1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 46 struct pid init_struct_pid = { 47 .count = REFCOUNT_INIT(1), 48 .tasks = { 49 { .first = NULL }, 50 { .first = NULL }, 51 { .first = NULL }, 52 }, 53 .level = 0, 54 .numbers = { { 55 .nr = 0, 56 .ns = &init_pid_ns, 57 }, } 58 }; 59 60 int pid_max = PID_MAX_DEFAULT; 61 62 #define RESERVED_PIDS 300 63 64 int pid_max_min = RESERVED_PIDS + 1; 65 int pid_max_max = PID_MAX_LIMIT; 66 67 /* 68 * PID-map pages start out as NULL, they get allocated upon 69 * first use and are never deallocated. This way a low pid_max 70 * value does not cause lots of bitmaps to be allocated, but 71 * the scheme scales to up to 4 million PIDs, runtime. 72 */ 73 struct pid_namespace init_pid_ns = { 74 .kref = KREF_INIT(2), 75 .idr = IDR_INIT(init_pid_ns.idr), 76 .pid_allocated = PIDNS_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .ns.inum = PROC_PID_INIT_INO, 81 #ifdef CONFIG_PID_NS 82 .ns.ops = &pidns_operations, 83 #endif 84 }; 85 EXPORT_SYMBOL_GPL(init_pid_ns); 86 87 /* 88 * Note: disable interrupts while the pidmap_lock is held as an 89 * interrupt might come in and do read_lock(&tasklist_lock). 90 * 91 * If we don't disable interrupts there is a nasty deadlock between 92 * detach_pid()->free_pid() and another cpu that does 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 94 * read_lock(&tasklist_lock); 95 * 96 * After we clean up the tasklist_lock and know there are no 97 * irq handlers that take it we can leave the interrupts enabled. 98 * For now it is easier to be safe than to prove it can't happen. 99 */ 100 101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 102 103 void put_pid(struct pid *pid) 104 { 105 struct pid_namespace *ns; 106 107 if (!pid) 108 return; 109 110 ns = pid->numbers[pid->level].ns; 111 if (refcount_dec_and_test(&pid->count)) { 112 kmem_cache_free(ns->pid_cachep, pid); 113 put_pid_ns(ns); 114 } 115 } 116 EXPORT_SYMBOL_GPL(put_pid); 117 118 static void delayed_put_pid(struct rcu_head *rhp) 119 { 120 struct pid *pid = container_of(rhp, struct pid, rcu); 121 put_pid(pid); 122 } 123 124 void free_pid(struct pid *pid) 125 { 126 /* We can be called with write_lock_irq(&tasklist_lock) held */ 127 int i; 128 unsigned long flags; 129 130 spin_lock_irqsave(&pidmap_lock, flags); 131 for (i = 0; i <= pid->level; i++) { 132 struct upid *upid = pid->numbers + i; 133 struct pid_namespace *ns = upid->ns; 134 switch (--ns->pid_allocated) { 135 case 2: 136 case 1: 137 /* When all that is left in the pid namespace 138 * is the reaper wake up the reaper. The reaper 139 * may be sleeping in zap_pid_ns_processes(). 140 */ 141 wake_up_process(ns->child_reaper); 142 break; 143 case PIDNS_ADDING: 144 /* Handle a fork failure of the first process */ 145 WARN_ON(ns->child_reaper); 146 ns->pid_allocated = 0; 147 /* fall through */ 148 case 0: 149 schedule_work(&ns->proc_work); 150 break; 151 } 152 153 idr_remove(&ns->idr, upid->nr); 154 } 155 spin_unlock_irqrestore(&pidmap_lock, flags); 156 157 call_rcu(&pid->rcu, delayed_put_pid); 158 } 159 160 struct pid *alloc_pid(struct pid_namespace *ns) 161 { 162 struct pid *pid; 163 enum pid_type type; 164 int i, nr; 165 struct pid_namespace *tmp; 166 struct upid *upid; 167 int retval = -ENOMEM; 168 169 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 170 if (!pid) 171 return ERR_PTR(retval); 172 173 tmp = ns; 174 pid->level = ns->level; 175 176 for (i = ns->level; i >= 0; i--) { 177 int pid_min = 1; 178 179 idr_preload(GFP_KERNEL); 180 spin_lock_irq(&pidmap_lock); 181 182 /* 183 * init really needs pid 1, but after reaching the maximum 184 * wrap back to RESERVED_PIDS 185 */ 186 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 187 pid_min = RESERVED_PIDS; 188 189 /* 190 * Store a null pointer so find_pid_ns does not find 191 * a partially initialized PID (see below). 192 */ 193 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 194 pid_max, GFP_ATOMIC); 195 spin_unlock_irq(&pidmap_lock); 196 idr_preload_end(); 197 198 if (nr < 0) { 199 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 200 goto out_free; 201 } 202 203 pid->numbers[i].nr = nr; 204 pid->numbers[i].ns = tmp; 205 tmp = tmp->parent; 206 } 207 208 if (unlikely(is_child_reaper(pid))) { 209 if (pid_ns_prepare_proc(ns)) 210 goto out_free; 211 } 212 213 get_pid_ns(ns); 214 refcount_set(&pid->count, 1); 215 for (type = 0; type < PIDTYPE_MAX; ++type) 216 INIT_HLIST_HEAD(&pid->tasks[type]); 217 218 init_waitqueue_head(&pid->wait_pidfd); 219 220 upid = pid->numbers + ns->level; 221 spin_lock_irq(&pidmap_lock); 222 if (!