xref: /openbmc/linux/kernel/pid.c (revision 07105202)
1 /*
2  * Generic pidhash and scalable, time-bounded PID allocator
3  *
4  * (C) 2002-2003 William Irwin, IBM
5  * (C) 2004 William Irwin, Oracle
6  * (C) 2002-2004 Ingo Molnar, Red Hat
7  *
8  * pid-structures are backing objects for tasks sharing a given ID to chain
9  * against. There is very little to them aside from hashing them and
10  * parking tasks using given ID's on a list.
11  *
12  * The hash is always changed with the tasklist_lock write-acquired,
13  * and the hash is only accessed with the tasklist_lock at least
14  * read-acquired, so there's no additional SMP locking needed here.
15  *
16  * We have a list of bitmap pages, which bitmaps represent the PID space.
17  * Allocating and freeing PIDs is completely lockless. The worst-case
18  * allocation scenario when all but one out of 1 million PIDs possible are
19  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21  *
22  * Pid namespaces:
23  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25  *     Many thanks to Oleg Nesterov for comments and help
26  *
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 
40 #define pid_hashfn(nr, ns)	\
41 	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
42 static struct hlist_head *pid_hash;
43 static unsigned int pidhash_shift = 4;
44 struct pid init_struct_pid = INIT_STRUCT_PID;
45 
46 int pid_max = PID_MAX_DEFAULT;
47 
48 #define RESERVED_PIDS		300
49 
50 int pid_max_min = RESERVED_PIDS + 1;
51 int pid_max_max = PID_MAX_LIMIT;
52 
53 #define BITS_PER_PAGE		(PAGE_SIZE*8)
54 #define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)
55 
56 static inline int mk_pid(struct pid_namespace *pid_ns,
57 		struct pidmap *map, int off)
58 {
59 	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
60 }
61 
62 #define find_next_offset(map, off)					\
63 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64 
65 /*
66  * PID-map pages start out as NULL, they get allocated upon
67  * first use and are never deallocated. This way a low pid_max
68  * value does not cause lots of bitmaps to be allocated, but
69  * the scheme scales to up to 4 million PIDs, runtime.
70  */
71 struct pid_namespace init_pid_ns = {
72 	.kref = {
73 		.refcount       = ATOMIC_INIT(2),
74 	},
75 	.pidmap = {
76 		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
77 	},
78 	.last_pid = 0,
79 	.level = 0,
80 	.child_reaper = &init_task,
81 };
82 EXPORT_SYMBOL_GPL(init_pid_ns);
83 
84 int is_container_init(struct task_struct *tsk)
85 {
86 	int ret = 0;
87 	struct pid *pid;
88 
89 	rcu_read_lock();
90 	pid = task_pid(tsk);
91 	if (pid != NULL && pid->numbers[pid->level].nr == 1)
92 		ret = 1;
93 	rcu_read_unlock();
94 
95 	return ret;
96 }
97 EXPORT_SYMBOL(is_container_init);
98 
99 /*
100  * Note: disable interrupts while the pidmap_lock is held as an
101  * interrupt might come in and do read_lock(&tasklist_lock).
102  *
103  * If we don't disable interrupts there is a nasty deadlock between
104  * detach_pid()->free_pid() and another cpu that does
105  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106  * read_lock(&tasklist_lock);
107  *
108  * After we clean up the tasklist_lock and know there are no
109  * irq handlers that take it we can leave the interrupts enabled.
110  * For now it is easier to be safe than to prove it can't happen.
