1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 46 struct pid init_struct_pid = { 47 .count = REFCOUNT_INIT(1), 48 .tasks = { 49 { .first = NULL }, 50 { .first = NULL }, 51 { .first = NULL }, 52 }, 53 .level = 0, 54 .numbers = { { 55 .nr = 0, 56 .ns = &init_pid_ns, 57 }, } 58 }; 59 60 int pid_max = PID_MAX_DEFAULT; 61 62 #define RESERVED_PIDS 300 63 64 int pid_max_min = RESERVED_PIDS + 1; 65 int pid_max_max = PID_MAX_LIMIT; 66 67 /* 68 * PID-map pages start out as NULL, they get allocated upon 69 * first use and are never deallocated. This way a low pid_max 70 * value does not cause lots of bitmaps to be allocated, but 71 * the scheme scales to up to 4 million PIDs, runtime. 72 */ 73 struct pid_namespace init_pid_ns = { 74 .kref = KREF_INIT(2), 75 .idr = IDR_INIT(init_pid_ns.idr), 76 .pid_allocated = PIDNS_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .ns.inum = PROC_PID_INIT_INO, 81 #ifdef CONFIG_PID_NS 82 .ns.ops = &pidns_operations, 83 #endif 84 }; 85 EXPORT_SYMBOL_GPL(init_pid_ns); 86 87 /* 88 * Note: disable interrupts while the pidmap_lock is held as an 89 * interrupt might come in and do read_lock(&tasklist_lock). 90 * 91 * If we don't disable interrupts there is a nasty deadlock between 92 * detach_pid()->free_pid() and another cpu that does 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 94 * read_lock(&tasklist_lock); 95 * 96 * After we clean up the tasklist_lock and know there are no 97 * irq handlers that take it we can leave the interrupts enabled. 98 * For now it is easier to be safe than to prove it can't happen. 99 */ 100 101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 102 103 void put_pid(struct pid *pid) 104 { 105 struct pid_namespace *ns; 106 107 if (!pid) 108 return; 109 110 ns = pid->numbers[pid->level].ns; 111 if (refcount_dec_and_test(&pid->count)) { 112 kmem_cache_free(ns->pid_cachep, pid); 113 put_pid_ns(ns); 114 } 115 } 116 EXPORT_SYMBOL_GPL(put_pid); 117 118 static void delayed_put_pid(struct rcu_head *rhp) 119 { 120 struct pid *pid = container_of(rhp, struct pid, rcu); 121 put_pid(pid); 122 } 123 124 void free_pid(struct pid *pid) 125 { 126 /* We can be called with write_lock_irq(&tasklist_lock) held */ 127 int i; 128 unsigned long flags; 129 130 spin_lock_irqsave(&pidmap_lock, flags); 131 for (i = 0; i <= pid->level; i++) { 132 struct upid *upid = pid->numbers + i; 133 struct pid_namespace *ns = upid->ns; 134 switch (--ns->pid_allocated) { 135 case 2: 136 case 1: 137 /* When all that is left in the pid namespace 138 * is the reaper wake up the reaper. The reaper 139 * may be sleeping in zap_pid_ns_processes(). 140 */ 141 wake_up_process(ns->child_reaper); 142 break; 143 case PIDNS_ADDING: 144 /* Handle a fork failure of the first process */ 145 WARN_ON(ns->child_reaper); 146 ns->pid_allocated = 0; 147 /* fall through */ 148 case 0: 149 schedule_work(&ns->proc_work); 150 break; 151 } 152 153 idr_remove(&ns->idr, upid->nr); 154 } 155 spin_unlock_irqrestore(&pidmap_lock, flags); 156 157 call_rcu(&pid->rcu, delayed_put_pid); 158 } 159 160 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 161 size_t set_tid_size) 162 { 163 struct pid *pid; 164 enum pid_type type; 165 int i, nr; 166 struct pid_namespace *tmp; 167 struct upid *upid; 168 int retval = -ENOMEM; 169 170 /* 171 * set_tid_size contains the size of the set_tid array. Starting at 172 * the most nested currently active PID namespace it tells alloc_pid() 173 * which PID to set for a process in that most nested PID namespace 174 * up to set_tid_size PID namespaces. It does not have to set the PID 175 * for a process in all nested PID namespaces but set_tid_size must 176 * never be greater than the current ns->level + 1. 177 */ 178 if (set_tid_size > ns->level + 1) 179 return ERR_PTR(-EINVAL); 180 181 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 182 if (!pid) 183 return ERR_PTR(retval); 184 185 tmp = ns; 186 pid->level = ns->level; 187 188 for (i = ns->level; i >= 0; i--) { 189 int tid = 0; 190 191 if (set_tid_size) { 192 tid = set_tid[ns->level - i]; 193 194 retval = -EINVAL; 195 if (tid < 1 || tid >= pid_max) 196 goto out_free; 197 /* 198 * Also fail if a PID != 1 is requested and 199 * no PID 1 exists. 