1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 Nadia Yvette Chambers, IBM 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/export.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/rculist.h> 34 #include <linux/bootmem.h> 35 #include <linux/hash.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/proc_fs.h> 41 42 #define pid_hashfn(nr, ns) \ 43 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 44 static struct hlist_head *pid_hash; 45 static unsigned int pidhash_shift = 4; 46 struct pid init_struct_pid = INIT_STRUCT_PID; 47 48 int pid_max = PID_MAX_DEFAULT; 49 50 #define RESERVED_PIDS 300 51 52 int pid_max_min = RESERVED_PIDS + 1; 53 int pid_max_max = PID_MAX_LIMIT; 54 55 static inline int mk_pid(struct pid_namespace *pid_ns, 56 struct pidmap *map, int off) 57 { 58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 59 } 60 61 #define find_next_offset(map, off) \ 62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 63 64 /* 65 * PID-map pages start out as NULL, they get allocated upon 66 * first use and are never deallocated. This way a low pid_max 67 * value does not cause lots of bitmaps to be allocated, but 68 * the scheme scales to up to 4 million PIDs, runtime. 69 */ 70 struct pid_namespace init_pid_ns = { 71 .kref = { 72 .refcount = ATOMIC_INIT(2), 73 }, 74 .pidmap = { 75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 76 }, 77 .last_pid = 0, 78 .nr_hashed = PIDNS_HASH_ADDING, 79 .level = 0, 80 .child_reaper = &init_task, 81 .user_ns = &init_user_ns, 82 .ns.inum = PROC_PID_INIT_INO, 83 #ifdef CONFIG_PID_NS 84 .ns.ops = &pidns_operations, 85 #endif 86 }; 87 EXPORT_SYMBOL_GPL(init_pid_ns); 88 89 /* 90 * Note: disable interrupts while the pidmap_lock is held as an 91 * interrupt might come in and do read_lock(&tasklist_lock). 92 * 93 * If we don't disable interrupts there is a nasty deadlock between 94 * detach_pid()->free_pid() and another cpu that does 95 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 96 * read_lock(&tasklist_lock); 97 * 98 * After we clean up the tasklist_lock and know there are no 99 * irq handlers that take it we can leave the interrupts enabled. 100 * For now it is easier to be safe than to prove it can't happen. 101 */ 102 103 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 104 105 static void free_pidmap(struct upid *upid) 106 { 107 int nr = upid->nr; 108 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; 109 int offset = nr & BITS_PER_PAGE_MASK; 110 111 clear_bit(offset, map->page); 112 atomic_inc(&map->nr_free); 113 } 114 115 /* 116 * If we started walking pids at 'base', is 'a' seen before 'b'? 117 */ 118 static int pid_before(int base, int a, int b) 119 { 120 /* 121 * This is the same as saying 122 * 123 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT 124 * and that mapping orders 'a' and 'b' with respect to 'base'. 125 */ 126 return (unsigned)(a - base) < (unsigned)(b - base); 127 } 128 129 /* 130 * We might be racing with someone else trying to set pid_ns->last_pid 131 * at the pid allocation time (there's also a sysctl for this, but racing 132 * with this one is OK, see comment in kernel/pid_namespace.c about it). 133 * We want the winner to have the "later" value, because if the 134 * "earlier" value prevails, then a pid may get reused immediately. 135 * 136 * Since pids rollover, it is not sufficient to just pick the bigger 137 * value. We have to consider where we started counting from. 138 * 139 * 'base' is the value of pid_ns->last_pid that we observed when 140 * we started looking for a pid. 141 * 142 * 'pid' is the pid that we eventually found. 