1 /* 2 * linux/kernel/panic.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * This function is used through-out the kernel (including mm and fs) 9 * to indicate a major problem. 10 */ 11 #include <linux/debug_locks.h> 12 #include <linux/sched/debug.h> 13 #include <linux/interrupt.h> 14 #include <linux/kmsg_dump.h> 15 #include <linux/kallsyms.h> 16 #include <linux/notifier.h> 17 #include <linux/module.h> 18 #include <linux/random.h> 19 #include <linux/ftrace.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/kexec.h> 23 #include <linux/sched.h> 24 #include <linux/sysrq.h> 25 #include <linux/init.h> 26 #include <linux/nmi.h> 27 #include <linux/console.h> 28 #include <linux/bug.h> 29 #include <linux/ratelimit.h> 30 #include <linux/debugfs.h> 31 #include <asm/sections.h> 32 33 #define PANIC_TIMER_STEP 100 34 #define PANIC_BLINK_SPD 18 35 36 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 37 static unsigned long tainted_mask; 38 static int pause_on_oops; 39 static int pause_on_oops_flag; 40 static DEFINE_SPINLOCK(pause_on_oops_lock); 41 bool crash_kexec_post_notifiers; 42 int panic_on_warn __read_mostly; 43 44 int panic_timeout = CONFIG_PANIC_TIMEOUT; 45 EXPORT_SYMBOL_GPL(panic_timeout); 46 47 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 48 49 EXPORT_SYMBOL(panic_notifier_list); 50 51 static long no_blink(int state) 52 { 53 return 0; 54 } 55 56 /* Returns how long it waited in ms */ 57 long (*panic_blink)(int state); 58 EXPORT_SYMBOL(panic_blink); 59 60 /* 61 * Stop ourself in panic -- architecture code may override this 62 */ 63 void __weak panic_smp_self_stop(void) 64 { 65 while (1) 66 cpu_relax(); 67 } 68 69 /* 70 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 71 * may override this to prepare for crash dumping, e.g. save regs info. 72 */ 73 void __weak nmi_panic_self_stop(struct pt_regs *regs) 74 { 75 panic_smp_self_stop(); 76 } 77 78 /* 79 * Stop other CPUs in panic. Architecture dependent code may override this 80 * with more suitable version. For example, if the architecture supports 81 * crash dump, it should save registers of each stopped CPU and disable 82 * per-CPU features such as virtualization extensions. 83 */ 84 void __weak crash_smp_send_stop(void) 85 { 86 static int cpus_stopped; 87 88 /* 89 * This function can be called twice in panic path, but obviously 90 * we execute this only once. 91 */ 92 if (cpus_stopped) 93 return; 94 95 /* 96 * Note smp_send_stop is the usual smp shutdown function, which 97 * unfortunately means it may not be hardened to work in a panic 98 * situation. 99 */ 100 smp_send_stop(); 101 cpus_stopped = 1; 102 } 103 104 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 105 106 /* 107 * A variant of panic() called from NMI context. We return if we've already 108 * panicked on this CPU. If another CPU already panicked, loop in 109 * nmi_panic_self_stop() which can provide architecture dependent code such 110 * as saving register state for crash dump. 111 */ 112 void nmi_panic(struct pt_regs *regs, const char *msg) 113 { 114 int old_cpu, cpu; 115 116 cpu = raw_smp_processor_id(); 117 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); 118 119 if (old_cpu == PANIC_CPU_INVALID) 120 panic("%s", msg); 121 else if (old_cpu != cpu) 122 nmi_panic_self_stop(regs); 123 } 124 EXPORT_SYMBOL(nmi_panic); 125 126 /** 127 * panic - halt the system 128 * @fmt: The text string to print 129 * 130 * Display a message, then perform cleanups. 131 * 132 * This function never returns. 133 */ 134 void panic(const char *fmt, ...) 135 { 136 static char buf[1024]; 137 va_list args; 138 long i, i_next = 0; 139 int state = 0; 140 int old_cpu, this_cpu; 141 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 142 143 /* 144 * Disable local interrupts. This will prevent panic_smp_self_stop 145 * from deadlocking the first cpu that invokes the panic, since 146 * there is nothing to prevent an interrupt handler (that runs 147 * after setting panic_cpu) from invoking panic() again. 