1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 Nadia Yvette Chambers, IBM 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/export.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/rculist.h> 34 #include <linux/bootmem.h> 35 #include <linux/hash.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/proc_fs.h> 41 42 #define pid_hashfn(nr, ns) \ 43 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 44 static struct hlist_head *pid_hash; 45 static unsigned int pidhash_shift = 4; 46 struct pid init_struct_pid = INIT_STRUCT_PID; 47 48 int pid_max = PID_MAX_DEFAULT; 49 50 #define RESERVED_PIDS 300 51 52 int pid_max_min = RESERVED_PIDS + 1; 53 int pid_max_max = PID_MAX_LIMIT; 54 55 static inline int mk_pid(struct pid_namespace *pid_ns, 56 struct pidmap *map, int off) 57 { 58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 59 } 60 61 #define find_next_offset(map, off) \ 62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 63 64 /* 65 * PID-map pages start out as NULL, they get allocated upon 66 * first use and are never deallocated. This way a low pid_max 67 * value does not cause lots of bitmaps to be allocated, but 68 * the scheme scales to up to 4 million PIDs, runtime. 69 */ 70 struct pid_namespace init_pid_ns = { 71 .kref = { 72 .refcount = ATOMIC_INIT(2), 73 }, 74 .pidmap = { 75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 76 }, 77 .last_pid = 0, 78 .nr_hashed = PIDNS_HASH_ADDING, 79 .level = 0, 80 .child_reaper = &init_task, 81 .user_ns = &init_user_ns, 82 .proc_inum = PROC_PID_INIT_INO, 83 }; 84 EXPORT_SYMBOL_GPL(init_pid_ns); 85 86 /* 87 * Note: disable interrupts while the pidmap_lock is held as an 88 * interrupt might come in and do read_lock(&tasklist_lock). 89 * 90 * If we don't disable interrupts there is a nasty deadlock between 91 * detach_pid()->free_pid() and another cpu that does 92 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 93 * read_lock(&tasklist_lock); 94 * 95 * After we clean up the tasklist_lock and know there are no 96 * irq handlers that take it we can leave the interrupts enabled. 97 * For now it is easier to be safe than to prove it can't happen. 98 */ 99 100 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 101 102 static void free_pidmap(struct upid *upid) 103 { 104 int nr = upid->nr; 105 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; 106 int offset = nr & BITS_PER_PAGE_MASK; 107 108 clear_bit(offset, map->page); 109 atomic_inc(&map->nr_free); 110 } 111 112 /* 113 * If we started walking pids at 'base', is 'a' seen before 'b'? 114 */ 115 static int pid_before(int base, int a, int b) 116 { 117 /* 118 * This is the same as saying 119 * 120 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT 121 * and that mapping orders 'a' and 'b' with respect to 'base'. 122 */ 123 return (unsigned)(a - base) < (unsigned)(b - base); 124 } 125 126 /* 127 * We might be racing with someone else trying to set pid_ns->last_pid 128 * at the pid allocation time (there's also a sysctl for this, but racing 129 * with this one is OK, see comment in kernel/pid_namespace.c about it). 130 * We want the winner to have the "later" value, because if the 131 * "earlier" value prevails, then a pid may get reused immediately. 132 * 133 * Since pids rollover, it is not sufficient to just pick the bigger 134 * value. We have to consider where we started counting from. 135 * 136 * 'base' is the value of pid_ns->last_pid that we observed when 137 * we started looking for a pid. 138 * 139 * 'pid' is the pid that we eventually found. 