143 */ 144 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) 145 { 146 int prev; 147 int last_write = base; 148 do { 149 prev = last_write; 150 last_write = cmpxchg(&pid_ns->last_pid, prev, pid); 151 } while ((prev != last_write) && (pid_before(base, last_write, pid))); 152 } 153 154 static int alloc_pidmap(struct pid_namespace *pid_ns) 155 { 156 int i, offset, max_scan, pid, last = pid_ns->last_pid; 157 struct pidmap *map; 158 159 pid = last + 1; 160 if (pid >= pid_max) 161 pid = RESERVED_PIDS; 162 offset = pid & BITS_PER_PAGE_MASK; 163 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 164 /* 165 * If last_pid points into the middle of the map->page we 166 * want to scan this bitmap block twice, the second time 167 * we start with offset == 0 (or RESERVED_PIDS). 168 */ 169 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; 170 for (i = 0; i <= max_scan; ++i) { 171 if (unlikely(!map->page)) { 172 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 173 /* 174 * Free the page if someone raced with us 175 * installing it: 176 */ 177 spin_lock_irq(&pidmap_lock); 178 if (!map->page) { 179 map->page = page; 180 page = NULL; 181 } 182 spin_unlock_irq(&pidmap_lock); 183 kfree(page); 184 if (unlikely(!map->page)) 185 return -ENOMEM; 186 } 187 if (likely(atomic_read(&map->nr_free))) { 188 for ( ; ; ) { 189 if (!test_and_set_bit(offset, map->page)) { 190 atomic_dec(&map->nr_free); 191 set_last_pid(pid_ns, last, pid); 192 return pid; 193 } 194 offset = find_next_offset(map, offset); 195 if (offset >= BITS_PER_PAGE) 196 break; 197 pid = mk_pid(pid_ns, map, offset); 198 if (pid >= pid_max) 199 break; 200 } 201 } 202 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 203 ++map; 204 offset = 0; 205 } else { 206 map = &pid_ns->pidmap[0]; 207 offset = RESERVED_PIDS; 208 if (unlikely(last == offset)) 209 break; 210 } 211 pid = mk_pid(pid_ns, map, offset); 212 } 213 return -EAGAIN; 214 } 215 216 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last) 217 { 218 int offset; 219 struct pidmap *map, *end; 220 221 if (last >= PID_MAX_LIMIT) 222 return -1; 223 224 offset = (last + 1) & BITS_PER_PAGE_MASK; 225 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 226 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 227 for (; map < end; map++, offset = 0) { 228 if (unlikely(!map->page)) 229 continue; 230 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 231 if (offset < BITS_PER_PAGE) 232 return mk_pid(pid_ns, map, offset); 233 } 234 return -1; 235 } 236 237 void put_pid(struct pid *pid) 238 { 239 struct pid_namespace *ns; 240 241 if (!pid) 242 return; 243 244 ns = pid->numbers[pid->level].ns; 245 if ((atomic_read(&pid->count) == 1) || 246 atomic_dec_and_test(&pid->count)) { 247 kmem_cache_free(ns->pid_cachep, pid); 248 put_pid_ns(ns); 249 } 250 } 251 EXPORT_SYMBOL_GPL(put_pid); 252 253 static void delayed_put_pid(struct rcu_head *rhp) 254 { 255 struct pid *pid = container_of(rhp, struct pid, rcu); 256 put_pid(pid); 257 } 258 259 void free_pid(struct pid *pid) 260 { 261 /* We can be called with write_lock_irq(&tasklist_lock) held */ 262 int i; 263 unsigned long flags; 264 265 spin_lock_irqsave(&pidmap_lock, flags); 266 for (i = 0; i <= pid->level; i++) { 267 struct upid *upid = pid->numbers + i; 268 struct pid_namespace *ns = upid->ns; 269 hlist_del_rcu(&upid->pid_chain); 270 switch(--ns->nr_hashed) { 271 case 2: 272 case 1: 273 /* When all that is left in the pid namespace 274 * is the reaper wake up the reaper. The reaper 275 * may be sleeping in zap_pid_ns_processes(). 276 */ 277 wake_up_process(ns->child_reaper); 278 break; 279 case PIDNS_HASH_ADDING: 280 /* Handle a fork failure of the first process */ 281 WARN_ON(ns->child_reaper); 282 ns->nr_hashed = 0; 283 /* fall through */ 284 case 0: 285 schedule_work(&ns->proc_work); 286 break; 287 } 288 } 289 spin_unlock_irqrestore(&pidmap_lock, flags); 290 291 for (i = 0; i <= pid->level; i++) 292 free_pidmap(pid->numbers + i); 293 294 call_rcu(&pid->rcu, delayed_put_pid); 295 } 296 297 struct pid *alloc_pid(struct pid_namespace *ns) 298 { 299 struct pid *pid; 300 enum pid_type type; 301 int i, nr; 302 struct pid_namespace *tmp; 