148 */ 149 local_irq_disable(); 150 151 /* 152 * It's possible to come here directly from a panic-assertion and 153 * not have preempt disabled. Some functions called from here want 154 * preempt to be disabled. No point enabling it later though... 155 * 156 * Only one CPU is allowed to execute the panic code from here. For 157 * multiple parallel invocations of panic, all other CPUs either 158 * stop themself or will wait until they are stopped by the 1st CPU 159 * with smp_send_stop(). 160 * 161 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 162 * comes here, so go ahead. 163 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 164 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 165 */ 166 this_cpu = raw_smp_processor_id(); 167 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 168 169 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 170 panic_smp_self_stop(); 171 172 console_verbose(); 173 bust_spinlocks(1); 174 va_start(args, fmt); 175 vsnprintf(buf, sizeof(buf), fmt, args); 176 va_end(args); 177 pr_emerg("Kernel panic - not syncing: %s\n", buf); 178 #ifdef CONFIG_DEBUG_BUGVERBOSE 179 /* 180 * Avoid nested stack-dumping if a panic occurs during oops processing 181 */ 182 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 183 dump_stack(); 184 #endif 185 186 /* 187 * If we have crashed and we have a crash kernel loaded let it handle 188 * everything else. 189 * If we want to run this after calling panic_notifiers, pass 190 * the "crash_kexec_post_notifiers" option to the kernel. 191 * 192 * Bypass the panic_cpu check and call __crash_kexec directly. 193 */ 194 if (!_crash_kexec_post_notifiers) { 195 printk_safe_flush_on_panic(); 196 __crash_kexec(NULL); 197 198 /* 199 * Note smp_send_stop is the usual smp shutdown function, which 200 * unfortunately means it may not be hardened to work in a 201 * panic situation. 202 */ 203 smp_send_stop(); 204 } else { 205 /* 206 * If we want to do crash dump after notifier calls and 207 * kmsg_dump, we will need architecture dependent extra 208 * works in addition to stopping other CPUs. 209 */ 210 crash_smp_send_stop(); 211 } 212 213 /* 214 * Run any panic handlers, including those that might need to 215 * add information to the kmsg dump output. 216 */ 217 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 218 219 /* Call flush even twice. It tries harder with a single online CPU */ 220 printk_safe_flush_on_panic(); 221 kmsg_dump(KMSG_DUMP_PANIC); 222 223 /* 224 * If you doubt kdump always works fine in any situation, 225 * "crash_kexec_post_notifiers" offers you a chance to run 226 * panic_notifiers and dumping kmsg before kdump. 227 * Note: since some panic_notifiers can make crashed kernel 228 * more unstable, it can increase risks of the kdump failure too. 229 * 230 * Bypass the panic_cpu check and call __crash_kexec directly. 231 */ 232 if (_crash_kexec_post_notifiers) 233 __crash_kexec(NULL); 234 235 bust_spinlocks(0); 236 237 /* 238 * We may have ended up stopping the CPU holding the lock (in 239 * smp_send_stop()) while still having some valuable data in the console 240 * buffer. Try to acquire the lock then release it regardless of the 241 * result. The release will also print the buffers out. Locks debug 242 * should be disabled to avoid reporting bad unlock balance when 243 * panic() is not being callled from OOPS. 244 */ 245 debug_locks_off(); 246 console_flush_on_panic(); 247 248 if (!panic_blink) 249 panic_blink = no_blink; 250 251 if (panic_timeout > 0) { 252 /* 253 * Delay timeout seconds before rebooting the machine. 