111  */
112 
113 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114 
115 static void free_pidmap(struct upid *upid)
116 {
117 	int nr = upid->nr;
118 	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
119 	int offset = nr & BITS_PER_PAGE_MASK;
120 
121 	clear_bit(offset, map->page);
122 	atomic_inc(&map->nr_free);
123 }
124 
125 static int alloc_pidmap(struct pid_namespace *pid_ns)
126 {
127 	int i, offset, max_scan, pid, last = pid_ns->last_pid;
128 	struct pidmap *map;
129 
130 	pid = last + 1;
131 	if (pid >= pid_max)
132 		pid = RESERVED_PIDS;
133 	offset = pid & BITS_PER_PAGE_MASK;
134 	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
135 	max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
136 	for (i = 0; i <= max_scan; ++i) {
137 		if (unlikely(!map->page)) {
138 			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
139 			/*
140 			 * Free the page if someone raced with us
141 			 * installing it:
142 			 */
143 			spin_lock_irq(&pidmap_lock);
144 			if (!map->page) {
145 				map->page = page;
146 				page = NULL;
147 			}
148 			spin_unlock_irq(&pidmap_lock);
149 			kfree(page);
150 			if (unlikely(!map->page))
151 				break;
152 		}
153 		if (likely(atomic_read(&map->nr_free))) {
154 			do {
155 				if (!test_and_set_bit(offset, map->page)) {
156 					atomic_dec(&map->nr_free);
157 					pid_ns->last_pid = pid;
158 					return pid;
159 				}
160 				offset = find_next_offset(map, offset);
161 				pid = mk_pid(pid_ns, map, offset);
162 			/*
163 			 * find_next_offset() found a bit, the pid from it
164 			 * is in-bounds, and if we fell back to the last
165 			 * bitmap block and the final block was the same
166 			 * as the starting point, pid is before last_pid.
167 			 */
168 			} while (offset < BITS_PER_PAGE && pid < pid_max &&
169 					(i != max_scan || pid < last ||
170 					    !((last+1) & BITS_PER_PAGE_MASK)));
171 		}
172 		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
173 			++map;
174 			offset = 0;
175 		} else {
176 			map = &pid_ns->pidmap[0];
177 			offset = RESERVED_PIDS;
178 			if (unlikely(last == offset))
179 				break;
180 		}
181 		pid = mk_pid(pid_ns, map, offset);
182 	}
183 	return -1;
184 }
185 
186 int next_pidmap(struct pid_namespace *pid_ns, int last)
187 {
188 	int offset;
189 	struct pidmap *map, *end;
190 
191 	offset = (last + 1) & BITS_PER_PAGE_MASK;
192 	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
193 	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
194 	for (; map < end; map++, offset = 0) {
195 		if (unlikely(!map->page))
196 			continue;
197 		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
198 		if (offset < BITS_PER_PAGE)
199 			return mk_pid(pid_ns, map, offset);
200 	}
201 	return -1;
202 }
203 
204 void put_pid(struct pid *pid)
205 {
206 	struct pid_namespace *ns;
207 
208 	if (!pid)
209 		return;
210 
211 	ns = pid->numbers[pid->level].ns;
212 	if ((atomic_read(&pid->count) == 1) ||
213 	     atomic_dec_and_test(&pid->count)) {
214 		kmem_cache_free(ns->pid_cachep, pid);
215 		put_pid_ns(ns);
216 	}
217 }
218 EXPORT_SYMBOL_GPL(put_pid);
219 
220 static void delayed_put_pid(struct rcu_head *rhp)
221 {
222 	struct pid *pid = container_of(rhp, struct pid, rcu);
223 	put_pid(pid);
224 }
225 
226 void free_pid(struct pid *pid)
227 {
228 	/* We can be called with write_lock_irq(&tasklist_lock) held */
229 	int i;
230 	unsigned long flags;
231 
232 	spin_lock_irqsave(&pidmap_lock, flags);
233 	for (i = 0; i <= pid->level; i++)
234 		hlist_del_rcu(&pid->numbers[i].pid_chain);
235 	spin_unlock_irqrestore(&pidmap_lock, flags);
