1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 William Irwin, IBM 5 * (C) 2004 William Irwin, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/bootmem.h> 34 #include <linux/hash.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/init_task.h> 37 #include <linux/syscalls.h> 38 39 #define pid_hashfn(nr, ns) \ 40 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 41 static struct hlist_head *pid_hash; 42 static int pidhash_shift; 43 struct pid init_struct_pid = INIT_STRUCT_PID; 44 static struct kmem_cache *pid_ns_cachep; 45 46 int pid_max = PID_MAX_DEFAULT; 47 48 #define RESERVED_PIDS 300 49 50 int pid_max_min = RESERVED_PIDS + 1; 51 int pid_max_max = PID_MAX_LIMIT; 52 53 #define BITS_PER_PAGE (PAGE_SIZE*8) 54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) 55 56 static inline int mk_pid(struct pid_namespace *pid_ns, 57 struct pidmap *map, int off) 58 { 59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 60 } 61 62 #define find_next_offset(map, off) \ 63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 64 65 /* 66 * PID-map pages start out as NULL, they get allocated upon 67 * first use and are never deallocated. This way a low pid_max 68 * value does not cause lots of bitmaps to be allocated, but 69 * the scheme scales to up to 4 million PIDs, runtime. 70 */ 71 struct pid_namespace init_pid_ns = { 72 .kref = { 73 .refcount = ATOMIC_INIT(2), 74 }, 75 .pidmap = { 76 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 77 }, 78 .last_pid = 0, 79 .level = 0, 80 .child_reaper = &init_task, 81 }; 82 EXPORT_SYMBOL_GPL(init_pid_ns); 83 84 int is_container_init(struct task_struct *tsk) 85 { 86 int ret = 0; 87 struct pid *pid; 88 89 rcu_read_lock(); 90 pid = task_pid(tsk); 91 if (pid != NULL && pid->numbers[pid->level].nr == 1) 92 ret = 1; 93 rcu_read_unlock(); 94 95 return ret; 96 } 97 EXPORT_SYMBOL(is_container_init); 98 99 /* 100 * Note: disable interrupts while the pidmap_lock is held as an 101 * interrupt might come in and do read_lock(&tasklist_lock). 102 * 103 * If we don't disable interrupts there is a nasty deadlock between 104 * detach_pid()->free_pid() and another cpu that does 105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 106 * read_lock(&tasklist_lock); 107 * 108 * After we clean up the tasklist_lock and know there are no 109 * irq handlers that take it we can leave the interrupts enabled. 110 * For now it is easier to be safe than to prove it can't happen. 111 */ 112 113 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 114 115 static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid) 116 { 117 struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE; 118 int offset = pid & BITS_PER_PAGE_MASK; 119 120 clear_bit(offset, map->page); 121 atomic_inc(&map->nr_free); 122 } 123 124 static int alloc_pidmap(struct pid_namespace *pid_ns) 125 { 126 int i, offset, max_scan, pid, last = pid_ns->last_pid; 127 struct pidmap *map; 128 129 pid = last + 1; 130 if (pid >= pid_max) 131 pid = RESERVED_PIDS; 132 offset = pid & BITS_PER_PAGE_MASK; 133 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 134 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; 135 for (i = 0; i <= max_scan; ++i) { 136 if (unlikely(!map->page)) { 137 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 138 /* 139 * Free the page if someone raced with us 140 * installing it: 141 */ 142 spin_lock_irq(&pidmap_lock); 143 if (map->page) 144 kfree(page); 145 else 146 map->page = page; 147 spin_unlock_irq(&pidmap_lock); 148 if (unlikely(!map->page)) 149 break; 150 } 151 if (likely(atomic_read(&map->nr_free))) { 152 do { 153 if (!test_and_set_bit(offset, map->page)) { 154 atomic_dec(&map->nr_free); 155 pid_ns->last_pid = pid; 156 return pid; 157 } 158 offset = find_next_offset(map, offset); 159 pid = mk_pid(pid_ns, map, offset); 160 /* 161 * find_next_offset() found a bit, the pid from it 162 * is in-bounds, and if we fell back to the last 163 * bitmap block and the final block was the same 164 * as the starting point, pid is before last_pid. 165 */ 166 } while (offset < BITS_PER_PAGE && pid < pid_max && 167 (i != max_scan || pid < last || 168 !((last+1) & BITS_PER_PAGE_MASK))); 169 } 170 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 171 ++map; 172 offset = 0; 173 } else { 174 map = &pid_ns->pidmap[0]; 175 offset = RESERVED_PIDS; 176 if (unlikely(last == offset)) 177 break; 178 } 179 pid = mk_pid(pid_ns, map, offset); 180 } 181 return -1; 182 } 183 184 static int next_pidmap(struct pid_namespace *pid_ns, int last) 185 { 186 int offset; 187 struct pidmap *map, *end; 188 189 offset = (last + 1) & BITS_PER_PAGE_MASK; 190 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 191 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 192 for (; map < end; map++, offset = 0) { 193 if (unlikely(!map->page)) 194 continue; 195 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 196 if (offset < BITS_PER_PAGE) 197 return mk_pid(pid_ns, map, offset); 198 } 199 return -1; 200 } 201 202 fastcall void put_pid(struct pid *pid) 203 { 204 struct pid_namespace *ns; 205 206 if (!pid) 207 return; 208 209 ns = pid->numbers[pid->level].ns; 210 if ((atomic_read(&pid->count) == 1) || 211 atomic_dec_and_test(&pid->count)) { 212 kmem_cache_free(ns->pid_cachep, pid); 213 put_pid_ns(ns); 214 } 215 } 216 EXPORT_SYMBOL_GPL(put_pid); 217 218 static void delayed_put_pid(struct rcu_head *rhp) 219 { 220 struct pid *pid = container_of(rhp, struct pid, rcu); 221 put_pid(pid); 222 } 223 224 fastcall void free_pid(struct pid *pid) 225 { 226 /* We can be called with write_lock_irq(&tasklist_lock) held */ 227 int i; 228 unsigned long flags; 229 230 spin_lock_irqsave(&pidmap_lock, flags); 231 for (i = 0; i <= pid->level; i++) 232 hlist_del_rcu(&pid->numbers[i].pid_chain); 233 spin_unlock_irqrestore(&pidmap_lock, flags); 234 235 for (i = 0; i <= pid->level; i++) 236 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr); 237 238 call_rcu(&pid->rcu, delayed_put_pid); 239 } 240 241 struct pid *alloc_pid(struct pid_namespace *ns) 242 { 243 struct pid *pid; 244 enum pid_type type; 245 int i, nr; 246 struct pid_namespace *tmp; 247 struct upid *upid; 248 249 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 250 if (!pid) 251 goto out; 252 253 tmp = ns; 254 for (i = ns->level; i >= 0; i--) { 255 nr = alloc_pidmap(tmp); 256 if (nr < 0) 257 goto out_free; 258 259 pid->numbers[i].nr = nr; 260 pid->numbers[i].ns = tmp; 261 tmp = tmp->parent; 262 } 263 264 get_pid_ns(ns); 265 pid->level = ns->level; 266 atomic_set(&pid->count, 1); 267 for (type = 0; type < PIDTYPE_MAX; ++type) 268 INIT_HLIST_HEAD(&pid->tasks[type]); 269 270 spin_lock_irq(&pidmap_lock); 271 for (i = ns->level; i >= 0; i--) { 272 upid = &pid->numbers[i]; 273 hlist_add_head_rcu(&upid->pid_chain, 274 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 275 } 276 spin_unlock_irq(&pidmap_lock); 277 278 out: 279 return pid; 280 281 out_free: 282 for (i++; i <= ns->level; i++) 283 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr); 284 