1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 Nadia Yvette Chambers, IBM 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/export.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/rculist.h> 34 #include <linux/memblock.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/init_task.h> 37 #include <linux/syscalls.h> 38 #include <linux/proc_ns.h> 39 #include <linux/proc_fs.h> 40 #include <linux/sched/task.h> 41 #include <linux/idr.h> 42 43 struct pid init_struct_pid = { 44 .count = ATOMIC_INIT(1), 45 .tasks = { 46 { .first = NULL }, 47 { .first = NULL }, 48 { .first = NULL }, 49 }, 50 .level = 0, 51 .numbers = { { 52 .nr = 0, 53 .ns = &init_pid_ns, 54 }, } 55 }; 56 57 int pid_max = PID_MAX_DEFAULT; 58 59 #define RESERVED_PIDS 300 60 61 int pid_max_min = RESERVED_PIDS + 1; 62 int pid_max_max = PID_MAX_LIMIT; 63 64 /* 65 * PID-map pages start out as NULL, they get allocated upon 66 * first use and are never deallocated. This way a low pid_max 67 * value does not cause lots of bitmaps to be allocated, but 68 * the scheme scales to up to 4 million PIDs, runtime. 69 */ 70 struct pid_namespace init_pid_ns = { 71 .kref = KREF_INIT(2), 72 .idr = IDR_INIT(init_pid_ns.idr), 73 .pid_allocated = PIDNS_ADDING, 74 .level = 0, 75 .child_reaper = &init_task, 76 .user_ns = &init_user_ns, 77 .ns.inum = PROC_PID_INIT_INO, 78 #ifdef CONFIG_PID_NS 79 .ns.ops = &pidns_operations, 80 #endif 81 }; 82 EXPORT_SYMBOL_GPL(init_pid_ns); 83 84 /* 85 * Note: disable interrupts while the pidmap_lock is held as an 86 * interrupt might come in and do read_lock(&tasklist_lock). 87 * 88 * If we don't disable interrupts there is a nasty deadlock between 89 * detach_pid()->free_pid() and another cpu that does 90 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 91 * read_lock(&tasklist_lock); 92 * 93 * After we clean up the tasklist_lock and know there are no 94 * irq handlers that take it we can leave the interrupts enabled. 95 * For now it is easier to be safe than to prove it can't happen. 96 */ 97 98 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 99 100 void put_pid(struct pid *pid) 101 { 102 struct pid_namespace *ns; 103 104 if (!pid) 105 return; 106 107 ns = pid->numbers[pid->level].ns; 108 if ((atomic_read(&pid->count) == 1) || 109 atomic_dec_and_test(&pid->count)) { 110 kmem_cache_free(ns->pid_cachep, pid); 111 put_pid_ns(ns); 112 } 113 } 114 EXPORT_SYMBOL_GPL(put_pid); 115 116 static void delayed_put_pid(struct rcu_head *rhp) 117 { 118 struct pid *pid = container_of(rhp, struct pid, rcu); 119 put_pid(pid); 120 } 121 122 void free_pid(struct pid *pid) 123 { 124 /* We can be called with write_lock_irq(&tasklist_lock) held */ 125 int i; 126 unsigned long flags; 127 128 spin_lock_irqsave(&pidmap_lock, flags); 129 for (i = 0; i <= pid->level; i++) { 130 struct upid *upid = pid->numbers + i; 131 struct pid_namespace *ns = upid->ns; 132 switch (--ns->pid_allocated) { 133 case 2: 134 case 1: 135 /* When all that is left in the pid namespace 136 * is the reaper wake up the reaper. The reaper 137 * may be sleeping in zap_pid_ns_processes(). 138 */ 139 wake_up_process(ns->child_reaper); 140 break; 141 case PIDNS_ADDING: 142 /* Handle a fork failure of the first process */ 143 WARN_ON(ns->child_reaper); 144 ns->pid_allocated = 0; 145 /* fall through */ 146 case 0: 147 schedule_work(&ns->proc_work); 148 break; 149 } 150 151 idr_remove(&ns->idr, upid->nr); 152 } 153 spin_unlock_irqrestore(&pidmap_lock, flags); 154 155 call_rcu(&pid->rcu, delayed_put_pid); 156 } 157 158 struct pid *alloc_pid(struct pid_namespace *ns) 159 { 160 struct pid *pid; 161 enum pid_type type; 162 int i, nr; 163 struct pid_namespace *tmp; 164 struct upid *upid; 165 int retval = -ENOMEM; 166 167 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 168 if (!pid) 169 return ERR_PTR(retval); 170 171 tmp = ns; 172 pid->level = ns->level; 173 174 for (i = ns->level; i >= 0; i--) { 175 int pid_min = 1; 176 177 idr_preload(GFP_KERNEL); 178 spin_lock_irq(&pidmap_lock); 179 180 /* 181 * init really needs pid 1, but after reaching the maximum 182 * wrap back to RESERVED_PIDS 183 */ 184 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 185 pid_min = RESERVED_PIDS; 186 187 /* 188 * Store a null pointer so find_pid_ns does not find 189 * a partially initialized PID (see below). 