236 
237 	for (i = 0; i <= pid->level; i++)
238 		free_pidmap(pid->numbers + i);
239 
240 	call_rcu(&pid->rcu, delayed_put_pid);
241 }
242 
243 struct pid *alloc_pid(struct pid_namespace *ns)
244 {
245 	struct pid *pid;
246 	enum pid_type type;
247 	int i, nr;
248 	struct pid_namespace *tmp;
249 	struct upid *upid;
250 
251 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
252 	if (!pid)
253 		goto out;
254 
255 	tmp = ns;
256 	for (i = ns->level; i >= 0; i--) {
257 		nr = alloc_pidmap(tmp);
258 		if (nr < 0)
259 			goto out_free;
260 
261 		pid->numbers[i].nr = nr;
262 		pid->numbers[i].ns = tmp;
263 		tmp = tmp->parent;
264 	}
265 
266 	get_pid_ns(ns);
267 	pid->level = ns->level;
268 	atomic_set(&pid->count, 1);
269 	for (type = 0; type < PIDTYPE_MAX; ++type)
270 		INIT_HLIST_HEAD(&pid->tasks[type]);
271 
272 	upid = pid->numbers + ns->level;
273 	spin_lock_irq(&pidmap_lock);
274 	for ( ; upid >= pid->numbers; --upid)
275 		hlist_add_head_rcu(&upid->pid_chain,
276 				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
277 	spin_unlock_irq(&pidmap_lock);
278 
279 out:
280 	return pid;
281 
282 out_free:
283 	while (++i <= ns->level)
284 		free_pidmap(pid->numbers + i);
285 
286 	kmem_cache_free(ns->pid_cachep, pid);
287 	pid = NULL;
288 	goto out;
289 }
290 
291 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
292 {
293 	struct hlist_node *elem;
294 	struct upid *pnr;
295 
296 	hlist_for_each_entry_rcu(pnr, elem,
297 			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
298 		if (pnr->nr == nr && pnr->ns == ns)
299 			return container_of(pnr, struct pid,
300 					numbers[ns->level]);
301 
302 	return NULL;
303 }
304 EXPORT_SYMBOL_GPL(find_pid_ns);
305 
306 struct pid *find_vpid(int nr)
307 {
308 	return find_pid_ns(nr, current->nsproxy->pid_ns);
309 }
310 EXPORT_SYMBOL_GPL(find_vpid);
311 
312 /*
313  * attach_pid() must be called with the tasklist_lock write-held.
314  */
315 void attach_pid(struct task_struct *task, enum pid_type type,
316 		struct pid *pid)
317 {
318 	struct pid_link *link;
319 
320 	link = &task->pids[type];
321 	link->pid = pid;
322 	hlist_add_head_rcu(&link->node, &pid->tasks[type]);
323 }
324 
325 static void __change_pid(struct task_struct *task, enum pid_type type,
326 			struct pid *new)
327 {
328 	struct pid_link *link;
329 	struct pid *pid;
330 	int tmp;
331 
332 	link = &task->pids[type];
333 	pid = link->pid;
334 
335 	hlist_del_rcu(&link->node);
336 	link->pid = new;
337 
338 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
339 		if (!hlist_empty(&pid->tasks[tmp]))
340 			return;
341 
342 	free_pid(pid);
343 }
344 
345 void detach_pid(struct task_struct *task, enum pid_type type)
346 {
347 	__change_pid(task, type, NULL);
348 }
349 
350 void change_pid(struct task_struct *task, enum pid_type type,
351 		struct pid *pid)
352 {
353 	__change_pid(task, type, pid);
354 	attach_pid(task, type, pid);
355 }
356 
357 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
358 void transfer_pid(struct task_struct *old, struct task_struct *new,
359 			   enum pid_type type)
360 {
361 	new->pids[type].pid = old->pids[type].pid;
362 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
363 }
364 
365 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
366 {
367 	struct task_struct *result = NULL;
368 	if (pid) {
369 		struct hlist_node *first;
370 		first = rcu_dereference(pid->tasks[type].first);
371 		if (first)
372 			result = hlist_entry(first, struct task_struct, pids[(type)].node);
373 	}
374 	return result;
375 }
376 EXPORT_SYMBOL(pid_task);
377 
378 /*