254 * We can't use the "normal" timers since we just panicked. 255 */ 256 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 257 258 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 259 touch_nmi_watchdog(); 260 if (i >= i_next) { 261 i += panic_blink(state ^= 1); 262 i_next = i + 3600 / PANIC_BLINK_SPD; 263 } 264 mdelay(PANIC_TIMER_STEP); 265 } 266 } 267 if (panic_timeout != 0) { 268 /* 269 * This will not be a clean reboot, with everything 270 * shutting down. But if there is a chance of 271 * rebooting the system it will be rebooted. 272 */ 273 emergency_restart(); 274 } 275 #ifdef __sparc__ 276 { 277 extern int stop_a_enabled; 278 /* Make sure the user can actually press Stop-A (L1-A) */ 279 stop_a_enabled = 1; 280 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 281 "twice on console to return to the boot prom\n"); 282 } 283 #endif 284 #if defined(CONFIG_S390) 285 { 286 unsigned long caller; 287 288 caller = (unsigned long)__builtin_return_address(0); 289 disabled_wait(caller); 290 } 291 #endif 292 pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf); 293 local_irq_enable(); 294 for (i = 0; ; i += PANIC_TIMER_STEP) { 295 touch_softlockup_watchdog(); 296 if (i >= i_next) { 297 i += panic_blink(state ^= 1); 298 i_next = i + 3600 / PANIC_BLINK_SPD; 299 } 300 mdelay(PANIC_TIMER_STEP); 301 } 302 } 303 304 EXPORT_SYMBOL(panic); 305 306 /* 307 * TAINT_FORCED_RMMOD could be a per-module flag but the module 308 * is being removed anyway. 309 */ 310 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 311 { 'P', 'G', true }, /* TAINT_PROPRIETARY_MODULE */ 312 { 'F', ' ', true }, /* TAINT_FORCED_MODULE */ 313 { 'S', ' ', false }, /* TAINT_CPU_OUT_OF_SPEC */ 314 { 'R', ' ', false }, /* TAINT_FORCED_RMMOD */ 315 { 'M', ' ', false }, /* TAINT_MACHINE_CHECK */ 316 { 'B', ' ', false }, /* TAINT_BAD_PAGE */ 317 { 'U', ' ', false }, /* TAINT_USER */ 318 { 'D', ' ', false }, /* TAINT_DIE */ 319 { 'A', ' ', false }, /* TAINT_OVERRIDDEN_ACPI_TABLE */ 320 { 'W', ' ', false }, /* TAINT_WARN */ 321 { 'C', ' ', true }, /* TAINT_CRAP */ 322 { 'I', ' ', false }, /* TAINT_FIRMWARE_WORKAROUND */ 323 { 'O', ' ', true }, /* TAINT_OOT_MODULE */ 324 { 'E', ' ', true }, /* TAINT_UNSIGNED_MODULE */ 325 { 'L', ' ', false }, /* TAINT_SOFTLOCKUP */ 326 { 'K', ' ', true }, /* TAINT_LIVEPATCH */ 327 { 'X', ' ', true }, /* TAINT_AUX */ 328 }; 329 330 /** 331 * print_tainted - return a string to represent the kernel taint state. 332 * 333 * 'P' - Proprietary module has been loaded. 334 * 'F' - Module has been forcibly loaded. 335 * 'S' - SMP with CPUs not designed for SMP. 336 * 'R' - User forced a module unload. 337 * 'M' - System experienced a machine check exception. 338 * 'B' - System has hit bad_page. 339 * 'U' - Userspace-defined naughtiness. 340 * 'D' - Kernel has oopsed before 341 * 'A' - ACPI table overridden. 342 * 'W' - Taint on warning. 343 * 'C' - modules from drivers/staging are loaded. 344 * 'I' - Working around severe firmware bug. 345 * 'O' - Out-of-tree module has been loaded. 346 * 'E' - Unsigned module has been loaded. 347 * 'L' - A soft lockup has previously occurred. 348 * 'K' - Kernel has been live patched. 349 * 'X' - Auxiliary taint, for distros' use. 350 * 351 * The string is overwritten by the next call to print_tainted(). 352 */ 353 const char *print_tainted(void) 354 { 355 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; 356 357 if (tainted_mask) { 358 char *s; 359 int i; 360 361 s = buf + sprintf(buf, "Tainted: "); 362 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 363 const struct taint_flag *t = &taint_flags[i]; 364 *s++ = test_bit(i, &tainted_mask) ? 