(ns->pid_allocated & PIDNS_ADDING)) 223 goto out_unlock; 224 for ( ; upid >= pid->numbers; --upid) { 225 /* Make the PID visible to find_pid_ns. */ 226 idr_replace(&upid->ns->idr, pid, upid->nr); 227 upid->ns->pid_allocated++; 228 } 229 spin_unlock_irq(&pidmap_lock); 230 231 return pid; 232 233 out_unlock: 234 spin_unlock_irq(&pidmap_lock); 235 put_pid_ns(ns); 236 237 out_free: 238 spin_lock_irq(&pidmap_lock); 239 while (++i <= ns->level) { 240 upid = pid->numbers + i; 241 idr_remove(&upid->ns->idr, upid->nr); 242 } 243 244 /* On failure to allocate the first pid, reset the state */ 245 if (ns->pid_allocated == PIDNS_ADDING) 246 idr_set_cursor(&ns->idr, 0); 247 248 spin_unlock_irq(&pidmap_lock); 249 250 kmem_cache_free(ns->pid_cachep, pid); 251 return ERR_PTR(retval); 252 } 253 254 void disable_pid_allocation(struct pid_namespace *ns) 255 { 256 spin_lock_irq(&pidmap_lock); 257 ns->pid_allocated &= ~PIDNS_ADDING; 258 spin_unlock_irq(&pidmap_lock); 259 } 260 261 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 262 { 263 return idr_find(&ns->idr, nr); 264 } 265 EXPORT_SYMBOL_GPL(find_pid_ns); 266 267 struct pid *find_vpid(int nr) 268 { 269 return find_pid_ns(nr, task_active_pid_ns(current)); 270 } 271 EXPORT_SYMBOL_GPL(find_vpid); 272 273 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 274 { 275 return (type == PIDTYPE_PID) ? 276 &task->thread_pid : 277 &task->signal->pids[type]; 278 } 279 280 /* 281 * attach_pid() must be called with the tasklist_lock write-held. 282 */ 283 void attach_pid(struct task_struct *task, enum pid_type type) 284 { 285 struct pid *pid = *task_pid_ptr(task, type); 286 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 287 } 288 289 static void __change_pid(struct task_struct *task, enum pid_type type, 290 struct pid *new) 291 { 292 struct pid **pid_ptr = task_pid_ptr(task, type); 293 struct pid *pid; 294 int tmp; 295 296 pid = *pid_ptr; 297 298 hlist_del_rcu(&task->pid_links[type]); 299 *pid_ptr = new; 300 301 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 302 if (!hlist_empty(&pid->tasks[tmp])) 303 return; 304 305 free_pid(pid); 306 } 307 308 void detach_pid(struct task_struct *task, enum pid_type type) 309 { 310 __change_pid(task, type, NULL); 311 } 312 313 void change_pid(struct task_struct *task, enum pid_type type, 314 struct pid *pid) 315 { 316 __change_pid(task, type, pid); 317 attach_pid(task, type); 318 } 319 320 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 321 void transfer_pid(struct task_struct *old, struct task_struct *new, 322 enum pid_type type) 323 { 324 if (type == PIDTYPE_PID) 325 new->thread_pid = old->thread_pid; 326 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 327 } 328 329 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 330 { 331 struct task_struct *result = NULL; 332 if (pid) { 333 struct hlist_node *first; 334 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 335 lockdep_tasklist_lock_is_held()); 336 if (first) 337 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 338 } 339 return result; 340 } 341 EXPORT_SYMBOL(pid_task); 342 343 /* 344 * Must be called under rcu_read_lock(). 345 */ 346 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 347 { 348 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 349 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 350 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 351 } 352 353 struct task_struct *find_task_by_vpid(pid_t vnr) 354 { 355 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 356 } 357 358 struct task_struct *find_get_task_by_vpid(pid_t nr) 359 { 360 struct task_struct *task; 361 362 rcu_read_lock(); 363 task = find_task_by_vpid(nr); 364 if (task) 365 get_task_struct(task); 366 rcu_read_unlock(); 367 368 return task; 369 } 370 371 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 372 { 373 struct pid *pid; 374 rcu_read_lock(); 375 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 