140 */ 141 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) 142 { 143 int prev; 144 int last_write = base; 145 do { 146 prev = last_write; 147 last_write = cmpxchg(&pid_ns->last_pid, prev, pid); 148 } while ((prev != last_write) && (pid_before(base, last_write, pid))); 149 } 150 151 static int alloc_pidmap(struct pid_namespace *pid_ns) 152 { 153 int i, offset, max_scan, pid, last = pid_ns->last_pid; 154 struct pidmap *map; 155 156 pid = last + 1; 157 if (pid >= pid_max) 158 pid = RESERVED_PIDS; 159 offset = pid & BITS_PER_PAGE_MASK; 160 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 161 /* 162 * If last_pid points into the middle of the map->page we 163 * want to scan this bitmap block twice, the second time 164 * we start with offset == 0 (or RESERVED_PIDS). 165 */ 166 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; 167 for (i = 0; i <= max_scan; ++i) { 168 if (unlikely(!map->page)) { 169 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 170 /* 171 * Free the page if someone raced with us 172 * installing it: 173 */ 174 spin_lock_irq(&pidmap_lock); 175 if (!map->page) { 176 map->page = page; 177 page = NULL; 178 } 179 spin_unlock_irq(&pidmap_lock); 180 kfree(page); 181 if (unlikely(!map->page)) 182 break; 183 } 184 if (likely(atomic_read(&map->nr_free))) { 185 for ( ; ; ) { 186 if (!test_and_set_bit(offset, map->page)) { 187 atomic_dec(&map->nr_free); 188 set_last_pid(pid_ns, last, pid); 189 return pid; 190 } 191 offset = find_next_offset(map, offset); 192 if (offset >= BITS_PER_PAGE) 193 break; 194 pid = mk_pid(pid_ns, map, offset); 195 if (pid >= pid_max) 196 break; 197 } 198 } 199 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 200 ++map; 201 offset = 0; 202 } else { 203 map = &pid_ns->pidmap[0]; 204 offset = RESERVED_PIDS; 205 if (unlikely(last == offset)) 206 break; 207 } 208 pid = mk_pid(pid_ns, map, offset); 209 } 210 return -1; 211 } 212 213 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last) 214 { 215 int offset; 216 struct pidmap *map, *end; 217 218 if (last >= PID_MAX_LIMIT) 219 return -1; 220 221 offset = (last + 1) & BITS_PER_PAGE_MASK; 222 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 223 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 224 for (; map < end; map++, offset = 0) { 225 if (unlikely(!map->page)) 226 continue; 227 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 228 if (offset < BITS_PER_PAGE) 229 return mk_pid(pid_ns, map, offset); 230 } 231 return -1; 232 } 233 234 void put_pid(struct pid *pid) 235 { 236 struct pid_namespace *ns; 237 238 if (!pid) 239 return; 240 241 ns = pid->numbers[pid->level].ns; 242 if ((atomic_read(&pid->count) == 1) || 243 atomic_dec_and_test(&pid->count)) { 244 kmem_cache_free(ns->pid_cachep, pid); 245 put_pid_ns(ns); 246 } 247 } 248 EXPORT_SYMBOL_GPL(put_pid); 249 250 static void delayed_put_pid(struct rcu_head *rhp) 251 { 252 struct pid *pid = container_of(rhp, struct pid, rcu); 253 put_pid(pid); 254 } 255 256 void free_pid(struct pid *pid) 257 { 258 /* We can be called with write_lock_irq(&tasklist_lock) held */ 259 int i; 260 unsigned long flags; 261 262 spin_lock_irqsave(&pidmap_lock, flags); 263 for (i = 0; i <= pid->level; i++) { 264 struct upid *upid = pid->numbers + i; 265 struct pid_namespace *ns = upid->ns; 266 hlist_del_rcu(&upid->pid_chain); 267 switch(--ns->nr_hashed) { 268 case 2: 269 case 1: 270 /* When all that is left in the pid namespace 271 * is the reaper wake up the reaper. The reaper 272 * may be sleeping in zap_pid_ns_processes(). 