xref: /openbmc/linux/kernel/pid.c (revision 519a8a6c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic pidhash and scalable, time-bounded PID allocator
4  *
5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
6  * (C) 2004 Nadia Yvette Chambers, Oracle
7  * (C) 2002-2004 Ingo Molnar, Red Hat
8  *
9  * pid-structures are backing objects for tasks sharing a given ID to chain
10  * against. There is very little to them aside from hashing them and
11  * parking tasks using given ID's on a list.
12  *
13  * The hash is always changed with the tasklist_lock write-acquired,
14  * and the hash is only accessed with the tasklist_lock at least
15  * read-acquired, so there's no additional SMP locking needed here.
16  *
17  * We have a list of bitmap pages, which bitmaps represent the PID space.
18  * Allocating and freeing PIDs is completely lockless. The worst-case
19  * allocation scenario when all but one out of 1 million PIDs possible are
20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22  *
23  * Pid namespaces:
24  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26  *     Many thanks to Oleg Nesterov for comments and help
27  *
28  */
29 
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <net/sock.h>
46 
47 struct pid init_struct_pid = {
48 	.count		= REFCOUNT_INIT(1),
49 	.tasks		= {
50 		{ .first = NULL },
51 		{ .first = NULL },
52 		{ .first = NULL },
53 	},
54 	.level		= 0,
55 	.numbers	= { {
56 		.nr		= 0,
57 		.ns		= &init_pid_ns,
58 	}, }
59 };
60 
61 int pid_max = PID_MAX_DEFAULT;
62 
63 #define RESERVED_PIDS		300
64 
65 int pid_max_min = RESERVED_PIDS + 1;
66 int pid_max_max = PID_MAX_LIMIT;
67 
68 /*
69  * PID-map pages start out as NULL, they get allocated upon
70  * first use and are never deallocated. This way a low pid_max
71  * value does not cause lots of bitmaps to be allocated, but
72  * the scheme scales to up to 4 million PIDs, runtime.
73  */
74 struct pid_namespace init_pid_ns = {
75 	.kref = KREF_INIT(2),
76 	.idr = IDR_INIT(init_pid_ns.idr),
77 	.pid_allocated = PIDNS_ADDING,
78 	.level = 0,
79 	.child_reaper = &init_task,
80 	.user_ns = &init_user_ns,
81 	.ns.inum = PROC_PID_INIT_INO,
82 #ifdef CONFIG_PID_NS
83 	.ns.ops = &pidns_operations,
84 #endif
85 };
86 EXPORT_SYMBOL_GPL(init_pid_ns);
87 
88 /*
89  * Note: disable interrupts while the pidmap_lock is held as an
90  * interrupt might come in and do read_lock(&tasklist_lock).
91  *
92  * If we don't disable interrupts there is a nasty deadlock between
93  * detach_pid()->free_pid() and another cpu that does
94  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
95  * read_lock(&tasklist_lock);
96  *
97  * After we clean up the tasklist_lock and know there are no
98  * irq handlers that take it we can leave the interrupts enabled.
99  * For now it is easier to be safe than to prove it can't happen.
100  */
101 
102 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
103 
104 void put_pid(struct pid *pid)
105 {
106 	struct pid_namespace *ns;
107 
108 	if (!pid)
109 		return;
110 
111 	ns = pid->numbers[pid->level].ns;
112 	if (refcount_dec_and_test(&pid->count)) {
113 		kmem_cache_free(ns->pid_cachep, pid);
114 		put_pid_ns(ns);
115 	}
116 }
117 EXPORT_SYMBOL_GPL(put_pid);
118 
119 static void delayed_put_pid(struct rcu_head *rhp)
120 {
121 	struct pid *pid = container_of(rhp, struct pid, rcu);
122 	put_pid(pid);
123 }
124 
125 void free_pid(struct pid *pid)
126 {
127 	/* We can be called with write_lock_irq(&tasklist_lock) held */
128 	int i;
129 	unsigned long flags;
130 
131 	spin_lock_irqsave(&pidmap_lock, flags);
132 	for (i = 0; i <= pid->level; i++) {
133 		struct upid *upid = pid->numbers + i;
134 		struct pid_namespace *ns = upid->ns;
135 		switch (--ns->pid_allocated) {
136 		case 2:
137 		case 1:
138 			/* When all that is left in the pid namespace
139 			 * is the reaper wake up the reaper.  The reaper
140 			 * may be sleeping in zap_pid_ns_processes().