285 kmem_cache_free(ns->pid_cachep, pid); 286 pid = NULL; 287 goto out; 288 } 289 290 struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns) 291 { 292 struct hlist_node *elem; 293 struct upid *pnr; 294 295 hlist_for_each_entry_rcu(pnr, elem, 296 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 297 if (pnr->nr == nr && pnr->ns == ns) 298 return container_of(pnr, struct pid, 299 numbers[ns->level]); 300 301 return NULL; 302 } 303 EXPORT_SYMBOL_GPL(find_pid_ns); 304 305 struct pid *find_vpid(int nr) 306 { 307 return find_pid_ns(nr, current->nsproxy->pid_ns); 308 } 309 EXPORT_SYMBOL_GPL(find_vpid); 310 311 struct pid *find_pid(int nr) 312 { 313 return find_pid_ns(nr, &init_pid_ns); 314 } 315 EXPORT_SYMBOL_GPL(find_pid); 316 317 /* 318 * attach_pid() must be called with the tasklist_lock write-held. 319 */ 320 int fastcall attach_pid(struct task_struct *task, enum pid_type type, 321 struct pid *pid) 322 { 323 struct pid_link *link; 324 325 link = &task->pids[type]; 326 link->pid = pid; 327 hlist_add_head_rcu(&link->node, &pid->tasks[type]); 328 329 return 0; 330 } 331 332 void fastcall detach_pid(struct task_struct *task, enum pid_type type) 333 { 334 struct pid_link *link; 335 struct pid *pid; 336 int tmp; 337 338 link = &task->pids[type]; 339 pid = link->pid; 340 341 hlist_del_rcu(&link->node); 342 link->pid = NULL; 343 344 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 345 if (!hlist_empty(&pid->tasks[tmp])) 346 return; 347 348 free_pid(pid); 349 } 350 351 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 352 void fastcall transfer_pid(struct task_struct *old, struct task_struct *new, 353 enum pid_type type) 354 { 355 new->pids[type].pid = old->pids[type].pid; 356 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 357 old->pids[type].pid = NULL; 358 } 359 360 struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type) 361 { 362 struct task_struct *result = NULL; 363 if (pid) { 364 struct hlist_node *first; 365 first = rcu_dereference(pid->tasks[type].first); 366 if (first) 367 result = hlist_entry(first, struct task_struct, pids[(type)].node); 368 } 369 return result; 370 } 371 372 /* 373 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 374 */ 375 struct task_struct *find_task_by_pid_type_ns(int type, int nr, 376 struct pid_namespace *ns) 377 { 378 return pid_task(find_pid_ns(nr, ns), type); 379 } 380 381 EXPORT_SYMBOL(find_task_by_pid_type_ns); 382 383 struct task_struct *find_task_by_pid(pid_t nr) 384 { 385 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns); 386 } 387 EXPORT_SYMBOL(find_task_by_pid); 388 389 struct task_struct *find_task_by_vpid(pid_t vnr) 390 { 391 return find_task_by_pid_type_ns(PIDTYPE_PID, vnr, 392 current->nsproxy->pid_ns); 393 } 394 EXPORT_SYMBOL(find_task_by_vpid); 395 396 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 397 { 398 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns); 399 } 400 EXPORT_SYMBOL(find_task_by_pid_ns); 401 402 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 403 { 404 struct pid *pid; 405 rcu_read_lock(); 406 pid = get_pid(task->pids[type].pid); 407 rcu_read_unlock(); 408 return pid; 409 } 410 411 struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type) 412 { 413 struct task_struct *result; 414 rcu_read_lock(); 415 result = pid_task(pid, type); 416 if (result) 417 get_task_struct(result); 418 rcu_read_unlock(); 419 return result; 420 } 421 422 struct pid *find_get_pid(pid_t nr) 423 { 424 struct pid *pid; 425 426 rcu_read_lock(); 