1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 46 struct pid init_struct_pid = { 47 .count = REFCOUNT_INIT(1), 48 .tasks = { 49 { .first = NULL }, 50 { .first = NULL }, 51 { .first = NULL }, 52 }, 53 .level = 0, 54 .numbers = { { 55 .nr = 0, 56 .ns = &init_pid_ns, 57 }, } 58 }; 59 60 int pid_max = PID_MAX_DEFAULT; 61 62 #define RESERVED_PIDS 300 63 64 int pid_max_min = RESERVED_PIDS + 1; 65 int pid_max_max = PID_MAX_LIMIT; 66 67 /* 68 * PID-map pages start out as NULL, they get allocated upon 69 * first use and are never deallocated. This way a low pid_max 70 * value does not cause lots of bitmaps to be allocated, but 71 * the scheme scales to up to 4 million PIDs, runtime. 72 */ 73 struct pid_namespace init_pid_ns = { 74 .kref = KREF_INIT(2), 75 .idr = IDR_INIT(init_pid_ns.idr), 76 .pid_allocated = PIDNS_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .ns.inum = PROC_PID_INIT_INO, 81 #ifdef CONFIG_PID_NS 82 .ns.ops = &pidns_operations, 83 #endif 84 }; 85 EXPORT_SYMBOL_GPL(init_pid_ns); 86 87 /* 88 * Note: disable interrupts while the pidmap_lock is held as an 89 * interrupt might come in and do read_lock(&tasklist_lock). 90 * 91 * If we don't disable interrupts there is a nasty deadlock between 92 * detach_pid()->free_pid() and another cpu that does 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 94 * read_lock(&tasklist_lock); 95 * 96 * After we clean up the tasklist_lock and know there are no 97 * irq handlers that take it we can leave the interrupts enabled. 98 * For now it is easier to be safe than to prove it can't happen. 99 */ 100 101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 102 103 void put_pid(struct pid *pid) 104 { 105 struct pid_namespace *ns; 106 107 if (!pid) 108 return; 109 110 ns = pid->numbers[pid->level].ns; 111 if (refcount_dec_and_test(&pid->count)) { 112 kmem_cache_free(ns->pid_cachep, pid); 113 put_pid_ns(ns); 114 } 115 } 116 EXPORT_SYMBOL_GPL(put_pid); 117 118 static void delayed_put_pid(struct rcu_head *rhp) 119 { 120 struct pid *pid = container_of(rhp, struct pid, rcu); 121 put_pid(pid); 122 } 123 124 void free_pid(struct pid *pid) 125 { 126 /* We can be called with write_lock_irq(&tasklist_lock) held */ 127 int i; 128 unsigned long flags; 129 130 spin_lock_irqsave(&pidmap_lock, flags); 131 for (i = 0; i <= pid->level; i++) { 132 struct upid *upid = pid->numbers + i; 133 struct pid_namespace *ns = upid->ns; 134 switch (--ns->pid_allocated) { 135 case 2: 136 case 1: 137 /* When all that is left in the pid namespace 138 * is the reaper wake up the reaper. The reaper 139 * may be sleeping in zap_pid_ns_processes(). 140 */ 141 wake_up_process(ns->child_reaper); 142 break; 143 case PIDNS_ADDING: 144 /* Handle a fork failure of the first process */ 145 WARN_ON(ns->child_reaper); 146 ns->pid_allocated = 0; 147 break; 148 } 149 150 idr_remove(&ns->idr, upid->nr); 151 } 152 spin_unlock_irqrestore(&pidmap_lock, flags); 153 154 call_rcu(&pid->rcu, delayed_put_pid); 155 } 156 157 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 158 size_t set_tid_size) 159 { 160 struct pid *pid; 161 enum pid_type type; 162 int i, nr; 163 struct pid_namespace *tmp; 164 struct upid *upid; 165 int retval = -ENOMEM; 166 167 /* 168 * set_tid_size contains the size of the set_tid array. Starting at 169 * the most nested currently active PID namespace it tells alloc_pid() 170 * which PID to set for a process in that most nested PID namespace 171 * up to set_tid_size PID namespaces. It does not have to set the PID 172 * for a process in all nested PID namespaces but set_tid_size must 173 * never be greater than the current ns->level + 1. 174 */ 175 if (set_tid_size > ns->level + 1) 176 return ERR_PTR(-EINVAL); 177 178 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 179 if (!pid) 180 return ERR_PTR(retval); 181 182 tmp = ns; 183 pid->level = ns->level; 184 185 for (i = ns->level; i >= 0; i--) { 186 int tid = 0; 187 188 if (set_tid_size) { 189 tid = set_tid[ns->level - i]; 190 191 retval = -EINVAL; 192 if (tid < 1 || tid >= pid_max) 193 goto out_free; 194 /* 195 * Also fail if a PID != 1 is requested and 196 * no PID 1 exists. 