xref: /openbmc/linux/kernel/pid.c (revision a20eefae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic pidhash and scalable, time-bounded PID allocator
4  *
5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
6  * (C) 2004 Nadia Yvette Chambers, Oracle
7  * (C) 2002-2004 Ingo Molnar, Red Hat
8  *
9  * pid-structures are backing objects for tasks sharing a given ID to chain
10  * against. There is very little to them aside from hashing them and
11  * parking tasks using given ID's on a list.
12  *
13  * The hash is always changed with the tasklist_lock write-acquired,
14  * and the hash is only accessed with the tasklist_lock at least
15  * read-acquired, so there's no additional SMP locking needed here.
16  *
17  * We have a list of bitmap pages, which bitmaps represent the PID space.
18  * Allocating and freeing PIDs is completely lockless. The worst-case
19  * allocation scenario when all but one out of 1 million PIDs possible are
20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22  *
23  * Pid namespaces:
24  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26  *     Many thanks to Oleg Nesterov for comments and help
27  *
28  */
29 
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 
46 struct pid init_struct_pid = {
47 	.count		= REFCOUNT_INIT(1),
48 	.tasks		= {
49 		{ .first = NULL },
50 		{ .first = NULL },
51 		{ .first = NULL },
52 	},
53 	.level		= 0,
54 	.numbers	= { {
55 		.nr		= 0,
56 		.ns		= &init_pid_ns,
57 	}, }
58 };
59 
60 int pid_max = PID_MAX_DEFAULT;
61 
62 #define RESERVED_PIDS		300
63 
64 int pid_max_min = RESERVED_PIDS + 1;
65 int pid_max_max = PID_MAX_LIMIT;
66 
67 /*
68  * PID-map pages start out as NULL, they get allocated upon
69  * first use and are never deallocated. This way a low pid_max
70  * value does not cause lots of bitmaps to be allocated, but
71  * the scheme scales to up to 4 million PIDs, runtime.
72  */
73 struct pid_namespace init_pid_ns = {
74 	.kref = KREF_INIT(2),
75 	.idr = IDR_INIT(init_pid_ns.idr),
76 	.pid_allocated = PIDNS_ADDING,
77 	.level = 0,
78 	.child_reaper = &init_task,
79 	.user_ns = &init_user_ns,
80 	.ns.inum = PROC_PID_INIT_INO,
81 #ifdef CONFIG_PID_NS
82 	.ns.ops = &pidns_operations,
83 #endif
84 };
85 EXPORT_SYMBOL_GPL(init_pid_ns);
86 
87 /*
88  * Note: disable interrupts while the pidmap_lock is held as an
89  * interrupt might come in and do read_lock(&tasklist_lock).
90  *
91  * If we don't disable interrupts there is a nasty deadlock between
92  * detach_pid()->free_pid() and another cpu that does
93  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94  * read_lock(&tasklist_lock);
95  *
96  * After we clean up the tasklist_lock and know there are no
97  * irq handlers that take it we can leave the interrupts enabled.
98  * For now it is easier to be safe than to prove it can't happen.
99  */
100 
101 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102 
103 void put_pid(struct pid *pid)
104 {
105 	struct pid_namespace *ns;
106 
107 	if (!pid)
108 		return;
109 
110 	ns = pid->numbers[pid->level].ns;
111 	if (refcount_dec_and_test(&pid->count)) {
112 		kmem_cache_free(ns->pid_cachep, pid);
113 		put_pid_ns(ns);
114 	}
115 }
116 EXPORT_SYMBOL_GPL(put_pid);
117 
118 static void delayed_put_pid(struct rcu_head *rhp)
119 {
120 	struct pid *pid = container_of(rhp, struct pid, rcu);
121 	put_pid(pid);
122 }
123 
124 void free_pid(struct pid *pid)
125 {
126 	/* We can be called with write_lock_irq(&tasklist_lock) held */
127 	int i;
128 	unsigned long flags;
129 
130 	spin_lock_irqsave(&pidmap_lock, flags);
131 	for (i = 0; i <= pid->level; i++) {
132 		struct upid *upid = pid->numbers + i;
133 		struct pid_namespace *ns = upid->ns;
134 		switch (--ns->pid_allocated) {
135 		case 2:
136 		case 1:
137 			/* When all that is left in the pid namespace
138 			 * is the reaper wake up the reaper.  The reaper
139 			 * may be sleeping in zap_pid_ns_processes().