273 */ 274 wake_up_process(ns->child_reaper); 275 break; 276 case 0: 277 schedule_work(&ns->proc_work); 278 break; 279 } 280 } 281 spin_unlock_irqrestore(&pidmap_lock, flags); 282 283 for (i = 0; i <= pid->level; i++) 284 free_pidmap(pid->numbers + i); 285 286 call_rcu(&pid->rcu, delayed_put_pid); 287 } 288 289 struct pid *alloc_pid(struct pid_namespace *ns) 290 { 291 struct pid *pid; 292 enum pid_type type; 293 int i, nr; 294 struct pid_namespace *tmp; 295 struct upid *upid; 296 297 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 298 if (!pid) 299 goto out; 300 301 tmp = ns; 302 pid->level = ns->level; 303 for (i = ns->level; i >= 0; i--) { 304 nr = alloc_pidmap(tmp); 305 if (nr < 0) 306 goto out_free; 307 308 pid->numbers[i].nr = nr; 309 pid->numbers[i].ns = tmp; 310 tmp = tmp->parent; 311 } 312 313 if (unlikely(is_child_reaper(pid))) { 314 if (pid_ns_prepare_proc(ns)) 315 goto out_free; 316 } 317 318 get_pid_ns(ns); 319 atomic_set(&pid->count, 1); 320 for (type = 0; type < PIDTYPE_MAX; ++type) 321 INIT_HLIST_HEAD(&pid->tasks[type]); 322 323 upid = pid->numbers + ns->level; 324 spin_lock_irq(&pidmap_lock); 325 if (!(ns->nr_hashed & PIDNS_HASH_ADDING)) 326 goto out_unlock; 327 for ( ; upid >= pid->numbers; --upid) { 328 hlist_add_head_rcu(&upid->pid_chain, 329 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 330 upid->ns->nr_hashed++; 331 } 332 spin_unlock_irq(&pidmap_lock); 333 334 out: 335 return pid; 336 337 out_unlock: 338 spin_unlock_irq(&pidmap_lock); 339 out_free: 340 while (++i <= ns->level) 341 free_pidmap(pid->numbers + i); 342 343 kmem_cache_free(ns->pid_cachep, pid); 344 pid = NULL; 345 goto out; 346 } 347 348 void disable_pid_allocation(struct pid_namespace *ns) 349 { 350 spin_lock_irq(&pidmap_lock); 351 ns->nr_hashed &= ~PIDNS_HASH_ADDING; 352 spin_unlock_irq(&pidmap_lock); 353 } 354 355 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 356 { 357 struct upid *pnr; 358 359 hlist_for_each_entry_rcu(pnr, 360 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 361 if (pnr->nr == nr && pnr->ns == ns) 362 return container_of(pnr, struct pid, 363 numbers[ns->level]); 364 365 return NULL; 366 } 367 EXPORT_SYMBOL_GPL(find_pid_ns); 368 369 struct pid *find_vpid(int nr) 370 { 371 return find_pid_ns(nr, task_active_pid_ns(current)); 372 } 373 EXPORT_SYMBOL_GPL(find_vpid); 374 375 /* 376 * attach_pid() must be called with the tasklist_lock write-held. 377 */ 378 void attach_pid(struct task_struct *task, enum pid_type type) 379 { 380 struct pid_link *link = &task->pids[type]; 381 hlist_add_head_rcu(&link->node, &link->pid->tasks[type]); 382 } 383 384 static void __change_pid(struct task_struct *task, enum pid_type type, 385 struct pid *new) 386 { 387 struct pid_link *link; 388 struct pid *pid; 389 int tmp; 390 391 link = &task->pids[type]; 392 pid = link->pid; 393 394 hlist_del_rcu(&link->node); 395 link->pid = new; 396 397 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 398 if (!hlist_empty(&pid->tasks[tmp])) 399 return; 400 401 free_pid(pid); 402 } 403 404 void detach_pid(struct task_struct *task, enum pid_type type) 405 { 406 __change_pid(task, type, NULL); 407 } 408 409 void change_pid(struct task_struct *task, enum pid_type type, 410 struct pid *pid) 411 { 412 __change_pid(task, type, pid); 413 attach_pid(task, type); 414 } 415 416 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 417 void transfer_pid(struct task_struct *old, struct task_struct *new, 418 enum pid_type type) 419 { 420 new->pids[type].pid = old->pids[type].pid; 421 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 422 } 423 424 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 425 { 426 struct task_struct *result = NULL; 427 if (pid) { 428 struct hlist_node *first; 429 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 430 lockdep_tasklist_lock_is_held()); 431 if (first) 432 result = hlist_entry(first, struct task_struct, pids[(type)].node); 433 } 434 return result; 435 } 436 EXPORT_SYMBOL(pid_task); 437 438 /* 439 * Must be called under rcu_read_lock(). 