xref: /openbmc/linux/kernel/panic.c (revision feac8c8b)
1 /*
2  *  linux/kernel/panic.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * This function is used through-out the kernel (including mm and fs)
9  * to indicate a major problem.
10  */
11 #include <linux/debug_locks.h>
12 #include <linux/sched/debug.h>
13 #include <linux/interrupt.h>
14 #include <linux/kmsg_dump.h>
15 #include <linux/kallsyms.h>
16 #include <linux/notifier.h>
17 #include <linux/module.h>
18 #include <linux/random.h>
19 #include <linux/ftrace.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/kexec.h>
23 #include <linux/sched.h>
24 #include <linux/sysrq.h>
25 #include <linux/init.h>
26 #include <linux/nmi.h>
27 #include <linux/console.h>
28 #include <linux/bug.h>
29 #include <linux/ratelimit.h>
30 #include <linux/debugfs.h>
31 #include <asm/sections.h>
32 
33 #define PANIC_TIMER_STEP 100
34 #define PANIC_BLINK_SPD 18
35 
36 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
37 static unsigned long tainted_mask;
38 static int pause_on_oops;
39 static int pause_on_oops_flag;
40 static DEFINE_SPINLOCK(pause_on_oops_lock);
41 bool crash_kexec_post_notifiers;
42 int panic_on_warn __read_mostly;
43 
44 int panic_timeout = CONFIG_PANIC_TIMEOUT;
45 EXPORT_SYMBOL_GPL(panic_timeout);
46 
47 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
48 
49 EXPORT_SYMBOL(panic_notifier_list);
50 
51 static long no_blink(int state)
52 {
53 	return 0;
54 }
55 
56 /* Returns how long it waited in ms */
57 long (*panic_blink)(int state);
58 EXPORT_SYMBOL(panic_blink);
59 
60 /*
61  * Stop ourself in panic -- architecture code may override this
62  */
63 void __weak panic_smp_self_stop(void)
64 {
65 	while (1)
66 		cpu_relax();
67 }
68 
69 /*
70  * Stop ourselves in NMI context if another CPU has already panicked. Arch code
71  * may override this to prepare for crash dumping, e.g. save regs info.
72  */
73 void __weak nmi_panic_self_stop(struct pt_regs *regs)
74 {
75 	panic_smp_self_stop();
76 }
77 
78 /*
79  * Stop other CPUs in panic.  Architecture dependent code may override this
80  * with more suitable version.  For example, if the architecture supports
81  * crash dump, it should save registers of each stopped CPU and disable
82  * per-CPU features such as virtualization extensions.
83  */
84 void __weak crash_smp_send_stop(void)
85 {
86 	static int cpus_stopped;
87 
88 	/*
89 	 * This function can be called twice in panic path, but obviously
90 	 * we execute this only once.
91 	 */
92 	if (cpus_stopped)
93 		return;
94 
95 	/*
96 	 * Note smp_send_stop is the usual smp shutdown function, which
97 	 * unfortunately means it may not be hardened to work in a panic
98 	 * situation.
99 	 */
100 	smp_send_stop();
101 	cpus_stopped = 1;
102 }
103 
104 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
105 
106 /*
107  * A variant of panic() called from NMI context. We return if we've already
108  * panicked on this CPU. If another CPU already panicked, loop in
109  * nmi_panic_self_stop() which can provide architecture dependent code such
110  * as saving register state for crash dump.
111  */
112 void nmi_panic(struct pt_regs *regs, const char *msg)
113 {
114 	int old_cpu, cpu;
115 
116 	cpu = raw_smp_processor_id();
117 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
118 
119 	if (old_cpu == PANIC_CPU_INVALID)
120 		panic("%s", msg);
121 	else if (old_cpu != cpu)
122 		nmi_panic_self_stop(regs);
123 }
124 EXPORT_SYMBOL(nmi_panic);
125 
126 /**
127  *	panic - halt the system
128  *	@fmt: The text string to print
129  *
130  *	Display a message, then perform cleanups.