200 */ 201 if (tid != 1 && !tmp->child_reaper) 202 goto out_free; 203 retval = -EPERM; 204 if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN)) 205 goto out_free; 206 set_tid_size--; 207 } 208 209 idr_preload(GFP_KERNEL); 210 spin_lock_irq(&pidmap_lock); 211 212 if (tid) { 213 nr = idr_alloc(&tmp->idr, NULL, tid, 214 tid + 1, GFP_ATOMIC); 215 /* 216 * If ENOSPC is returned it means that the PID is 217 * alreay in use. Return EEXIST in that case. 218 */ 219 if (nr == -ENOSPC) 220 nr = -EEXIST; 221 } else { 222 int pid_min = 1; 223 /* 224 * init really needs pid 1, but after reaching the 225 * maximum wrap back to RESERVED_PIDS 226 */ 227 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 228 pid_min = RESERVED_PIDS; 229 230 /* 231 * Store a null pointer so find_pid_ns does not find 232 * a partially initialized PID (see below). 233 */ 234 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 235 pid_max, GFP_ATOMIC); 236 } 237 spin_unlock_irq(&pidmap_lock); 238 idr_preload_end(); 239 240 if (nr < 0) { 241 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 242 goto out_free; 243 } 244 245 pid->numbers[i].nr = nr; 246 pid->numbers[i].ns = tmp; 247 tmp = tmp->parent; 248 } 249 250 if (unlikely(is_child_reaper(pid))) { 251 if (pid_ns_prepare_proc(ns)) 252 goto out_free; 253 } 254 255 get_pid_ns(ns); 256 refcount_set(&pid->count, 1); 257 for (type = 0; type < PIDTYPE_MAX; ++type) 258 INIT_HLIST_HEAD(&pid->tasks[type]); 259 260 init_waitqueue_head(&pid->wait_pidfd); 261 262 upid = pid->numbers + ns->level; 263 spin_lock_irq(&pidmap_lock); 264 if (!(ns->pid_allocated & PIDNS_ADDING)) 265 goto out_unlock; 266 for ( ; upid >= pid->numbers; --upid) { 267 /* Make the PID visible to find_pid_ns. */ 268 idr_replace(&upid->ns->idr, pid, upid->nr); 269 upid->ns->pid_allocated++; 270 } 271 spin_unlock_irq(&pidmap_lock); 272 273 return pid; 274 275 out_unlock: 276 spin_unlock_irq(&pidmap_lock); 277 put_pid_ns(ns); 278 279 out_free: 280 spin_lock_irq(&pidmap_lock); 281 while (++i <= ns->level) { 282 upid = pid->numbers + i; 283 idr_remove(&upid->ns->idr, upid->nr); 284 } 285 286 /* On failure to allocate the first pid, reset the state */ 287 if (ns->pid_allocated == PIDNS_ADDING) 288 idr_set_cursor(&ns->idr, 0); 289 290 spin_unlock_irq(&pidmap_lock); 291 292 kmem_cache_free(ns->pid_cachep, pid); 293 return ERR_PTR(retval); 294 } 295 296 void disable_pid_allocation(struct pid_namespace *ns) 297 { 298 spin_lock_irq(&pidmap_lock); 299 ns->pid_allocated &= ~PIDNS_ADDING; 300 spin_unlock_irq(&pidmap_lock); 301 } 302 303 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 304 { 305 return idr_find(&ns->idr, nr); 306 } 307 EXPORT_SYMBOL_GPL(find_pid_ns); 308 309 struct pid *find_vpid(int nr) 310 { 311 return find_pid_ns(nr, task_active_pid_ns(current)); 312 } 313 EXPORT_SYMBOL_GPL(find_vpid); 314 315 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 316 { 317 return (type == PIDTYPE_PID) ? 318 &task->thread_pid : 319 &task->signal->pids[type]; 320 } 321 322 /* 323 * attach_pid() must be called with the tasklist_lock write-held. 324 */ 325 void attach_pid(struct task_struct *task, enum pid_type type) 326 { 327 struct pid *pid = *task_pid_ptr(task, type); 328 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 329 } 330 331 static void __change_pid(struct task_struct *task, enum pid_type type, 332 struct pid *new) 333 { 334 struct pid **pid_ptr = task_pid_ptr(task, type); 335 struct pid *pid; 336 int tmp; 337 338 pid = *pid_ptr; 339 340 hlist_del_rcu(&task->pid_links[type]); 341 *pid_ptr = new; 342 343 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 344 if (pid_has_task(pid, tmp)) 345 return; 346 347 free_pid(pid); 348 } 349 350 void detach_pid(struct task_struct *task, enum pid_type type) 351 { 352 __change_pid(task, type, NULL); 353 } 354 355 void