140 			 */
141 			wake_up_process(ns->child_reaper);
142 			break;
143 		case PIDNS_ADDING:
144 			/* Handle a fork failure of the first process */
145 			WARN_ON(ns->child_reaper);
146 			ns->pid_allocated = 0;
147 			/* fall through */
148 		case 0:
149 			schedule_work(&ns->proc_work);
150 			break;
151 		}
152 
153 		idr_remove(&ns->idr, upid->nr);
154 	}
155 	spin_unlock_irqrestore(&pidmap_lock, flags);
156 
157 	call_rcu(&pid->rcu, delayed_put_pid);
158 }
159 
160 struct pid *alloc_pid(struct pid_namespace *ns)
161 {
162 	struct pid *pid;
163 	enum pid_type type;
164 	int i, nr;
165 	struct pid_namespace *tmp;
166 	struct upid *upid;
167 	int retval = -ENOMEM;
168 
169 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
170 	if (!pid)
171 		return ERR_PTR(retval);
172 
173 	tmp = ns;
174 	pid->level = ns->level;
175 
176 	for (i = ns->level; i >= 0; i--) {
177 		int pid_min = 1;
178 
179 		idr_preload(GFP_KERNEL);
180 		spin_lock_irq(&pidmap_lock);
181 
182 		/*
183 		 * init really needs pid 1, but after reaching the maximum
184 		 * wrap back to RESERVED_PIDS
185 		 */
186 		if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
187 			pid_min = RESERVED_PIDS;
188 
189 		/*
190 		 * Store a null pointer so find_pid_ns does not find
191 		 * a partially initialized PID (see below).
192 		 */
193 		nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
194 				      pid_max, GFP_ATOMIC);
195 		spin_unlock_irq(&pidmap_lock);
196 		idr_preload_end();
197 
198 		if (nr < 0) {
199 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
200 			goto out_free;
201 		}
202 
203 		pid->numbers[i].nr = nr;
204 		pid->numbers[i].ns = tmp;
205 		tmp = tmp->parent;
206 	}
207 
208 	if (unlikely(is_child_reaper(pid))) {
209 		if (pid_ns_prepare_proc(ns))
210 			goto out_free;
211 	}
212 
213 	get_pid_ns(ns);
214 	refcount_set(&pid->count, 1);
215 	for (type = 0; type < PIDTYPE_MAX; ++type)
216 		INIT_HLIST_HEAD(&pid->tasks[type]);
217 
218 	init_waitqueue_head(&pid->wait_pidfd);
219 
220 	upid = pid->numbers + ns->level;
221 	spin_lock_irq(&pidmap_lock);
222 	if (!(ns->pid_allocated & PIDNS_ADDING))
223 		goto out_unlock;
224 	for ( ; upid >= pid->numbers; --upid) {
225 		/* Make the PID visible to find_pid_ns. */
226 		idr_replace(&upid->ns->idr, pid, upid->nr);
227 		upid->ns->pid_allocated++;
228 	}
229 	spin_unlock_irq(&pidmap_lock);
230 
231 	return pid;
232 
233 out_unlock:
234 	spin_unlock_irq(&pidmap_lock);
235 	put_pid_ns(ns);
236 
237 out_free:
238 	spin_lock_irq(&pidmap_lock);
239 	while (++i <= ns->level) {
240 		upid = pid->numbers + i;
241 		idr_remove(&upid->ns->idr, upid->nr);
242 	}
243 
244 	/* On failure to allocate the first pid, reset the state */
245 	if (ns->pid_allocated == PIDNS_ADDING)
246 		idr_set_cursor(&ns->idr, 0);
247 
248 	spin_unlock_irq(&pidmap_lock);
249 
250 	kmem_cache_free(ns->pid_cachep, pid);
251 	return ERR_PTR(retval);
252 }
253 
254 void disable_pid_allocation(struct pid_namespace *ns)
255 {
256 	spin_lock_irq(&pidmap_lock);
257 	ns->pid_allocated &= ~PIDNS_ADDING;
258 	spin_unlock_irq(&pidmap_lock);
259 }
260 
261 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
262 {
263 	return idr_find(&ns->idr, nr);
264 }
265 EXPORT_SYMBOL_GPL(find_pid_ns);
266 
267 struct pid *find_vpid(int nr)
268 {
269 	return find_pid_ns(nr, task_active_pid_ns(current));
270 }
271 EXPORT_SYMBOL_GPL(find_vpid);
272 
273 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
274 {
275 	return (type == PIDTYPE_PID) ?