197 */ 198 if (tid != 1 && !tmp->child_reaper) 199 goto out_free; 200 retval = -EPERM; 201 if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN)) 202 goto out_free; 203 set_tid_size--; 204 } 205 206 idr_preload(GFP_KERNEL); 207 spin_lock_irq(&pidmap_lock); 208 209 if (tid) { 210 nr = idr_alloc(&tmp->idr, NULL, tid, 211 tid + 1, GFP_ATOMIC); 212 /* 213 * If ENOSPC is returned it means that the PID is 214 * alreay in use. Return EEXIST in that case. 215 */ 216 if (nr == -ENOSPC) 217 nr = -EEXIST; 218 } else { 219 int pid_min = 1; 220 /* 221 * init really needs pid 1, but after reaching the 222 * maximum wrap back to RESERVED_PIDS 223 */ 224 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 225 pid_min = RESERVED_PIDS; 226 227 /* 228 * Store a null pointer so find_pid_ns does not find 229 * a partially initialized PID (see below). 230 */ 231 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 232 pid_max, GFP_ATOMIC); 233 } 234 spin_unlock_irq(&pidmap_lock); 235 idr_preload_end(); 236 237 if (nr < 0) { 238 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 239 goto out_free; 240 } 241 242 pid->numbers[i].nr = nr; 243 pid->numbers[i].ns = tmp; 244 tmp = tmp->parent; 245 } 246 247 /* 248 * ENOMEM is not the most obvious choice especially for the case 249 * where the child subreaper has already exited and the pid 250 * namespace denies the creation of any new processes. But ENOMEM 251 * is what we have exposed to userspace for a long time and it is 252 * documented behavior for pid namespaces. So we can't easily 253 * change it even if there were an error code better suited. 254 */ 255 retval = -ENOMEM; 256 257 get_pid_ns(ns); 258 refcount_set(&pid->count, 1); 259 spin_lock_init(&pid->lock); 260 for (type = 0; type < PIDTYPE_MAX; ++type) 261 INIT_HLIST_HEAD(&pid->tasks[type]); 262 263 init_waitqueue_head(&pid->wait_pidfd); 264 INIT_HLIST_HEAD(&pid->inodes); 265 266 upid = pid->numbers + ns->level; 267 spin_lock_irq(&pidmap_lock); 268 if (!(ns->pid_allocated & PIDNS_ADDING)) 269 goto out_unlock; 270 for ( ; upid >= pid->numbers; --upid) { 271 /* Make the PID visible to find_pid_ns. */ 272 idr_replace(&upid->ns->idr, pid, upid->nr); 273 upid->ns->pid_allocated++; 274 } 275 spin_unlock_irq(&pidmap_lock); 276 277 return pid; 278 279 out_unlock: 280 spin_unlock_irq(&pidmap_lock); 281 put_pid_ns(ns); 282 283 out_free: 284 spin_lock_irq(&pidmap_lock); 285 while (++i <= ns->level) { 286 upid = pid->numbers + i; 287 idr_remove(&upid->ns->idr, upid->nr); 288 } 289 290 /* On failure to allocate the first pid, reset the state */ 291 if (ns->pid_allocated == PIDNS_ADDING) 292 idr_set_cursor(&ns->idr, 0); 293 294 spin_unlock_irq(&pidmap_lock); 295 296 kmem_cache_free(ns->pid_cachep, pid); 297 return ERR_PTR(retval); 298 } 299 300 void disable_pid_allocation(struct pid_namespace *ns) 301 { 302 spin_lock_irq(&pidmap_lock); 303 ns->pid_allocated &= ~PIDNS_ADDING; 304 spin_unlock_irq(&pidmap_lock); 305 } 306 307 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 308 { 309 return idr_find(&ns->idr, nr); 310 } 311 EXPORT_SYMBOL_GPL(find_pid_ns); 312 313 struct pid *find_vpid(int nr) 314 { 315 return find_pid_ns(nr, task_active_pid_ns(current)); 316 } 317 EXPORT_SYMBOL_GPL(find_vpid); 318 319 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 320 { 321 return (type == PIDTYPE_PID) ? 322 &task->thread_pid : 323 &task->signal->pids[type]; 324 } 325 326 /* 327 * attach_pid() must be called with the tasklist_lock write-held. 328 */ 329 void attach_pid(struct task_struct *task, enum pid_type type) 330 { 331 struct pid *pid = *task_pid_ptr(task, type); 332 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 333 } 334 335 static void __change_pid(struct task_struct *task, enum pid_type type, 336 struct pid *new) 337 { 338 struct pid **pid_ptr = task_pid_ptr(task, type); 339 struct pid *pid; 340 int tmp; 341 342 pid = *pid_ptr; 343 344 hlist_del_rcu(&task->pid_links[type]); 345 *pid_ptr = new; 346 347 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 348 if (pid_has_task(pid, tmp)) 349 