141 			 */
142 			wake_up_process(ns->child_reaper);
143 			break;
144 		case PIDNS_ADDING:
145 			/* Handle a fork failure of the first process */
146 			WARN_ON(ns->child_reaper);
147 			ns->pid_allocated = 0;
148 			break;
149 		}
150 
151 		idr_remove(&ns->idr, upid->nr);
152 	}
153 	spin_unlock_irqrestore(&pidmap_lock, flags);
154 
155 	call_rcu(&pid->rcu, delayed_put_pid);
156 }
157 
158 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
159 		      size_t set_tid_size)
160 {
161 	struct pid *pid;
162 	enum pid_type type;
163 	int i, nr;
164 	struct pid_namespace *tmp;
165 	struct upid *upid;
166 	int retval = -ENOMEM;
167 
168 	/*
169 	 * set_tid_size contains the size of the set_tid array. Starting at
170 	 * the most nested currently active PID namespace it tells alloc_pid()
171 	 * which PID to set for a process in that most nested PID namespace
172 	 * up to set_tid_size PID namespaces. It does not have to set the PID
173 	 * for a process in all nested PID namespaces but set_tid_size must
174 	 * never be greater than the current ns->level + 1.
175 	 */
176 	if (set_tid_size > ns->level + 1)
177 		return ERR_PTR(-EINVAL);
178 
179 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
180 	if (!pid)
181 		return ERR_PTR(retval);
182 
183 	tmp = ns;
184 	pid->level = ns->level;
185 
186 	for (i = ns->level; i >= 0; i--) {
187 		int tid = 0;
188 
189 		if (set_tid_size) {
190 			tid = set_tid[ns->level - i];
191 
192 			retval = -EINVAL;
193 			if (tid < 1 || tid >= pid_max)
194 				goto out_free;
195 			/*
196 			 * Also fail if a PID != 1 is requested and
197 			 * no PID 1 exists.
198 			 */
199 			if (tid != 1 && !tmp->child_reaper)
200 				goto out_free;
201 			retval = -EPERM;
202 			if (!checkpoint_restore_ns_capable(tmp->user_ns))
203 				goto out_free;
204 			set_tid_size--;
205 		}
206 
207 		idr_preload(GFP_KERNEL);
208 		spin_lock_irq(&pidmap_lock);
209 
210 		if (tid) {
211 			nr = idr_alloc(&tmp->idr, NULL, tid,
212 				       tid + 1, GFP_ATOMIC);
213 			/*
214 			 * If ENOSPC is returned it means that the PID is
215 			 * alreay in use. Return EEXIST in that case.
216 			 */
217 			if (nr == -ENOSPC)
218 				nr = -EEXIST;
219 		} else {
220 			int pid_min = 1;
221 			/*
222 			 * init really needs pid 1, but after reaching the
223 			 * maximum wrap back to RESERVED_PIDS
224 			 */
225 			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
226 				pid_min = RESERVED_PIDS;
227 
228 			/*
229 			 * Store a null pointer so find_pid_ns does not find
230 			 * a partially initialized PID (see below).
231 			 */
232 			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
233 					      pid_max, GFP_ATOMIC);
234 		}
235 		spin_unlock_irq(&pidmap_lock);
236 		idr_preload_end();
237 
238 		if (nr < 0) {
239 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
240 			goto out_free;
241 		}
242 
243 		pid->numbers[i].nr = nr;
244 		pid->numbers[i].ns = tmp;
245 		tmp = tmp->parent;
246 	}
247 
248 	/*
249 	 * ENOMEM is not the most obvious choice especially for the case
250 	 * where the child subreaper has already exited and the pid
251 	 * namespace denies the creation of any new processes. But ENOMEM
252 	 * is what we have exposed to userspace for a long time and it is
253 	 * documented behavior for pid namespaces. So we can't easily
254 	 * change it even if there were an error code better suited.