190 */ 191 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 192 pid_max, GFP_ATOMIC); 193 spin_unlock_irq(&pidmap_lock); 194 idr_preload_end(); 195 196 if (nr < 0) { 197 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 198 goto out_free; 199 } 200 201 pid->numbers[i].nr = nr; 202 pid->numbers[i].ns = tmp; 203 tmp = tmp->parent; 204 } 205 206 if (unlikely(is_child_reaper(pid))) { 207 if (pid_ns_prepare_proc(ns)) 208 goto out_free; 209 } 210 211 get_pid_ns(ns); 212 atomic_set(&pid->count, 1); 213 for (type = 0; type < PIDTYPE_MAX; ++type) 214 INIT_HLIST_HEAD(&pid->tasks[type]); 215 216 upid = pid->numbers + ns->level; 217 spin_lock_irq(&pidmap_lock); 218 if (!(ns->pid_allocated & PIDNS_ADDING)) 219 goto out_unlock; 220 for ( ; upid >= pid->numbers; --upid) { 221 /* Make the PID visible to find_pid_ns. */ 222 idr_replace(&upid->ns->idr, pid, upid->nr); 223 upid->ns->pid_allocated++; 224 } 225 spin_unlock_irq(&pidmap_lock); 226 227 return pid; 228 229 out_unlock: 230 spin_unlock_irq(&pidmap_lock); 231 put_pid_ns(ns); 232 233 out_free: 234 spin_lock_irq(&pidmap_lock); 235 while (++i <= ns->level) { 236 upid = pid->numbers + i; 237 idr_remove(&upid->ns->idr, upid->nr); 238 } 239 240 /* On failure to allocate the first pid, reset the state */ 241 if (ns->pid_allocated == PIDNS_ADDING) 242 idr_set_cursor(&ns->idr, 0); 243 244 spin_unlock_irq(&pidmap_lock); 245 246 kmem_cache_free(ns->pid_cachep, pid); 247 return ERR_PTR(retval); 248 } 249 250 void disable_pid_allocation(struct pid_namespace *ns) 251 { 252 spin_lock_irq(&pidmap_lock); 253 ns->pid_allocated &= ~PIDNS_ADDING; 254 spin_unlock_irq(&pidmap_lock); 255 } 256 257 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 258 { 259 return idr_find(&ns->idr, nr); 260 } 261 EXPORT_SYMBOL_GPL(find_pid_ns); 262 263 struct pid *find_vpid(int nr) 264 { 265 return find_pid_ns(nr, task_active_pid_ns(current)); 266 } 267 EXPORT_SYMBOL_GPL(find_vpid); 268 269 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 270 { 271 return (type == PIDTYPE_PID) ? 272 &task->thread_pid : 273 &task->signal->pids[type]; 274 } 275 276 /* 277 * attach_pid() must be called with the tasklist_lock write-held. 278 */ 279 void attach_pid(struct task_struct *task, enum pid_type type) 280 { 281 struct pid *pid = *task_pid_ptr(task, type); 282 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 283 } 284 285 static void __change_pid(struct task_struct *task, enum pid_type type, 286 struct pid *new) 287 { 288 struct pid **pid_ptr = task_pid_ptr(task, type); 289 struct pid *pid; 290 int tmp; 291 292 pid = *pid_ptr; 293 294 hlist_del_rcu(&task->pid_links[type]); 295 *pid_ptr = new; 296 297 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 298 if (!hlist_empty(&pid->tasks[tmp])) 299 return; 300 301 free_pid(pid); 302 } 303 304 void detach_pid(struct task_struct *task, enum pid_type type) 305 { 306 __change_pid(task, type, NULL); 307 } 308 309 void change_pid(struct task_struct *task, enum pid_type type, 310 struct pid *pid) 311 { 312 __change_pid(task, type, pid); 313 attach_pid(task, type); 314 } 315 316 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 317 void transfer_pid(struct task_struct *old, struct task_struct *new, 318 enum pid_type type) 319 { 320 if (type == PIDTYPE_PID) 321 new->thread_pid = old->thread_pid; 322 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 323 } 324 325 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 326 { 327 struct task_struct *result = NULL; 328 if (pid) { 329 struct hlist_node *first; 330 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 331 lockdep_tasklist_lock_is_held()); 332 if (first) 333 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 334 } 335 return result; 336 } 337 EXPORT_SYMBOL(pid_task); 338 339 /* 340 * Must be called under rcu_read_lock(). 