change_pid(struct task_struct *task, enum pid_type type, 356 struct pid *pid) 357 { 358 __change_pid(task, type, pid); 359 attach_pid(task, type); 360 } 361 362 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 363 void transfer_pid(struct task_struct *old, struct task_struct *new, 364 enum pid_type type) 365 { 366 if (type == PIDTYPE_PID) 367 new->thread_pid = old->thread_pid; 368 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 369 } 370 371 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 372 { 373 struct task_struct *result = NULL; 374 if (pid) { 375 struct hlist_node *first; 376 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 377 lockdep_tasklist_lock_is_held()); 378 if (first) 379 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 380 } 381 return result; 382 } 383 EXPORT_SYMBOL(pid_task); 384 385 /* 386 * Must be called under rcu_read_lock(). 387 */ 388 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 389 { 390 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 391 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 392 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 393 } 394 395 struct task_struct *find_task_by_vpid(pid_t vnr) 396 { 397 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 398 } 399 400 struct task_struct *find_get_task_by_vpid(pid_t nr) 401 { 402 struct task_struct *task; 403 404 rcu_read_lock(); 405 task = find_task_by_vpid(nr); 406 if (task) 407 get_task_struct(task); 408 rcu_read_unlock(); 409 410 return task; 411 } 412 413 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 414 { 415 struct pid *pid; 416 rcu_read_lock(); 417 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 418 rcu_read_unlock(); 419 return pid; 420 } 421 EXPORT_SYMBOL_GPL(get_task_pid); 422 423 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 424 { 425 struct task_struct *result; 426 rcu_read_lock(); 427 result = pid_task(pid, type); 428 if (result) 429 get_task_struct(result); 430 rcu_read_unlock(); 431 return result; 432 } 433 EXPORT_SYMBOL_GPL(get_pid_task); 434 435 struct pid *find_get_pid(pid_t nr) 436 { 437 struct pid *pid; 438 439 rcu_read_lock(); 440 pid = get_pid(find_vpid(nr)); 441 rcu_read_unlock(); 442 443 return pid; 444 } 445 EXPORT_SYMBOL_GPL(find_get_pid); 446 447 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 448 { 449 struct upid *upid; 450 pid_t nr = 0; 451 452 if (pid && ns->level <= pid->level) { 453 upid = &pid->numbers[ns->level]; 454 if (upid->ns == ns) 455 nr = upid->nr; 456 } 457 return nr; 458 } 459 EXPORT_SYMBOL_GPL(pid_nr_ns); 460 461 pid_t pid_vnr(struct pid *pid) 462 { 463 return pid_nr_ns(pid, task_active_pid_ns(current)); 464 } 465 EXPORT_SYMBOL_GPL(pid_vnr); 466 467 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 468 struct pid_namespace *ns) 469 { 470 pid_t nr = 0; 471 472 rcu_read_lock(); 473 if (!ns) 474 ns = task_active_pid_ns(current); 475 if (likely(pid_alive(task))) 476 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 477 rcu_read_unlock(); 478 479 return nr; 480 } 481 EXPORT_SYMBOL(__task_pid_nr_ns); 482 483 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 484 { 485 return ns_of_pid(task_pid(tsk)); 486 } 487 EXPORT_SYMBOL_GPL(task_active_pid_ns); 488 489 /* 490 * Used by proc to find the first pid that is greater than or equal to nr. 491 * 492 * If there is a pid at nr this function is exactly the same as find_pid_ns. 493 */ 494 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 495 { 496 return idr_get_next(&ns->idr, &nr); 497 } 498 499 /** 500 * pidfd_create() - Create a new pid file descriptor. 501 * 502 * @pid: struct pid that the pidfd will reference 503 * 504 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 505 * 506 * Note, that this function can only be called after the fd table has 507 * been unshared to avoid leaking the pidfd to the new process. 508 * 509 * Return: On success, a cloexec pidfd is returned. 510 * On error, a negative errno number will be returned. 