255 	 */
256 	retval = -ENOMEM;
257 
258 	get_pid_ns(ns);
259 	refcount_set(&pid->count, 1);
260 	spin_lock_init(&pid->lock);
261 	for (type = 0; type < PIDTYPE_MAX; ++type)
262 		INIT_HLIST_HEAD(&pid->tasks[type]);
263 
264 	init_waitqueue_head(&pid->wait_pidfd);
265 	INIT_HLIST_HEAD(&pid->inodes);
266 
267 	upid = pid->numbers + ns->level;
268 	spin_lock_irq(&pidmap_lock);
269 	if (!(ns->pid_allocated & PIDNS_ADDING))
270 		goto out_unlock;
271 	for ( ; upid >= pid->numbers; --upid) {
272 		/* Make the PID visible to find_pid_ns. */
273 		idr_replace(&upid->ns->idr, pid, upid->nr);
274 		upid->ns->pid_allocated++;
275 	}
276 	spin_unlock_irq(&pidmap_lock);
277 
278 	return pid;
279 
280 out_unlock:
281 	spin_unlock_irq(&pidmap_lock);
282 	put_pid_ns(ns);
283 
284 out_free:
285 	spin_lock_irq(&pidmap_lock);
286 	while (++i <= ns->level) {
287 		upid = pid->numbers + i;
288 		idr_remove(&upid->ns->idr, upid->nr);
289 	}
290 
291 	/* On failure to allocate the first pid, reset the state */
292 	if (ns->pid_allocated == PIDNS_ADDING)
293 		idr_set_cursor(&ns->idr, 0);
294 
295 	spin_unlock_irq(&pidmap_lock);
296 
297 	kmem_cache_free(ns->pid_cachep, pid);
298 	return ERR_PTR(retval);
299 }
300 
301 void disable_pid_allocation(struct pid_namespace *ns)
302 {
303 	spin_lock_irq(&pidmap_lock);
304 	ns->pid_allocated &= ~PIDNS_ADDING;
305 	spin_unlock_irq(&pidmap_lock);
306 }
307 
308 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
309 {
310 	return idr_find(&ns->idr, nr);
311 }
312 EXPORT_SYMBOL_GPL(find_pid_ns);
313 
314 struct pid *find_vpid(int nr)
315 {
316 	return find_pid_ns(nr, task_active_pid_ns(current));
317 }
318 EXPORT_SYMBOL_GPL(find_vpid);
319 
320 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
321 {
322 	return (type == PIDTYPE_PID) ?
323 		&task->thread_pid :
324 		&task->signal->pids[type];
325 }
326 
327 /*
328  * attach_pid() must be called with the tasklist_lock write-held.
329  */
330 void attach_pid(struct task_struct *task, enum pid_type type)
331 {
332 	struct pid *pid = *task_pid_ptr(task, type);
333 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
334 }
335 
336 static void __change_pid(struct task_struct *task, enum pid_type type,
337 			struct pid *new)
338 {
339 	struct pid **pid_ptr = task_pid_ptr(task, type);
340 	struct pid *pid;
341 	int tmp;
342 
343 	pid = *pid_ptr;
344 
345 	hlist_del_rcu(&task->pid_links[type]);
346 	*pid_ptr = new;
347 
348 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
349 		if (pid_has_task(pid, tmp))
350 			return;
351 
352 	free_pid(pid);
353 }
354 
355 void detach_pid(struct task_struct *task, enum pid_type type)
356 {
357 	__change_pid(task, type, NULL);
358 }
359 
360 void change_pid(struct task_struct *task, enum pid_type type,
361 		struct pid *pid)
362 {
363 	__change_pid(task, type, pid);
364 	attach_pid(task, type);
365 }
366 
367 void exchange_tids(struct task_struct *left, struct task_struct *right)
368 {
369 	struct pid *pid1 = left->thread_pid;
370 	struct pid *pid2 = right->thread_pid;
371 	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
372 	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
373 
374 	/* Swap the single entry tid lists */
375 	hlists_swap_heads_rcu(head1, head2);
376 
377 	/* Swap the per task_struct pid */
378 	rcu_assign_pointer(left->thread_pid, pid2);
379 	rcu_assign_pointer(right->thread_pid, pid1);
380 
381 	/* Swap the cached value */
382 	WRITE_ONCE(left->pid, pid_nr(pid2));
383 	WRITE_ONCE(right->pid, pid_nr(pid1));
384 }
385 
386 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
387 void transfer_pid(struct task_struct *old, struct task_struct *new,
388 			   enum pid_type type)
389 {
390 	if (type == PIDTYPE_PID)
391 		new->thread_pid = old->thread_pid;
392 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
393 }
394 
395 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
396 {
397 	struct task_struct *result = NULL;
398 	if (pid) {
399 		struct hlist_node *first;
400 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
401 					      lockdep_tasklist_lock_is_held());
402 		if (first)
403 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
404 	}
405 	return result;
406 }
407 EXPORT_SYMBOL(pid_task);
408 
409 /*
410  * Must be called under rcu_read_lock().