427 pid = get_pid(find_vpid(nr)); 428 rcu_read_unlock(); 429 430 return pid; 431 } 432 433 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 434 { 435 struct upid *upid; 436 pid_t nr = 0; 437 438 if (pid && ns->level <= pid->level) { 439 upid = &pid->numbers[ns->level]; 440 if (upid->ns == ns) 441 nr = upid->nr; 442 } 443 return nr; 444 } 445 446 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 447 { 448 return pid_nr_ns(task_pid(tsk), ns); 449 } 450 EXPORT_SYMBOL(task_pid_nr_ns); 451 452 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 453 { 454 return pid_nr_ns(task_tgid(tsk), ns); 455 } 456 EXPORT_SYMBOL(task_tgid_nr_ns); 457 458 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 459 { 460 return pid_nr_ns(task_pgrp(tsk), ns); 461 } 462 EXPORT_SYMBOL(task_pgrp_nr_ns); 463 464 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 465 { 466 return pid_nr_ns(task_session(tsk), ns); 467 } 468 EXPORT_SYMBOL(task_session_nr_ns); 469 470 /* 471 * Used by proc to find the first pid that is greater then or equal to nr. 472 * 473 * If there is a pid at nr this function is exactly the same as find_pid. 474 */ 475 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 476 { 477 struct pid *pid; 478 479 do { 480 pid = find_pid_ns(nr, ns); 481 if (pid) 482 break; 483 nr = next_pidmap(ns, nr); 484 } while (nr > 0); 485 486 return pid; 487 } 488 EXPORT_SYMBOL_GPL(find_get_pid); 489 490 struct pid_cache { 491 int nr_ids; 492 char name[16]; 493 struct kmem_cache *cachep; 494 struct list_head list; 495 }; 496 497 static LIST_HEAD(pid_caches_lh); 498 static DEFINE_MUTEX(pid_caches_mutex); 499 500 /* 501 * creates the kmem cache to allocate pids from. 502 * @nr_ids: the number of numerical ids this pid will have to carry 503 */ 504 505 static struct kmem_cache *create_pid_cachep(int nr_ids) 506 { 507 struct pid_cache *pcache; 508 struct kmem_cache *cachep; 509 510 mutex_lock(&pid_caches_mutex); 511 list_for_each_entry (pcache, &pid_caches_lh, list) 512 if (pcache->nr_ids == nr_ids) 513 goto out; 514 515 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL); 516 if (pcache == NULL) 517 goto err_alloc; 518 519 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids); 520 cachep = kmem_cache_create(pcache->name, 521 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid), 522 0, SLAB_HWCACHE_ALIGN, NULL); 523 if (cachep == NULL) 524 goto err_cachep; 525 526 pcache->nr_ids = nr_ids; 527 pcache->cachep = cachep; 528 list_add(&pcache->list, &pid_caches_lh); 529 out: 530 mutex_unlock(&pid_caches_mutex); 531 return pcache->cachep; 532 533 err_cachep: 534 kfree(pcache); 535 err_alloc: 536 mutex_unlock(&pid_caches_mutex); 537 return NULL; 538 } 539 540 #ifdef CONFIG_PID_NS 541 static struct pid_namespace *create_pid_namespace(int level) 542 { 543 struct pid_namespace *ns; 544 int i; 545 546 ns = kmem_cache_alloc(pid_ns_cachep, GFP_KERNEL); 547 if (ns == NULL) 548 goto out; 549 550 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 551 if (!ns->pidmap[0].page) 552 goto out_free; 553 554 ns->pid_cachep = create_pid_cachep(level + 1); 555 if (ns->pid_cachep == NULL) 556 goto out_free_map; 557 558 kref_init(&ns->kref); 559 ns->last_pid = 0; 560 ns->child_reaper = NULL; 561 ns->level = level; 562 563 set_bit(0, ns->pidmap[0].page); 564 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1); 565 566 for (i = 1; i < PIDMAP_ENTRIES; i++) { 567 ns->pidmap[i].page = 0; 568 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE); 569 } 570 571 return