511 */ 512 static int pidfd_create(struct pid *pid) 513 { 514 int fd; 515 516 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), 517 O_RDWR | O_CLOEXEC); 518 if (fd < 0) 519 put_pid(pid); 520 521 return fd; 522 } 523 524 /** 525 * pidfd_open() - Open new pid file descriptor. 526 * 527 * @pid: pid for which to retrieve a pidfd 528 * @flags: flags to pass 529 * 530 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 531 * the process identified by @pid. Currently, the process identified by 532 * @pid must be a thread-group leader. This restriction currently exists 533 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot 534 * be used with CLONE_THREAD) and pidfd polling (only supports thread group 535 * leaders). 536 * 537 * Return: On success, a cloexec pidfd is returned. 538 * On error, a negative errno number will be returned. 539 */ 540 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 541 { 542 int fd; 543 struct pid *p; 544 545 if (flags) 546 return -EINVAL; 547 548 if (pid <= 0) 549 return -EINVAL; 550 551 p = find_get_pid(pid); 552 if (!p) 553 return -ESRCH; 554 555 if (pid_has_task(p, PIDTYPE_TGID)) 556 fd = pidfd_create(p); 557 else 558 fd = -EINVAL; 559 560 put_pid(p); 561 return fd; 562 } 563 564 void __init pid_idr_init(void) 565 { 566 /* Verify no one has done anything silly: */ 567 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 568 569 /* bump default and minimum pid_max based on number of cpus */ 570 pid_max = min(pid_max_max, max_t(int, pid_max, 571 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 572 pid_max_min = max_t(int, pid_max_min, 573 PIDS_PER_CPU_MIN * num_possible_cpus()); 574 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 575 576 idr_init(&init_pid_ns.idr); 577 578 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 579 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 580 } 581 582 static struct file *__pidfd_fget(struct task_struct *task, int fd) 583 { 584 struct file *file; 585 int ret; 586 587 ret = mutex_lock_killable(&task->signal->cred_guard_mutex); 588 if (ret) 589 return ERR_PTR(ret); 590 591 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 592 file = fget_task(task, fd); 593 else 594 file = ERR_PTR(-EPERM); 595 596 mutex_unlock(&task->signal->cred_guard_mutex); 597 598 return file ?: ERR_PTR(-EBADF); 599 } 600 601 static int pidfd_getfd(struct pid *pid, int fd) 602 { 603 struct task_struct *task; 604 struct file *file; 605 int ret; 606 607 task = get_pid_task(pid, PIDTYPE_PID); 608 if (!task) 609 return -ESRCH; 610 611 file = __pidfd_fget(task, fd); 612 put_task_struct(task); 613 if (IS_ERR(file)) 614 return PTR_ERR(file); 615 616 ret = security_file_receive(file); 617 if (ret) { 618 fput(file); 619 return ret; 620 } 621 622 ret = get_unused_fd_flags(O_CLOEXEC); 623 if (ret < 0) 624 fput(file); 625 else 626 fd_install(ret, file); 627 628 return ret; 629 } 630 631 /** 632 * sys_pidfd_getfd() - Get a file descriptor from another process 633 * 634 * @pidfd: the pidfd file descriptor of the process 635 * @fd: the file descriptor number to get 636 * @flags: flags on how to get the fd (reserved) 637 * 638 * This syscall gets a copy of a file descriptor from another process 639 * based on the pidfd, and file descriptor number. It requires that 640 * the calling process has the ability to ptrace the process represented 641 * by the pidfd. The process which is having its file descriptor copied 642 * is otherwise unaffected. 643 * 644 * Return: On success, a cloexec file descriptor is returned. 645 * On error, a negative errno number will be returned. 646 */ 647 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 648 unsigned int, flags) 649 { 650 struct pid *pid; 651 struct fd f; 652 int ret; 653 654 /* flags is currently unused - make sure it's unset */ 655 if (flags) 656 return -EINVAL; 657 658 f = fdget(pidfd); 659 if (!f.file) 660 return -EBADF; 661 662 pid = pidfd_pid(f.file); 663 if (IS_ERR(pid)) 664 ret = PTR_ERR(pid); 665 else 666 ret = pidfd_getfd(pid, fd); 667 668 fdput(f); 669 return ret; 670 } 671