return; 350 351 free_pid(pid); 352 } 353 354 void detach_pid(struct task_struct *task, enum pid_type type) 355 { 356 __change_pid(task, type, NULL); 357 } 358 359 void change_pid(struct task_struct *task, enum pid_type type, 360 struct pid *pid) 361 { 362 __change_pid(task, type, pid); 363 attach_pid(task, type); 364 } 365 366 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 367 void transfer_pid(struct task_struct *old, struct task_struct *new, 368 enum pid_type type) 369 { 370 if (type == PIDTYPE_PID) 371 new->thread_pid = old->thread_pid; 372 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 373 } 374 375 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 376 { 377 struct task_struct *result = NULL; 378 if (pid) { 379 struct hlist_node *first; 380 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 381 lockdep_tasklist_lock_is_held()); 382 if (first) 383 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 384 } 385 return result; 386 } 387 EXPORT_SYMBOL(pid_task); 388 389 /* 390 * Must be called under rcu_read_lock(). 391 */ 392 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 393 { 394 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 395 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 396 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 397 } 398 399 struct task_struct *find_task_by_vpid(pid_t vnr) 400 { 401 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 402 } 403 404 struct task_struct *find_get_task_by_vpid(pid_t nr) 405 { 406 struct task_struct *task; 407 408 rcu_read_lock(); 409 task = find_task_by_vpid(nr); 410 if (task) 411 get_task_struct(task); 412 rcu_read_unlock(); 413 414 return task; 415 } 416 417 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 418 { 419 struct pid *pid; 420 rcu_read_lock(); 421 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 422 rcu_read_unlock(); 423 return pid; 424 } 425 EXPORT_SYMBOL_GPL(get_task_pid); 426 427 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 428 { 429 struct task_struct *result; 430 rcu_read_lock(); 431 result = pid_task(pid, type); 432 if (result) 433 get_task_struct(result); 434 rcu_read_unlock(); 435 return result; 436 } 437 EXPORT_SYMBOL_GPL(get_pid_task); 438 439 struct pid *find_get_pid(pid_t nr) 440 { 441 struct pid *pid; 442 443 rcu_read_lock(); 444 pid = get_pid(find_vpid(nr)); 445 rcu_read_unlock(); 446 447 return pid; 448 } 449 EXPORT_SYMBOL_GPL(find_get_pid); 450 451 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 452 { 453 struct upid *upid; 454 pid_t nr = 0; 455 456 if (pid && ns->level <= pid->level) { 457 upid = &pid->numbers[ns->level]; 458 if (upid->ns == ns) 459 nr = upid->nr; 460 } 461 return nr; 462 } 463 EXPORT_SYMBOL_GPL(pid_nr_ns); 464 465 pid_t pid_vnr(struct pid *pid) 466 { 467 return pid_nr_ns(pid, task_active_pid_ns(current)); 468 } 469 EXPORT_SYMBOL_GPL(pid_vnr); 470 471 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 472 struct pid_namespace *ns) 473 { 474 pid_t nr = 0; 475 476 rcu_read_lock(); 477 if (!ns) 478 ns = task_active_pid_ns(current); 479 if (likely(pid_alive(task))) 480 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 481 rcu_read_unlock(); 482 483 return nr; 484 } 485 EXPORT_SYMBOL(__task_pid_nr_ns); 486 487 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 488 { 489 return ns_of_pid(task_pid(tsk)); 490 } 491 EXPORT_SYMBOL_GPL(task_active_pid_ns); 492 493 /* 494 * Used by proc to find the first pid that is greater than or equal to nr. 495 * 496 * If there is a pid at nr this function is exactly the same as find_pid_ns. 497 */ 498 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 499 { 500 return idr_get_next(&ns->idr, &nr); 501 } 502 503 /** 504 * pidfd_create() - Create a new pid file descriptor. 505 * 506 * @pid: struct pid that the pidfd will reference 507 * 508 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 509 * 510 * Note, that this function can only be called after the fd table has 511 * been unshared to avoid leaking the pidfd to the new process. 512 * 513 * Return: On success, a cloexec pidfd is returned. 