376 rcu_read_unlock(); 377 return pid; 378 } 379 EXPORT_SYMBOL_GPL(get_task_pid); 380 381 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 382 { 383 struct task_struct *result; 384 rcu_read_lock(); 385 result = pid_task(pid, type); 386 if (result) 387 get_task_struct(result); 388 rcu_read_unlock(); 389 return result; 390 } 391 EXPORT_SYMBOL_GPL(get_pid_task); 392 393 struct pid *find_get_pid(pid_t nr) 394 { 395 struct pid *pid; 396 397 rcu_read_lock(); 398 pid = get_pid(find_vpid(nr)); 399 rcu_read_unlock(); 400 401 return pid; 402 } 403 EXPORT_SYMBOL_GPL(find_get_pid); 404 405 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 406 { 407 struct upid *upid; 408 pid_t nr = 0; 409 410 if (pid && ns->level <= pid->level) { 411 upid = &pid->numbers[ns->level]; 412 if (upid->ns == ns) 413 nr = upid->nr; 414 } 415 return nr; 416 } 417 EXPORT_SYMBOL_GPL(pid_nr_ns); 418 419 pid_t pid_vnr(struct pid *pid) 420 { 421 return pid_nr_ns(pid, task_active_pid_ns(current)); 422 } 423 EXPORT_SYMBOL_GPL(pid_vnr); 424 425 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 426 struct pid_namespace *ns) 427 { 428 pid_t nr = 0; 429 430 rcu_read_lock(); 431 if (!ns) 432 ns = task_active_pid_ns(current); 433 if (likely(pid_alive(task))) 434 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 435 rcu_read_unlock(); 436 437 return nr; 438 } 439 EXPORT_SYMBOL(__task_pid_nr_ns); 440 441 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 442 { 443 return ns_of_pid(task_pid(tsk)); 444 } 445 EXPORT_SYMBOL_GPL(task_active_pid_ns); 446 447 /* 448 * Used by proc to find the first pid that is greater than or equal to nr. 449 * 450 * If there is a pid at nr this function is exactly the same as find_pid_ns. 451 */ 452 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 453 { 454 return idr_get_next(&ns->idr, &nr); 455 } 456 457 /** 458 * pidfd_create() - Create a new pid file descriptor. 459 * 460 * @pid: struct pid that the pidfd will reference 461 * 462 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 463 * 464 * Note, that this function can only be called after the fd table has 465 * been unshared to avoid leaking the pidfd to the new process. 466 * 467 * Return: On success, a cloexec pidfd is returned. 468 * On error, a negative errno number will be returned. 469 */ 470 static int pidfd_create(struct pid *pid) 471 { 472 int fd; 473 474 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), 475 O_RDWR | O_CLOEXEC); 476 if (fd < 0) 477 put_pid(pid); 478 479 return fd; 480 } 481 482 /** 483 * pidfd_open() - Open new pid file descriptor. 484 * 485 * @pid: pid for which to retrieve a pidfd 486 * @flags: flags to pass 487 * 488 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 489 * the process identified by @pid. Currently, the process identified by 490 * @pid must be a thread-group leader. This restriction currently exists 491 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot 492 * be used with CLONE_THREAD) and pidfd polling (only supports thread group 493 * leaders). 494 * 495 * Return: On success, a cloexec pidfd is returned. 496 * On error, a negative errno number will be returned. 497 */ 498 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 499 { 500 int fd, ret; 501 struct pid *p; 502 503 if (flags) 504 return -EINVAL; 505 506 if (pid <= 0) 507 return -EINVAL; 508 509 p = find_get_pid(pid); 510 if (!p) 511 return -ESRCH; 512 513 ret = 0; 514 rcu_read_lock(); 515 if (!pid_task(p, PIDTYPE_TGID)) 516 ret = -EINVAL; 517 rcu_read_unlock(); 518 519 fd = ret ?: pidfd_create(p); 520 put_pid(p); 521 return fd; 522 } 523 524 void __init pid_idr_init(void) 525 { 526 /* Verify no one has done anything silly: */ 527 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 528 529 /* bump default and minimum pid_max based on number of cpus */ 530 pid_max = min(pid_max_max, max_t(int, pid_max, 531 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 532 pid_max_min = max_t(int, pid_max_min, 533 PIDS_PER_CPU_MIN * num_possible_cpus()); 534 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 535 536 idr_init(&init_pid_ns.idr); 537 538 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 539 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 540 } 541