411  */
412 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
413 {
414 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
415 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
416 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
417 }
418 
419 struct task_struct *find_task_by_vpid(pid_t vnr)
420 {
421 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
422 }
423 
424 struct task_struct *find_get_task_by_vpid(pid_t nr)
425 {
426 	struct task_struct *task;
427 
428 	rcu_read_lock();
429 	task = find_task_by_vpid(nr);
430 	if (task)
431 		get_task_struct(task);
432 	rcu_read_unlock();
433 
434 	return task;
435 }
436 
437 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
438 {
439 	struct pid *pid;
440 	rcu_read_lock();
441 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
442 	rcu_read_unlock();
443 	return pid;
444 }
445 EXPORT_SYMBOL_GPL(get_task_pid);
446 
447 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
448 {
449 	struct task_struct *result;
450 	rcu_read_lock();
451 	result = pid_task(pid, type);
452 	if (result)
453 		get_task_struct(result);
454 	rcu_read_unlock();
455 	return result;
456 }
457 EXPORT_SYMBOL_GPL(get_pid_task);
458 
459 struct pid *find_get_pid(pid_t nr)
460 {
461 	struct pid *pid;
462 
463 	rcu_read_lock();
464 	pid = get_pid(find_vpid(nr));
465 	rcu_read_unlock();
466 
467 	return pid;
468 }
469 EXPORT_SYMBOL_GPL(find_get_pid);
470 
471 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
472 {
473 	struct upid *upid;
474 	pid_t nr = 0;
475 
476 	if (pid && ns->level <= pid->level) {
477 		upid = &pid->numbers[ns->level];
478 		if (upid->ns == ns)
479 			nr = upid->nr;
480 	}
481 	return nr;
482 }
483 EXPORT_SYMBOL_GPL(pid_nr_ns);
484 
485 pid_t pid_vnr(struct pid *pid)
486 {
487 	return pid_nr_ns(pid, task_active_pid_ns(current));
488 }
489 EXPORT_SYMBOL_GPL(pid_vnr);
490 
491 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
492 			struct pid_namespace *ns)
493 {
494 	pid_t nr = 0;
495 
496 	rcu_read_lock();
497 	if (!ns)
498 		ns = task_active_pid_ns(current);
499 	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
500 	rcu_read_unlock();
501 
502 	return nr;
503 }
504 EXPORT_SYMBOL(__task_pid_nr_ns);
505 
506 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
507 {
508 	return ns_of_pid(task_pid(tsk));
509 }
510 EXPORT_SYMBOL_GPL(task_active_pid_ns);
511 
512 /*
513  * Used by proc to find the first pid that is greater than or equal to nr.
514  *
515  * If there is a pid at nr this function is exactly the same as find_pid_ns.
516  */
517 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
518 {
519 	return idr_get_next(&ns->idr, &nr);
520 }
521 
522 /**
523  * pidfd_create() - Create a new pid file descriptor.
524  *
525  * @pid:  struct pid that the pidfd will reference
526  *
527  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
528  *
529  * Note, that this function can only be called after the fd table has
530  * been unshared to avoid leaking the pidfd to the new process.
531  *
532  * Return: On success, a cloexec pidfd is returned.
533  *         On error, a negative errno number will be returned.