131  *
132  *	This function never returns.
133  */
134 void panic(const char *fmt, ...)
135 {
136 	static char buf[1024];
137 	va_list args;
138 	long i, i_next = 0;
139 	int state = 0;
140 	int old_cpu, this_cpu;
141 	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
142 
143 	/*
144 	 * Disable local interrupts. This will prevent panic_smp_self_stop
145 	 * from deadlocking the first cpu that invokes the panic, since
146 	 * there is nothing to prevent an interrupt handler (that runs
147 	 * after setting panic_cpu) from invoking panic() again.
148 	 */
149 	local_irq_disable();
150 
151 	/*
152 	 * It's possible to come here directly from a panic-assertion and
153 	 * not have preempt disabled. Some functions called from here want
154 	 * preempt to be disabled. No point enabling it later though...
155 	 *
156 	 * Only one CPU is allowed to execute the panic code from here. For
157 	 * multiple parallel invocations of panic, all other CPUs either
158 	 * stop themself or will wait until they are stopped by the 1st CPU
159 	 * with smp_send_stop().
160 	 *
161 	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
162 	 * comes here, so go ahead.
163 	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
164 	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
165 	 */
166 	this_cpu = raw_smp_processor_id();
167 	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
168 
169 	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
170 		panic_smp_self_stop();
171 
172 	console_verbose();
173 	bust_spinlocks(1);
174 	va_start(args, fmt);
175 	vsnprintf(buf, sizeof(buf), fmt, args);
176 	va_end(args);
177 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
178 #ifdef CONFIG_DEBUG_BUGVERBOSE
179 	/*
180 	 * Avoid nested stack-dumping if a panic occurs during oops processing
181 	 */
182 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
183 		dump_stack();
184 #endif
185 
186 	/*
187 	 * If we have crashed and we have a crash kernel loaded let it handle
188 	 * everything else.
189 	 * If we want to run this after calling panic_notifiers, pass
190 	 * the "crash_kexec_post_notifiers" option to the kernel.
191 	 *
192 	 * Bypass the panic_cpu check and call __crash_kexec directly.
193 	 */
194 	if (!_crash_kexec_post_notifiers) {
195 		printk_safe_flush_on_panic();
196 		__crash_kexec(NULL);
197 
198 		/*
199 		 * Note smp_send_stop is the usual smp shutdown function, which
200 		 * unfortunately means it may not be hardened to work in a
201 		 * panic situation.
202 		 */
203 		smp_send_stop();
204 	} else {
205 		/*
206 		 * If we want to do crash dump after notifier calls and
207 		 * kmsg_dump, we will need architecture dependent extra
208 		 * works in addition to stopping other CPUs.
209 		 */
210 		crash_smp_send_stop();
211 	}
212 
213 	/*
214 	 * Run any panic handlers, including those that might need to
215 	 * add information to the kmsg dump output.
216 	 */
217 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
218 
219 	/* Call flush even twice. It tries harder with a single online CPU */
220 	printk_safe_flush_on_panic();
221 	kmsg_dump(KMSG_DUMP_PANIC);
222 
223 	/*
224 	 * If you doubt kdump always works fine in any situation,
225 	 * "crash_kexec_post_notifiers" offers you a chance to run
226 	 * panic_notifiers and dumping kmsg before kdump.
227 	 * Note: since some panic_notifiers can make crashed kernel
228 	 * more unstable, it can increase risks of the kdump failure too.
229 	 *
230 	 * Bypass the panic_cpu check and call __crash_kexec directly.