341 */ 342 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 343 { 344 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 345 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 346 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 347 } 348 349 struct task_struct *find_task_by_vpid(pid_t vnr) 350 { 351 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 352 } 353 354 struct task_struct *find_get_task_by_vpid(pid_t nr) 355 { 356 struct task_struct *task; 357 358 rcu_read_lock(); 359 task = find_task_by_vpid(nr); 360 if (task) 361 get_task_struct(task); 362 rcu_read_unlock(); 363 364 return task; 365 } 366 367 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 368 { 369 struct pid *pid; 370 rcu_read_lock(); 371 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 372 rcu_read_unlock(); 373 return pid; 374 } 375 EXPORT_SYMBOL_GPL(get_task_pid); 376 377 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 378 { 379 struct task_struct *result; 380 rcu_read_lock(); 381 result = pid_task(pid, type); 382 if (result) 383 get_task_struct(result); 384 rcu_read_unlock(); 385 return result; 386 } 387 EXPORT_SYMBOL_GPL(get_pid_task); 388 389 struct pid *find_get_pid(pid_t nr) 390 { 391 struct pid *pid; 392 393 rcu_read_lock(); 394 pid = get_pid(find_vpid(nr)); 395 rcu_read_unlock(); 396 397 return pid; 398 } 399 EXPORT_SYMBOL_GPL(find_get_pid); 400 401 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 402 { 403 struct upid *upid; 404 pid_t nr = 0; 405 406 if (pid && ns->level <= pid->level) { 407 upid = &pid->numbers[ns->level]; 408 if (upid->ns == ns) 409 nr = upid->nr; 410 } 411 return nr; 412 } 413 EXPORT_SYMBOL_GPL(pid_nr_ns); 414 415 pid_t pid_vnr(struct pid *pid) 416 { 417 return pid_nr_ns(pid, task_active_pid_ns(current)); 418 } 419 EXPORT_SYMBOL_GPL(pid_vnr); 420 421 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 422 struct pid_namespace *ns) 423 { 424 pid_t nr = 0; 425 426 rcu_read_lock(); 427 if (!ns) 428 ns = task_active_pid_ns(current); 429 if (likely(pid_alive(task))) 430 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 431 rcu_read_unlock(); 432 433 return nr; 434 } 435 EXPORT_SYMBOL(__task_pid_nr_ns); 436 437 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 438 { 439 return ns_of_pid(task_pid(tsk)); 440 } 441 EXPORT_SYMBOL_GPL(task_active_pid_ns); 442 443 /* 444 * Used by proc to find the first pid that is greater than or equal to nr. 445 * 446 * If there is a pid at nr this function is exactly the same as find_pid_ns. 447 */ 448 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 449 { 450 return idr_get_next(&ns->idr, &nr); 451 } 452 453 void __init pid_idr_init(void) 454 { 455 /* Verify no one has done anything silly: */ 456 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 457 458 /* bump default and minimum pid_max based on number of cpus */ 459 pid_max = min(pid_max_max, max_t(int, pid_max, 460 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 461 pid_max_min = max_t(int, pid_max_min, 462 PIDS_PER_CPU_MIN * num_possible_cpus()); 463 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 464 465 idr_init(&init_pid_ns.idr); 466 467 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 468 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 469 } 470