514 * On error, a negative errno number will be returned. 515 */ 516 static int pidfd_create(struct pid *pid) 517 { 518 int fd; 519 520 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), 521 O_RDWR | O_CLOEXEC); 522 if (fd < 0) 523 put_pid(pid); 524 525 return fd; 526 } 527 528 /** 529 * pidfd_open() - Open new pid file descriptor. 530 * 531 * @pid: pid for which to retrieve a pidfd 532 * @flags: flags to pass 533 * 534 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 535 * the process identified by @pid. Currently, the process identified by 536 * @pid must be a thread-group leader. This restriction currently exists 537 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot 538 * be used with CLONE_THREAD) and pidfd polling (only supports thread group 539 * leaders). 540 * 541 * Return: On success, a cloexec pidfd is returned. 542 * On error, a negative errno number will be returned. 543 */ 544 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 545 { 546 int fd; 547 struct pid *p; 548 549 if (flags) 550 return -EINVAL; 551 552 if (pid <= 0) 553 return -EINVAL; 554 555 p = find_get_pid(pid); 556 if (!p) 557 return -ESRCH; 558 559 if (pid_has_task(p, PIDTYPE_TGID)) 560 fd = pidfd_create(p); 561 else 562 fd = -EINVAL; 563 564 put_pid(p); 565 return fd; 566 } 567 568 void __init pid_idr_init(void) 569 { 570 /* Verify no one has done anything silly: */ 571 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 572 573 /* bump default and minimum pid_max based on number of cpus */ 574 pid_max = min(pid_max_max, max_t(int, pid_max, 575 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 576 pid_max_min = max_t(int, pid_max_min, 577 PIDS_PER_CPU_MIN * num_possible_cpus()); 578 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 579 580 idr_init(&init_pid_ns.idr); 581 582 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 583 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 584 } 585 586 static struct file *__pidfd_fget(struct task_struct *task, int fd) 587 { 588 struct file *file; 589 int ret; 590 591 ret = mutex_lock_killable(&task->signal->exec_update_mutex); 592 if (ret) 593 return ERR_PTR(ret); 594 595 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 596 file = fget_task(task, fd); 597 else 598 file = ERR_PTR(-EPERM); 599 600 mutex_unlock(&task->signal->exec_update_mutex); 601 602 return file ?: ERR_PTR(-EBADF); 603 } 604 605 static int pidfd_getfd(struct pid *pid, int fd) 606 { 607 struct task_struct *task; 608 struct file *file; 609 int ret; 610 611 task = get_pid_task(pid, PIDTYPE_PID); 612 if (!task) 613 return -ESRCH; 614 615 file = __pidfd_fget(task, fd); 616 put_task_struct(task); 617 if (IS_ERR(file)) 618 return PTR_ERR(file); 619 620 ret = security_file_receive(file); 621 if (ret) { 622 fput(file); 623 return ret; 624 } 625 626 ret = get_unused_fd_flags(O_CLOEXEC); 627 if (ret < 0) 628 fput(file); 629 else 630 fd_install(ret, file); 631 632 return ret; 633 } 634 635 /** 636 * sys_pidfd_getfd() - Get a file descriptor from another process 637 * 638 * @pidfd: the pidfd file descriptor of the process 639 * @fd: the file descriptor number to get 640 * @flags: flags on how to get the fd (reserved) 641 * 642 * This syscall gets a copy of a file descriptor from another process 643 * based on the pidfd, and file descriptor number. It requires that 644 * the calling process has the ability to ptrace the process represented 645 * by the pidfd. The process which is having its file descriptor copied 646 * is otherwise unaffected. 647 * 648 * Return: On success, a cloexec file descriptor is returned. 649 * On error, a negative errno number will be returned. 650 */ 651 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 652 unsigned int, flags) 653 { 654 struct pid *pid; 655 struct fd f; 656 int ret; 657 658 /* flags is currently unused - make sure it's unset */ 659 if (flags) 660 return -EINVAL; 661 662 f = fdget(pidfd); 663 if (!f.file) 664 return -EBADF; 665 666 pid = pidfd_pid(f.file); 667 if (IS_ERR(pid)) 668 ret = PTR_ERR(pid); 669 else 670 ret = pidfd_getfd(pid, fd); 671 672 fdput(f); 673 return ret; 674 } 675