231 	 */
232 	if (_crash_kexec_post_notifiers)
233 		__crash_kexec(NULL);
234 
235 	bust_spinlocks(0);
236 
237 	/*
238 	 * We may have ended up stopping the CPU holding the lock (in
239 	 * smp_send_stop()) while still having some valuable data in the console
240 	 * buffer.  Try to acquire the lock then release it regardless of the
241 	 * result.  The release will also print the buffers out.  Locks debug
242 	 * should be disabled to avoid reporting bad unlock balance when
243 	 * panic() is not being callled from OOPS.
244 	 */
245 	debug_locks_off();
246 	console_flush_on_panic();
247 
248 	if (!panic_blink)
249 		panic_blink = no_blink;
250 
251 	if (panic_timeout > 0) {
252 		/*
253 		 * Delay timeout seconds before rebooting the machine.
254 		 * We can't use the "normal" timers since we just panicked.
255 		 */
256 		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
257 
258 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
259 			touch_nmi_watchdog();
260 			if (i >= i_next) {
261 				i += panic_blink(state ^= 1);
262 				i_next = i + 3600 / PANIC_BLINK_SPD;
263 			}
264 			mdelay(PANIC_TIMER_STEP);
265 		}
266 	}
267 	if (panic_timeout != 0) {
268 		/*
269 		 * This will not be a clean reboot, with everything
270 		 * shutting down.  But if there is a chance of
271 		 * rebooting the system it will be rebooted.
272 		 */
273 		emergency_restart();
274 	}
275 #ifdef __sparc__
276 	{
277 		extern int stop_a_enabled;
278 		/* Make sure the user can actually press Stop-A (L1-A) */
279 		stop_a_enabled = 1;
280 		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
281 			 "twice on console to return to the boot prom\n");
282 	}
283 #endif
284 #if defined(CONFIG_S390)
285 	{
286 		unsigned long caller;
287 
288 		caller = (unsigned long)__builtin_return_address(0);
289 		disabled_wait(caller);
290 	}
291 #endif
292 	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
293 	local_irq_enable();
294 	for (i = 0; ; i += PANIC_TIMER_STEP) {
295 		touch_softlockup_watchdog();
296 		if (i >= i_next) {
297 			i += panic_blink(state ^= 1);
298 			i_next = i + 3600 / PANIC_BLINK_SPD;
299 		}
300 		mdelay(PANIC_TIMER_STEP);
301 	}
302 }
303 
304 EXPORT_SYMBOL(panic);
305 
306 /*
307  * TAINT_FORCED_RMMOD could be a per-module flag but the module
308  * is being removed anyway.
309  */
310 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
311 	{ 'P', 'G', true },	/* TAINT_PROPRIETARY_MODULE */
312 	{ 'F', ' ', true },	/* TAINT_FORCED_MODULE */
313 	{ 'S', ' ', false },	/* TAINT_CPU_OUT_OF_SPEC */
314 	{ 'R', ' ', false },	/* TAINT_FORCED_RMMOD */
315 	{ 'M', ' ', false },	/* TAINT_MACHINE_CHECK */
316 	{ 'B', ' ', false },	/* TAINT_BAD_PAGE */
317 	{ 'U', ' ', false },	/* TAINT_USER */
318 	{ 'D', ' ', false },	/* TAINT_DIE */
319 	{ 'A', ' ', false },	/* TAINT_OVERRIDDEN_ACPI_TABLE */
320 	{ 'W', ' ', false },	/* TAINT_WARN */
321 	{ 'C', ' ', true },	/* TAINT_CRAP */
322 	{ 'I', ' ', false },	/* TAINT_FIRMWARE_WORKAROUND */
323 	{ 'O', ' ', true },	/* TAINT_OOT_MODULE */
324 	{ 'E', ' ', true },	/* TAINT_UNSIGNED_MODULE */
325 	{ 'L', ' ', false },	/* TAINT_SOFTLOCKUP */
326 	{ 'K', ' ', true },	/* TAINT_LIVEPATCH */
327 	{ 'X', ' ', true },	/* TAINT_AUX */
328 };
329 
330 /**
331  *	print_tainted - return a string to represent the kernel taint state.