365 t->c_true : t->c_false; 366 } 367 *s = 0; 368 } else 369 snprintf(buf, sizeof(buf), "Not tainted"); 370 371 return buf; 372 } 373 374 int test_taint(unsigned flag) 375 { 376 return test_bit(flag, &tainted_mask); 377 } 378 EXPORT_SYMBOL(test_taint); 379 380 unsigned long get_taint(void) 381 { 382 return tainted_mask; 383 } 384 385 /** 386 * add_taint: add a taint flag if not already set. 387 * @flag: one of the TAINT_* constants. 388 * @lockdep_ok: whether lock debugging is still OK. 389 * 390 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 391 * some notewortht-but-not-corrupting cases, it can be set to true. 392 */ 393 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 394 { 395 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 396 pr_warn("Disabling lock debugging due to kernel taint\n"); 397 398 set_bit(flag, &tainted_mask); 399 } 400 EXPORT_SYMBOL(add_taint); 401 402 static void spin_msec(int msecs) 403 { 404 int i; 405 406 for (i = 0; i < msecs; i++) { 407 touch_nmi_watchdog(); 408 mdelay(1); 409 } 410 } 411 412 /* 413 * It just happens that oops_enter() and oops_exit() are identically 414 * implemented... 415 */ 416 static void do_oops_enter_exit(void) 417 { 418 unsigned long flags; 419 static int spin_counter; 420 421 if (!pause_on_oops) 422 return; 423 424 spin_lock_irqsave(&pause_on_oops_lock, flags); 425 if (pause_on_oops_flag == 0) { 426 /* This CPU may now print the oops message */ 427 pause_on_oops_flag = 1; 428 } else { 429 /* We need to stall this CPU */ 430 if (!spin_counter) { 431 /* This CPU gets to do the counting */ 432 spin_counter = pause_on_oops; 433 do { 434 spin_unlock(&pause_on_oops_lock); 435 spin_msec(MSEC_PER_SEC); 436 spin_lock(&pause_on_oops_lock); 437 } while (--spin_counter); 438 pause_on_oops_flag = 0; 439 } else { 440 /* This CPU waits for a different one */ 441 while (spin_counter) { 442 spin_unlock(&pause_on_oops_lock); 443 spin_msec(1); 444 spin_lock(&pause_on_oops_lock); 445 } 446 } 447 } 448 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 449 } 450 451 /* 452 * Return true if the calling CPU is allowed to print oops-related info. 453 * This is a bit racy.. 454 */ 455 int oops_may_print(void) 456 { 457 return pause_on_oops_flag == 0; 458 } 459 460 /* 461 * Called when the architecture enters its oops handler, before it prints 462 * anything. If this is the first CPU to oops, and it's oopsing the first 463 * time then let it proceed. 464 * 465 * This is all enabled by the pause_on_oops kernel boot option. We do all 466 * this to ensure that oopses don't scroll off the screen. It has the 467 * side-effect of preventing later-oopsing CPUs from mucking up the display, 468 * too. 469 * 470 * It turns out that the CPU which is allowed to print ends up pausing for 471 * the right duration, whereas all the other CPUs pause for twice as long: 472 * once in oops_enter(), once in oops_exit(). 473 */ 474 void oops_enter(void) 475 { 476 tracing_off(); 477 /* can't trust the integrity of the kernel anymore: */ 478 debug_locks_off(); 479 do_oops_enter_exit(); 480 } 481 482 /* 483 * 64-bit random ID for oopses: 484 */ 485 static u64 oops_id; 486 487 static int init_oops_id(void) 488 { 489 if (!oops_id) 490 get_random_bytes(&oops_id, sizeof(oops_id)); 491 else 492 oops_id++; 493 494 return 0; 495 } 496 late_initcall(init_oops_id); 497 498 void print_oops_end_marker(void) 499 { 500 init_oops_id(); 501 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); 502 } 503 504 /* 505 * Called when the architecture exits its oops handler, after printing 506 * everything. 