303 struct upid *upid; 304 int retval = -ENOMEM; 305 306 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 307 if (!pid) 308 return ERR_PTR(retval); 309 310 tmp = ns; 311 pid->level = ns->level; 312 for (i = ns->level; i >= 0; i--) { 313 nr = alloc_pidmap(tmp); 314 if (nr < 0) { 315 retval = nr; 316 goto out_free; 317 } 318 319 pid->numbers[i].nr = nr; 320 pid->numbers[i].ns = tmp; 321 tmp = tmp->parent; 322 } 323 324 if (unlikely(is_child_reaper(pid))) { 325 if (pid_ns_prepare_proc(ns)) 326 goto out_free; 327 } 328 329 get_pid_ns(ns); 330 atomic_set(&pid->count, 1); 331 for (type = 0; type < PIDTYPE_MAX; ++type) 332 INIT_HLIST_HEAD(&pid->tasks[type]); 333 334 upid = pid->numbers + ns->level; 335 spin_lock_irq(&pidmap_lock); 336 if (!(ns->nr_hashed & PIDNS_HASH_ADDING)) 337 goto out_unlock; 338 for ( ; upid >= pid->numbers; --upid) { 339 hlist_add_head_rcu(&upid->pid_chain, 340 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 341 upid->ns->nr_hashed++; 342 } 343 spin_unlock_irq(&pidmap_lock); 344 345 return pid; 346 347 out_unlock: 348 spin_unlock_irq(&pidmap_lock); 349 put_pid_ns(ns); 350 351 out_free: 352 while (++i <= ns->level) 353 free_pidmap(pid->numbers + i); 354 355 kmem_cache_free(ns->pid_cachep, pid); 356 return ERR_PTR(retval); 357 } 358 359 void disable_pid_allocation(struct pid_namespace *ns) 360 { 361 spin_lock_irq(&pidmap_lock); 362 ns->nr_hashed &= ~PIDNS_HASH_ADDING; 363 spin_unlock_irq(&pidmap_lock); 364 } 365 366 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 367 { 368 struct upid *pnr; 369 370 hlist_for_each_entry_rcu(pnr, 371 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 372 if (pnr->nr == nr && pnr->ns == ns) 373 return container_of(pnr, struct pid, 374 numbers[ns->level]); 375 376 return NULL; 377 } 378 EXPORT_SYMBOL_GPL(find_pid_ns); 379 380 struct pid *find_vpid(int nr) 381 { 382 return find_pid_ns(nr, task_active_pid_ns(current)); 383 } 384 EXPORT_SYMBOL_GPL(find_vpid); 385 386 /* 387 * attach_pid() must be called with the tasklist_lock write-held. 388 */ 389 void attach_pid(struct task_struct *task, enum pid_type type) 390 { 391 struct pid_link *link = &task->pids[type]; 392 hlist_add_head_rcu(&link->node, &link->pid->tasks[type]); 393 } 394 395 static void __change_pid(struct task_struct *task, enum pid_type type, 396 struct pid *new) 397 { 398 struct pid_link *link; 399 struct pid *pid; 400 int tmp; 401 402 link = &task->pids[type]; 403 pid = link->pid; 404 405 hlist_del_rcu(&link->node); 406 link->pid = new; 407 408 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 409 if (!hlist_empty(&pid->tasks[tmp])) 410 return; 411 412 free_pid(pid); 413 } 414 415 void detach_pid(struct task_struct *task, enum pid_type type) 416 { 417 __change_pid(task, type, NULL); 418 } 419 420 void change_pid(struct task_struct *task, enum pid_type type, 421 struct pid *pid) 422 { 423 __change_pid(task, type, pid); 424 attach_pid(task, type); 425 } 426 427 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 428 void transfer_pid(struct task_struct *old, struct task_struct *new, 429 enum pid_type type) 430 { 431 new->pids[type].pid = old->pids[type].pid; 432 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 433 } 434 435 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 436 { 437 struct task_struct *result = NULL; 438 if (pid) { 439 struct hlist_node *first; 440 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 441 lockdep_tasklist_lock_is_held()); 442 if (first) 443 result = hlist_entry(first, struct task_struct, pids[(type)].node); 444 } 445 return result; 446 } 447 EXPORT_SYMBOL(pid_task); 448 449 /* 450 * Must be called under rcu_read_lock(). 