379  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
380  */
381 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
382 {
383 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
384 }
385 
386 struct task_struct *find_task_by_vpid(pid_t vnr)
387 {
388 	return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
389 }
390 
391 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
392 {
393 	struct pid *pid;
394 	rcu_read_lock();
395 	if (type != PIDTYPE_PID)
396 		task = task->group_leader;
397 	pid = get_pid(task->pids[type].pid);
398 	rcu_read_unlock();
399 	return pid;
400 }
401 
402 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
403 {
404 	struct task_struct *result;
405 	rcu_read_lock();
406 	result = pid_task(pid, type);
407 	if (result)
408 		get_task_struct(result);
409 	rcu_read_unlock();
410 	return result;
411 }
412 
413 struct pid *find_get_pid(pid_t nr)
414 {
415 	struct pid *pid;
416 
417 	rcu_read_lock();
418 	pid = get_pid(find_vpid(nr));
419 	rcu_read_unlock();
420 
421 	return pid;
422 }
423 EXPORT_SYMBOL_GPL(find_get_pid);
424 
425 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
426 {
427 	struct upid *upid;
428 	pid_t nr = 0;
429 
430 	if (pid && ns->level <= pid->level) {
431 		upid = &pid->numbers[ns->level];
432 		if (upid->ns == ns)
433 			nr = upid->nr;
434 	}
435 	return nr;
436 }
437 
438 pid_t pid_vnr(struct pid *pid)
439 {
440 	return pid_nr_ns(pid, current->nsproxy->pid_ns);
441 }
442 EXPORT_SYMBOL_GPL(pid_vnr);
443 
444 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
445 			struct pid_namespace *ns)
446 {
447 	pid_t nr = 0;
448 
449 	rcu_read_lock();
450 	if (!ns)
451 		ns = current->nsproxy->pid_ns;
452 	if (likely(pid_alive(task))) {
453 		if (type != PIDTYPE_PID)
454 			task = task->group_leader;
455 		nr = pid_nr_ns(task->pids[type].pid, ns);
456 	}
457 	rcu_read_unlock();
458 
459 	return nr;
460 }
461 EXPORT_SYMBOL(__task_pid_nr_ns);
462 
463 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
464 {
465 	return pid_nr_ns(task_tgid(tsk), ns);
466 }
467 EXPORT_SYMBOL(task_tgid_nr_ns);
468 
469 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
470 {
471 	return ns_of_pid(task_pid(tsk));
472 }
473 EXPORT_SYMBOL_GPL(task_active_pid_ns);
474 
475 /*
476  * Used by proc to find the first pid that is greater than or equal to nr.
477  *
478  * If there is a pid at nr this function is exactly the same as find_pid_ns.
479  */
480 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
481 {
482 	struct pid *pid;
483 
484 	do {
485 		pid = find_pid_ns(nr, ns);
486 		if (pid)
487 			break;
488 		nr = next_pidmap(ns, nr);
489 	} while (nr > 0);
490 
491 	return pid;
492 }
493 
494 /*
495  * The pid hash table is scaled according to the amount of memory in the
496  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
497  * more.
498  */
499 void __init pidhash_init(void)
500 {
501 	int i, pidhash_size;
502 
503 	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
504 					   HASH_EARLY | HASH_SMALL,
505 					   &pidhash_shift, NULL, 4096);
506 	pidhash_size = 1 << pidhash_shift;
507 
508 	for (i = 0; i < pidhash_size; i++)
509 		INIT_HLIST_HEAD(&pid_hash[i]);
510 }
511 
512 void __init pidmap_init(void)
513 {
514 	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
515 	/* Reserve PID 0. We never call free_pidmap(0) */
516 	set_bit(0, init_pid_ns.pidmap[0].page);
517 	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
518 
519 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
520 			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
521 }
522