the state */
240 	if (ns->pid_allocated == PIDNS_ADDING)
241 		idr_set_cursor(&ns->idr, 0);
242 
243 	spin_unlock_irq(&pidmap_lock);
244 
245 	kmem_cache_free(ns->pid_cachep, pid);
246 	return ERR_PTR(retval);
247 }
248 
249 void disable_pid_allocation(struct pid_namespace *ns)
250 {
251 	spin_lock_irq(&pidmap_lock);
252 	ns->pid_allocated &= ~PIDNS_ADDING;
253 	spin_unlock_irq(&pidmap_lock);
254 }
255 
256 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
257 {
258 	return idr_find(&ns->idr, nr);
259 }
260 EXPORT_SYMBOL_GPL(find_pid_ns);
261 
262 struct pid *find_vpid(int nr)
263 {
264 	return find_pid_ns(nr, task_active_pid_ns(current));
265 }
266 EXPORT_SYMBOL_GPL(find_vpid);
267 
268 /*
269  * attach_pid() must be called with the tasklist_lock write-held.
270  */
271 void attach_pid(struct task_struct *task, enum pid_type type)
272 {
273 	struct pid_link *link = &task->pids[type];
274 	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
275 }
276 
277 static void __change_pid(struct task_struct *task, enum pid_type type,
278 			struct pid *new)
279 {
280 	struct pid_link *link;
281 	struct pid *pid;
282 	int tmp;
283 
284 	link = &task->pids[type];
285 	pid = link->pid;
286 
287 	hlist_del_rcu(&link->node);
288 	link->pid = new;
289 
290 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
291 		if (!hlist_empty(&pid->tasks[tmp]))
292 			return;
293 
294 	free_pid(pid);
295 }
296 
297 void detach_pid(struct task_struct *task, enum pid_type type)
298 {
299 	__change_pid(task, type, NULL);
300 }
301 
302 void change_pid(struct task_struct *task, enum pid_type type,
303 		struct pid *pid)
304 {
305 	__change_pid(task, type, pid);
306 	attach_pid(task, type);
307 }
308 
309 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
310 void transfer_pid(struct task_struct *old, struct task_struct *new,
311 			   enum pid_type type)
312 {
313 	new->pids[type].pid = old->pids[type].pid;
314 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
315 }
316 
317 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
318 {
319 	struct task_struct *result = NULL;
320 	if (pid) {
321 		struct hlist_node *first;
322 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
323 					      lockdep_tasklist_lock_is_held());
324 		if (first)
325 			result = hlist_entry(first, struct task_struct, pids[(type)].node);
326 	}
327 	return result;
328 }
329 EXPORT_SYMBOL(pid_task);
330 
331 /*
332  * Must be called under rcu_read_lock().
333  */
334 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
335 {
336 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
337 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
338 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
339 }
340 
341 struct task_struct *find_task_by_vpid(pid_t vnr)
342 {
343 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
344 }
345 
346 struct task_struct *find_get_task_by_vpid(pid_t nr)
347 {
348 	struct task_struct *task;
349 
350 	rcu_read_lock();
351 	task = find_task_by_vpid(nr);
352 	if (task)
353 		get_task_struct(task);
354 	rcu_read_unlock();
355 
356 	return task;
357 }
358 
359 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
360 {
361 	struct pid *pid;
362 	rcu_read_lock();
363 	if (type != PIDTYPE_PID)
364 		task = task->group_leader;
365 	pid = get_pid(rcu_dereference(task->pids[type].pid));
366 	rcu_read_unlock();
367 	return pid;
368 }
369 EXPORT_SYMBOL_GPL(get_task_pid);
370 
371 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
372 {
373 	struct task_struct *result;
374 	rcu_read_lock();
375 	result = pid_task(pid, type);
376 	if (result)
377 		get_task_struct(result);
378 	rcu_read_unlock();
379 	return result;
380 }
381 EXPORT_SYMBOL_GPL(get_pid_task);
382 
383 struct pid *find_get_pid(pid_t nr)
384 {
385 	struct pid *pid;
386 
387 	rcu_read_lock();
388 	pid = get_pid(find_vpid(nr));
389 	rcu_read_unlock();
390 
391 	return pid;
392 }
393 EXPORT_SYMBOL_GPL(find_get_pid);
394 
395 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
396 {
397 	struct upid *upid;
398 	pid_t nr = 0;
399 
400 	if (pid && ns->level <= pid->level) {
401 		upid = &pid->numbers[ns->level];
402 		if (upid->ns == ns)
403 			nr = upid->nr;
404 	}
405 	return nr;
406 }
407 EXPORT_SYMBOL_GPL(pid_nr_ns);
408 
409 pid_t pid_vnr(struct pid *pid)
410 {
411 	return pid_nr_ns(pid, task_active_pid_ns(current));
412 }
413 EXPORT_SYMBOL_GPL(pid_vnr);
414 
415 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
416 			struct pid_namespace *ns)
417 {
418 	pid_t nr = 0;
419 
420 	rcu_read_lock();
421 	if (!ns)
422 		ns = task_active_pid_ns(current);
423 	if (likely(pid_alive(task))) {
424 		if (type != PIDTYPE_PID) {
425 			if (type == __PIDTYPE_TGID)
426 				type = PIDTYPE_PID;
427 
428 			task = task->group_leader;
429 		}
430 		nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
431 	}
432 	rcu_read_unlock();
433 
434 	return nr;
435 }
436 EXPORT_SYMBOL(__task_pid_nr_ns);
437 
438 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
439 {
440 	return ns_of_pid(task_pid(tsk));
441 }
442 EXPORT_SYMBOL_GPL(task_active_pid_ns);
443 
444 /*
445  * Used by proc to find the first pid that is greater than or equal to nr.
446  *
447  * If there is a pid at nr this function is exactly the same as find_pid_ns.
448  */
449 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
450 {
451 	return idr_get_next(&ns->idr, &nr);
452 }
453 
454 void __init pid_idr_init(void)
455 {
456 	/* Verify no one has done anything silly: */
457 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
458 
459 	/* bump default and minimum pid_max based on number of cpus */
460 	pid_max = min(pid_max_max, max_t(int, pid_max,
461 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
462 	pid_max_min = max_t(int, pid_max_min,
463 				PIDS_PER_CPU_MIN * num_possible_cpus());
464 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
465 
466 	idr_init(&init_pid_ns.idr);
467 
468 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
469 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
470 }
471