507 */ 508 void oops_exit(void) 509 { 510 do_oops_enter_exit(); 511 print_oops_end_marker(); 512 kmsg_dump(KMSG_DUMP_OOPS); 513 } 514 515 struct warn_args { 516 const char *fmt; 517 va_list args; 518 }; 519 520 void __warn(const char *file, int line, void *caller, unsigned taint, 521 struct pt_regs *regs, struct warn_args *args) 522 { 523 disable_trace_on_warning(); 524 525 if (args) 526 pr_warn(CUT_HERE); 527 528 if (file) 529 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 530 raw_smp_processor_id(), current->pid, file, line, 531 caller); 532 else 533 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 534 raw_smp_processor_id(), current->pid, caller); 535 536 if (args) 537 vprintk(args->fmt, args->args); 538 539 if (panic_on_warn) { 540 /* 541 * This thread may hit another WARN() in the panic path. 542 * Resetting this prevents additional WARN() from panicking the 543 * system on this thread. Other threads are blocked by the 544 * panic_mutex in panic(). 545 */ 546 panic_on_warn = 0; 547 panic("panic_on_warn set ...\n"); 548 } 549 550 print_modules(); 551 552 if (regs) 553 show_regs(regs); 554 else 555 dump_stack(); 556 557 print_oops_end_marker(); 558 559 /* Just a warning, don't kill lockdep. */ 560 add_taint(taint, LOCKDEP_STILL_OK); 561 } 562 563 #ifdef WANT_WARN_ON_SLOWPATH 564 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...) 565 { 566 struct warn_args args; 567 568 args.fmt = fmt; 569 va_start(args.args, fmt); 570 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, 571 &args); 572 va_end(args.args); 573 } 574 EXPORT_SYMBOL(warn_slowpath_fmt); 575 576 void warn_slowpath_fmt_taint(const char *file, int line, 577 unsigned taint, const char *fmt, ...) 578 { 579 struct warn_args args; 580 581 args.fmt = fmt; 582 va_start(args.args, fmt); 583 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 584 va_end(args.args); 585 } 586 EXPORT_SYMBOL(warn_slowpath_fmt_taint); 587 588 void warn_slowpath_null(const char *file, int line) 589 { 590 pr_warn(CUT_HERE); 591 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL); 592 } 593 EXPORT_SYMBOL(warn_slowpath_null); 594 #else 595 void __warn_printk(const char *fmt, ...) 596 { 597 va_list args; 598 599 pr_warn(CUT_HERE); 600 601 va_start(args, fmt); 602 vprintk(fmt, args); 603 va_end(args); 604 } 605 EXPORT_SYMBOL(__warn_printk); 606 #endif 607 608 #ifdef CONFIG_BUG 609 610 /* Support resetting WARN*_ONCE state */ 611 612 static int clear_warn_once_set(void *data, u64 val) 613 { 614 generic_bug_clear_once(); 615 memset(__start_once, 0, __end_once - __start_once); 616 return 0; 617 } 618 619 DEFINE_SIMPLE_ATTRIBUTE(clear_warn_once_fops, 620 NULL, 621 clear_warn_once_set, 622 "%lld\n"); 623 624 static __init int register_warn_debugfs(void) 625 { 626 /* Don't care about failure */ 627 debugfs_create_file("clear_warn_once", 0200, NULL, 628 NULL, &clear_warn_once_fops); 629 return 0; 630 } 631 632 device_initcall(register_warn_debugfs); 633 #endif 634 635 #ifdef CONFIG_CC_STACKPROTECTOR 636 637 /* 638 * Called when gcc's -fstack-protector feature is used, and 639 * gcc detects corruption of the on-stack canary value 640 */ 641 __visible void __stack_chk_fail(void) 642 { 643 panic("stack-protector: Kernel stack is corrupted in: %p\n", 644 __builtin_return_address(0)); 645 } 646 EXPORT_SYMBOL(__stack_chk_fail); 647 648 #endif 649 650 #ifdef CONFIG_ARCH_HAS_REFCOUNT 651 void refcount_error_report(struct pt_regs *regs, const char *err) 652 { 653 WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n", 654 err, (void *)instruction_pointer(regs), 655 current->comm, task_pid_nr(current), 656 from_kuid_munged(&init_user_ns, current_uid()), 657 from_kuid_munged(&init_user_ns, current_euid())); 658 } 659 #endif 660 661 core_param(panic, panic_timeout, int, 0644); 662 core_param(pause_on_oops, pause_on_oops, int, 0644); 663 core_param(panic_on_warn, panic_on_warn, int, 0644); 664 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 665 666 static int __init oops_setup(char *s) 667 { 668 if (!s) 669 return -EINVAL; 670 if (!strcmp(s, "panic")) 671 panic_on_oops = 1; 672 return 0; 673 } 674 early_param("oops", oops_setup); 675