440 */ 441 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 442 { 443 rcu_lockdep_assert(rcu_read_lock_held(), 444 "find_task_by_pid_ns() needs rcu_read_lock()" 445 " protection"); 446 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 447 } 448 449 struct task_struct *find_task_by_vpid(pid_t vnr) 450 { 451 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 452 } 453 454 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 455 { 456 struct pid *pid; 457 rcu_read_lock(); 458 if (type != PIDTYPE_PID) 459 task = task->group_leader; 460 pid = get_pid(task->pids[type].pid); 461 rcu_read_unlock(); 462 return pid; 463 } 464 EXPORT_SYMBOL_GPL(get_task_pid); 465 466 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 467 { 468 struct task_struct *result; 469 rcu_read_lock(); 470 result = pid_task(pid, type); 471 if (result) 472 get_task_struct(result); 473 rcu_read_unlock(); 474 return result; 475 } 476 EXPORT_SYMBOL_GPL(get_pid_task); 477 478 struct pid *find_get_pid(pid_t nr) 479 { 480 struct pid *pid; 481 482 rcu_read_lock(); 483 pid = get_pid(find_vpid(nr)); 484 rcu_read_unlock(); 485 486 return pid; 487 } 488 EXPORT_SYMBOL_GPL(find_get_pid); 489 490 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 491 { 492 struct upid *upid; 493 pid_t nr = 0; 494 495 if (pid && ns->level <= pid->level) { 496 upid = &pid->numbers[ns->level]; 497 if (upid->ns == ns) 498 nr = upid->nr; 499 } 500 return nr; 501 } 502 EXPORT_SYMBOL_GPL(pid_nr_ns); 503 504 pid_t pid_vnr(struct pid *pid) 505 { 506 return pid_nr_ns(pid, task_active_pid_ns(current)); 507 } 508 EXPORT_SYMBOL_GPL(pid_vnr); 509 510 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 511 struct pid_namespace *ns) 512 { 513 pid_t nr = 0; 514 515 rcu_read_lock(); 516 if (!ns) 517 ns = task_active_pid_ns(current); 518 if (likely(pid_alive(task))) { 519 if (type != PIDTYPE_PID) 520 task = task->group_leader; 521 nr = pid_nr_ns(task->pids[type].pid, ns); 522 } 523 rcu_read_unlock(); 524 525 return nr; 526 } 527 EXPORT_SYMBOL(__task_pid_nr_ns); 528 529 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 530 { 531 return pid_nr_ns(task_tgid(tsk), ns); 532 } 533 EXPORT_SYMBOL(task_tgid_nr_ns); 534 535 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 536 { 537 return ns_of_pid(task_pid(tsk)); 538 } 539 EXPORT_SYMBOL_GPL(task_active_pid_ns); 540 541 /* 542 * Used by proc to find the first pid that is greater than or equal to nr. 543 * 544 * If there is a pid at nr this function is exactly the same as find_pid_ns. 545 */ 546 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 547 { 548 struct pid *pid; 549 550 do { 551 pid = find_pid_ns(nr, ns); 552 if (pid) 553 break; 554 nr = next_pidmap(ns, nr); 555 } while (nr > 0); 556 557 return pid; 558 } 559 560 /* 561 * The pid hash table is scaled according to the amount of memory in the 562 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 563 * more. 564 */ 565 void __init pidhash_init(void) 566 { 567 unsigned int i, pidhash_size; 568 569 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, 570 HASH_EARLY | HASH_SMALL, 571 &pidhash_shift, NULL, 572 0, 4096); 573 pidhash_size = 1U << pidhash_shift; 574 575 for (i = 0; i < pidhash_size; i++) 576 INIT_HLIST_HEAD(&pid_hash[i]); 577 } 578 579 void __init pidmap_init(void) 580 { 581 /* Veryify no one has done anything silly */ 582 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING); 583 584 /* bump default and minimum pid_max based on number of cpus */ 585 pid_max = min(pid_max_max, max_t(int, pid_max, 586 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 587 pid_max_min = max_t(int, pid_max_min, 588 PIDS_PER_CPU_MIN * num_possible_cpus()); 589 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 590 591 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 592 /* Reserve PID 0. We never call free_pidmap(0) */ 593 set_bit(0, init_pid_ns.pidmap[0].page); 594 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 595 596 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 597 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 598 } 599