ns; 572 573 out_free_map: 574 kfree(ns->pidmap[0].page); 575 out_free: 576 kmem_cache_free(pid_ns_cachep, ns); 577 out: 578 return ERR_PTR(-ENOMEM); 579 } 580 581 static void destroy_pid_namespace(struct pid_namespace *ns) 582 { 583 int i; 584 585 for (i = 0; i < PIDMAP_ENTRIES; i++) 586 kfree(ns->pidmap[i].page); 587 kmem_cache_free(pid_ns_cachep, ns); 588 } 589 590 struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns) 591 { 592 struct pid_namespace *new_ns; 593 594 BUG_ON(!old_ns); 595 new_ns = get_pid_ns(old_ns); 596 if (!(flags & CLONE_NEWPID)) 597 goto out; 598 599 new_ns = ERR_PTR(-EINVAL); 600 if (flags & CLONE_THREAD) 601 goto out_put; 602 603 new_ns = create_pid_namespace(old_ns->level + 1); 604 if (!IS_ERR(new_ns)) 605 new_ns->parent = get_pid_ns(old_ns); 606 607 out_put: 608 put_pid_ns(old_ns); 609 out: 610 return new_ns; 611 } 612 613 void free_pid_ns(struct kref *kref) 614 { 615 struct pid_namespace *ns, *parent; 616 617 ns = container_of(kref, struct pid_namespace, kref); 618 619 parent = ns->parent; 620 destroy_pid_namespace(ns); 621 622 if (parent != NULL) 623 put_pid_ns(parent); 624 } 625 #endif /* CONFIG_PID_NS */ 626 627 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 628 { 629 int nr; 630 int rc; 631 632 /* 633 * The last thread in the cgroup-init thread group is terminating. 634 * Find remaining pid_ts in the namespace, signal and wait for them 635 * to exit. 636 * 637 * Note: This signals each threads in the namespace - even those that 638 * belong to the same thread group, To avoid this, we would have 639 * to walk the entire tasklist looking a processes in this 640 * namespace, but that could be unnecessarily expensive if the 641 * pid namespace has just a few processes. Or we need to 642 * maintain a tasklist for each pid namespace. 643 * 644 */ 645 read_lock(&tasklist_lock); 646 nr = next_pidmap(pid_ns, 1); 647 while (nr > 0) { 648 kill_proc_info(SIGKILL, SEND_SIG_PRIV, nr); 649 nr = next_pidmap(pid_ns, nr); 650 } 651 read_unlock(&tasklist_lock); 652 653 do { 654 clear_thread_flag(TIF_SIGPENDING); 655 rc = sys_wait4(-1, NULL, __WALL, NULL); 656 } while (rc != -ECHILD); 657 658 659 /* Child reaper for the pid namespace is going away */ 660 pid_ns->child_reaper = NULL; 661 return; 662 } 663 664 /* 665 * The pid hash table is scaled according to the amount of memory in the 666 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 667 * more. 668 */ 669 void __init pidhash_init(void) 670 { 671 int i, pidhash_size; 672 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); 673 674 pidhash_shift = max(4, fls(megabytes * 4)); 675 pidhash_shift = min(12, pidhash_shift); 676 pidhash_size = 1 << pidhash_shift; 677 678 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", 679 pidhash_size, pidhash_shift, 680 pidhash_size * sizeof(struct hlist_head)); 681 682 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); 683 if (!pid_hash) 684 panic("Could not alloc pidhash!\n"); 685 for (i = 0; i < pidhash_size; i++) 686 INIT_HLIST_HEAD(&pid_hash[i]); 687 } 688 689 void __init pidmap_init(void) 690 { 691 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 692 /* Reserve PID 0. We never call free_pidmap(0) */ 693 set_bit(0, init_pid_ns.pidmap[0].page); 694 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 695 696 init_pid_ns.pid_cachep = create_pid_cachep(1); 697 if (init_pid_ns.pid_cachep == NULL) 698 panic("Can't create pid_1 cachep\n"); 699 700 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 701 } 702