534  */
535 static int pidfd_create(struct pid *pid)
536 {
537 	int fd;
538 
539 	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
540 			      O_RDWR | O_CLOEXEC);
541 	if (fd < 0)
542 		put_pid(pid);
543 
544 	return fd;
545 }
546 
547 /**
548  * pidfd_open() - Open new pid file descriptor.
549  *
550  * @pid:   pid for which to retrieve a pidfd
551  * @flags: flags to pass
552  *
553  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
554  * the process identified by @pid. Currently, the process identified by
555  * @pid must be a thread-group leader. This restriction currently exists
556  * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
557  * be used with CLONE_THREAD) and pidfd polling (only supports thread group
558  * leaders).
559  *
560  * Return: On success, a cloexec pidfd is returned.
561  *         On error, a negative errno number will be returned.
562  */
563 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
564 {
565 	int fd;
566 	struct pid *p;
567 
568 	if (flags)
569 		return -EINVAL;
570 
571 	if (pid <= 0)
572 		return -EINVAL;
573 
574 	p = find_get_pid(pid);
575 	if (!p)
576 		return -ESRCH;
577 
578 	if (pid_has_task(p, PIDTYPE_TGID))
579 		fd = pidfd_create(p);
580 	else
581 		fd = -EINVAL;
582 
583 	put_pid(p);
584 	return fd;
585 }
586 
587 void __init pid_idr_init(void)
588 {
589 	/* Verify no one has done anything silly: */
590 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
591 
592 	/* bump default and minimum pid_max based on number of cpus */
593 	pid_max = min(pid_max_max, max_t(int, pid_max,
594 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
595 	pid_max_min = max_t(int, pid_max_min,
596 				PIDS_PER_CPU_MIN * num_possible_cpus());
597 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
598 
599 	idr_init(&init_pid_ns.idr);
600 
601 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
602 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
603 }
604 
605 static struct file *__pidfd_fget(struct task_struct *task, int fd)
606 {
607 	struct file *file;
608 	int ret;
609 
610 	ret = mutex_lock_killable(&task->signal->exec_update_mutex);
611 	if (ret)
612 		return ERR_PTR(ret);
613 
614 	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
615 		file = fget_task(task, fd);
616 	else
617 		file = ERR_PTR(-EPERM);
618 
619 	mutex_unlock(&task->signal->exec_update_mutex);
620 
621 	return file ?: ERR_PTR(-EBADF);
622 }
623 
624 static int pidfd_getfd(struct pid *pid, int fd)
625 {
626 	struct task_struct *task;
627 	struct file *file;
628 	int ret;
629 
630 	task = get_pid_task(pid, PIDTYPE_PID);
631 	if (!task)
632 		return -ESRCH;
633 
634 	file = __pidfd_fget(task, fd);
635 	put_task_struct(task);
636 	if (IS_ERR(file))
637 		return PTR_ERR(file);
638 
639 	ret = receive_fd(file, O_CLOEXEC);
640 	fput(file);
641 
642 	return ret;
643 }
644 
645 /**
646  * sys_pidfd_getfd() - Get a file descriptor from another process
647  *
648  * @pidfd:	the pidfd file descriptor of the process
649  * @fd:		the file descriptor number to get
650  * @flags:	flags on how to get the fd (reserved)
651  *
652  * This syscall gets a copy of a file descriptor from another process
653  * based on the pidfd, and file descriptor number. It requires that
654  * the calling process has the ability to ptrace the process represented
655  * by the pidfd. The process which is having its file descriptor copied
656  * is otherwise unaffected.
657  *
658  * Return: On success, a cloexec file descriptor is returned.
659  *         On error, a negative errno number will be returned.
660  */
661 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
662 		unsigned int, flags)
663 {
664 	struct pid *pid;
665 	struct fd f;
666 	int ret;
667 
668 	/* flags is currently unused - make sure it's unset */
669 	if (flags)
670 		return -EINVAL;
671 
672 	f = fdget(pidfd);
673 	if (!f.file)
674 		return -EBADF;
675 
676 	pid = pidfd_pid(f.file);
677 	if (IS_ERR(pid))
678 		ret = PTR_ERR(pid);
679 	else
680 		ret = pidfd_getfd(pid, fd);
681 
682 	fdput(f);
683 	return ret;
684 }
685