451 */ 452 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 453 { 454 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 455 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 456 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 457 } 458 459 struct task_struct *find_task_by_vpid(pid_t vnr) 460 { 461 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 462 } 463 464 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 465 { 466 struct pid *pid; 467 rcu_read_lock(); 468 if (type != PIDTYPE_PID) 469 task = task->group_leader; 470 pid = get_pid(rcu_dereference(task->pids[type].pid)); 471 rcu_read_unlock(); 472 return pid; 473 } 474 EXPORT_SYMBOL_GPL(get_task_pid); 475 476 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 477 { 478 struct task_struct *result; 479 rcu_read_lock(); 480 result = pid_task(pid, type); 481 if (result) 482 get_task_struct(result); 483 rcu_read_unlock(); 484 return result; 485 } 486 EXPORT_SYMBOL_GPL(get_pid_task); 487 488 struct pid *find_get_pid(pid_t nr) 489 { 490 struct pid *pid; 491 492 rcu_read_lock(); 493 pid = get_pid(find_vpid(nr)); 494 rcu_read_unlock(); 495 496 return pid; 497 } 498 EXPORT_SYMBOL_GPL(find_get_pid); 499 500 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 501 { 502 struct upid *upid; 503 pid_t nr = 0; 504 505 if (pid && ns->level <= pid->level) { 506 upid = &pid->numbers[ns->level]; 507 if (upid->ns == ns) 508 nr = upid->nr; 509 } 510 return nr; 511 } 512 EXPORT_SYMBOL_GPL(pid_nr_ns); 513 514 pid_t pid_vnr(struct pid *pid) 515 { 516 return pid_nr_ns(pid, task_active_pid_ns(current)); 517 } 518 EXPORT_SYMBOL_GPL(pid_vnr); 519 520 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 521 struct pid_namespace *ns) 522 { 523 pid_t nr = 0; 524 525 rcu_read_lock(); 526 if (!ns) 527 ns = task_active_pid_ns(current); 528 if (likely(pid_alive(task))) { 529 if (type != PIDTYPE_PID) 530 task = task->group_leader; 531 nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns); 532 } 533 rcu_read_unlock(); 534 535 return nr; 536 } 537 EXPORT_SYMBOL(__task_pid_nr_ns); 538 539 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 540 { 541 return pid_nr_ns(task_tgid(tsk), ns); 542 } 543 EXPORT_SYMBOL(task_tgid_nr_ns); 544 545 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 546 { 547 return ns_of_pid(task_pid(tsk)); 548 } 549 EXPORT_SYMBOL_GPL(task_active_pid_ns); 550 551 /* 552 * Used by proc to find the first pid that is greater than or equal to nr. 553 * 554 * If there is a pid at nr this function is exactly the same as find_pid_ns. 555 */ 556 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 557 { 558 struct pid *pid; 559 560 do { 561 pid = find_pid_ns(nr, ns); 562 if (pid) 563 break; 564 nr = next_pidmap(ns, nr); 565 } while (nr > 0); 566 567 return pid; 568 } 569 570 /* 571 * The pid hash table is scaled according to the amount of memory in the 572 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 573 * more. 574 */ 575 void __init pidhash_init(void) 576 { 577 unsigned int i, pidhash_size; 578 579 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, 580 HASH_EARLY | HASH_SMALL, 581 &pidhash_shift, NULL, 582 0, 4096); 583 pidhash_size = 1U << pidhash_shift; 584 585 for (i = 0; i < pidhash_size; i++) 586 INIT_HLIST_HEAD(&pid_hash[i]); 587 } 588 589 void __init pidmap_init(void) 590 { 591 /* Verify no one has done anything silly: */ 592 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING); 593 594 /* bump default and minimum pid_max based on number of cpus */ 595 pid_max = min(pid_max_max, max_t(int, pid_max, 596 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 597 pid_max_min = max_t(int, pid_max_min, 598 PIDS_PER_CPU_MIN * num_possible_cpus()); 599 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 600 601 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 602 /* Reserve PID 0. We never call free_pidmap(0) */ 603 set_bit(0, init_pid_ns.pidmap[0].page); 604 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 605 606 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 607 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 608 } 609