276 		&task->thread_pid :
277 		&task->signal->pids[type];
278 }
279 
280 /*
281  * attach_pid() must be called with the tasklist_lock write-held.
282  */
283 void attach_pid(struct task_struct *task, enum pid_type type)
284 {
285 	struct pid *pid = *task_pid_ptr(task, type);
286 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
287 }
288 
289 static void __change_pid(struct task_struct *task, enum pid_type type,
290 			struct pid *new)
291 {
292 	struct pid **pid_ptr = task_pid_ptr(task, type);
293 	struct pid *pid;
294 	int tmp;
295 
296 	pid = *pid_ptr;
297 
298 	hlist_del_rcu(&task->pid_links[type]);
299 	*pid_ptr = new;
300 
301 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
302 		if (!hlist_empty(&pid->tasks[tmp]))
303 			return;
304 
305 	free_pid(pid);
306 }
307 
308 void detach_pid(struct task_struct *task, enum pid_type type)
309 {
310 	__change_pid(task, type, NULL);
311 }
312 
313 void change_pid(struct task_struct *task, enum pid_type type,
314 		struct pid *pid)
315 {
316 	__change_pid(task, type, pid);
317 	attach_pid(task, type);
318 }
319 
320 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
321 void transfer_pid(struct task_struct *old, struct task_struct *new,
322 			   enum pid_type type)
323 {
324 	if (type == PIDTYPE_PID)
325 		new->thread_pid = old->thread_pid;
326 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
327 }
328 
329 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
330 {
331 	struct task_struct *result = NULL;
332 	if (pid) {
333 		struct hlist_node *first;
334 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
335 					      lockdep_tasklist_lock_is_held());
336 		if (first)
337 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
338 	}
339 	return result;
340 }
341 EXPORT_SYMBOL(pid_task);
342 
343 /*
344  * Must be called under rcu_read_lock().
345  */
346 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
347 {
348 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
349 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
350 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
351 }
352 
353 struct task_struct *find_task_by_vpid(pid_t vnr)
354 {
355 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
356 }
357 
358 struct task_struct *find_get_task_by_vpid(pid_t nr)
359 {
360 	struct task_struct *task;
361 
362 	rcu_read_lock();
363 	task = find_task_by_vpid(nr);
364 	if (task)
365 		get_task_struct(task);
366 	rcu_read_unlock();
367 
368 	return task;
369 }
370 
371 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
372 {
373 	struct pid *pid;
374 	rcu_read_lock();
375 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
376 	rcu_read_unlock();
377 	return pid;
378 }
379 EXPORT_SYMBOL_GPL(get_task_pid);
380 
381 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
382 {
383 	struct task_struct *result;
384 	rcu_read_lock();
385 	result = pid_task(pid, type);
386 	if (result)
387 		get_task_struct(result);
388 	rcu_read_unlock();
389 	return result;
390 }
391 EXPORT_SYMBOL_GPL(get_pid_task);
392 
393 struct pid *find_get_pid(pid_t nr)
394 {
395 	struct pid *pid;
396 
397 	rcu_read_lock();
398 	pid = get_pid(find_vpid(nr));
399 	rcu_read_unlock();
400 
401 	return pid;
402 }
403 EXPORT_SYMBOL_GPL(find_get_pid);
404 
405 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
406 {
407 	struct upid *upid;
408 	pid_t nr = 0;
409 
410 	if (pid && ns->level <= pid->level) {
411 		upid = &pid->numbers[ns->level];
412 		if (upid->ns == ns)
413 			nr = upid->nr;
414 	}
415 	return nr;
416 }
417 EXPORT_SYMBOL_GPL(pid_nr_ns);
418 
419 pid_t pid_vnr(struct pid *pid)
420 {
421 	return pid_nr_ns(pid, task_active_pid_ns(current));
422 }
423 EXPORT_SYMBOL_GPL(pid_vnr);
424 
425 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
426 			struct pid_namespace *ns)
427 {
428 	pid_t nr = 0;
429 
430 	rcu_read_lock();
431 	if (!ns)
432 		ns = task_active_pid_ns(current);
433 	if (likely(pid_alive(task)))
434 		nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
435 	rcu_read_unlock();
436 
437 	return nr;
438 }
439 EXPORT_SYMBOL(__task_pid_nr_ns);
440 
441 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
442 {
443 	return ns_of_pid(task_pid(tsk));
444 }
445 EXPORT_SYMBOL_GPL(task_active_pid_ns);
446 
447 /*
448  * Used by proc to find the first pid that is greater than or equal to nr.
449  *
450  * If there is a pid at nr this function is exactly the same as find_pid_ns.
451  */
452 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
453 {
454 	return idr_get_next(&ns->idr, &nr);
455 }
456 
457 /**
458  * pidfd_create() - Create a new pid file descriptor.
459  *
460  * @pid:  struct pid that the pidfd will reference
461  *
462  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
463  *
464  * Note, that this function can only be called after the fd table has
465  * been unshared to avoid leaking the pidfd to the new process.
466  *
467  * Return: On success, a cloexec pidfd is returned.
468  *         On error, a negative errno number will be returned.
469  */
470 static int pidfd_create(struct pid *pid)
471 {
472 	int fd;
473 
474 	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
475 			      O_RDWR | O_CLOEXEC);
476 	if (fd < 0)
477 		put_pid(pid);
478 
479 	return fd;
480 }
481 
482 /**
483  * pidfd_open() - Open new pid file descriptor.
484  *
485  * @pid:   pid for which to retrieve a pidfd
486  * @flags: flags to pass
487  *
488  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
489  * the process identified by @pid. Currently, the process identified by
490  * @pid must be a thread-group leader. This restriction currently exists
491  * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
492  * be used with CLONE_THREAD) and pidfd polling (only supports thread group
493  * leaders).
494  *
495  * Return: On success, a cloexec pidfd is returned.
496  *         On error, a negative errno number will be returned.
497  */
498 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
499 {
500 	int fd, ret;
501 	struct pid *p;
502 
503 	if (flags)
504 		return -EINVAL;
505 
506 	if (pid <= 0)
507 		return -EINVAL;
508 
509 	p = find_get_pid(pid);
510 	if (!p)
511 		return -ESRCH;
512 
513 	ret = 0;
514 	rcu_read_lock();
515 	if (!pid_task(p, PIDTYPE_TGID))
516 		ret = -EINVAL;
517 	rcu_read_unlock();
518 
519 	fd = ret ?: pidfd_create(p);
520 	put_pid(p);
521 	return fd;
522 }
523 
524 void __init pid_idr_init(void)
525 {
526 	/* Verify no one has done anything silly: */
527 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
528 
529 	/* bump default and minimum pid_max based on number of cpus */
530 	pid_max = min(pid_max_max, max_t(int, pid_max,
531 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
532 	pid_max_min = max_t(int, pid_max_min,
533 				PIDS_PER_CPU_MIN * num_possible_cpus());
534 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
535 
536 	idr_init(&init_pid_ns.idr);
537 
538 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
539 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
540 }
541