332  *
333  *  'P' - Proprietary module has been loaded.
334  *  'F' - Module has been forcibly loaded.
335  *  'S' - SMP with CPUs not designed for SMP.
336  *  'R' - User forced a module unload.
337  *  'M' - System experienced a machine check exception.
338  *  'B' - System has hit bad_page.
339  *  'U' - Userspace-defined naughtiness.
340  *  'D' - Kernel has oopsed before
341  *  'A' - ACPI table overridden.
342  *  'W' - Taint on warning.
343  *  'C' - modules from drivers/staging are loaded.
344  *  'I' - Working around severe firmware bug.
345  *  'O' - Out-of-tree module has been loaded.
346  *  'E' - Unsigned module has been loaded.
347  *  'L' - A soft lockup has previously occurred.
348  *  'K' - Kernel has been live patched.
349  *  'X' - Auxiliary taint, for distros' use.
350  *
351  *	The string is overwritten by the next call to print_tainted().
352  */
353 const char *print_tainted(void)
354 {
355 	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
356 
357 	if (tainted_mask) {
358 		char *s;
359 		int i;
360 
361 		s = buf + sprintf(buf, "Tainted: ");
362 		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
363 			const struct taint_flag *t = &taint_flags[i];
364 			*s++ = test_bit(i, &tainted_mask) ?
365 					t->c_true : t->c_false;
366 		}
367 		*s = 0;
368 	} else
369 		snprintf(buf, sizeof(buf), "Not tainted");
370 
371 	return buf;
372 }
373 
374 int test_taint(unsigned flag)
375 {
376 	return test_bit(flag, &tainted_mask);
377 }
378 EXPORT_SYMBOL(test_taint);
379 
380 unsigned long get_taint(void)
381 {
382 	return tainted_mask;
383 }
384 
385 /**
386  * add_taint: add a taint flag if not already set.
387  * @flag: one of the TAINT_* constants.
388  * @lockdep_ok: whether lock debugging is still OK.
389  *
390  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
391  * some notewortht-but-not-corrupting cases, it can be set to true.
392  */
393 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
394 {
395 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
396 		pr_warn("Disabling lock debugging due to kernel taint\n");
397 
398 	set_bit(flag, &tainted_mask);
399 }
400 EXPORT_SYMBOL(add_taint);
401 
402 static void spin_msec(int msecs)
403 {
404 	int i;
405 
406 	for (i = 0; i < msecs; i++) {
407 		touch_nmi_watchdog();
408 		mdelay(1);
409 	}
410 }
411 
412 /*
413  * It just happens that oops_enter() and oops_exit() are identically
414  * implemented...
415  */
416 static void do_oops_enter_exit(void)
417 {
418 	unsigned long flags;
419 	static int spin_counter;
420 
421 	if (!pause_on_oops)
422 		return;
423 
424 	spin_lock_irqsave(&pause_on_oops_lock, flags);
425 	if (pause_on_oops_flag == 0) {
426 		/* This CPU may now print the oops message */
427 		pause_on_oops_flag = 1;
428 	} else {
429 		/* We need to stall this CPU */
430 		if (!spin_counter) {
431 			/* This CPU gets to do the counting */
432 			spin_counter = pause_on_oops;
433 			do {
434 				spin_unlock(&pause_on_oops_lock);
435 				spin_msec(MSEC_PER_SEC);
436 				spin_lock(&pause_on_oops_lock);
437 			} while (--spin_counter);
438 			pause_on_oops_flag = 0;
439 		} else {
440 			/* This CPU waits for a different one */
441 			while (spin_counter) {
442 				spin_unlock(&pause_on_oops_lock);
443 				spin_msec(1);
444 				spin_lock(&pause_on_oops_lock);
445 			}
446 		}
447 	}
448 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
449 }
450 
451 /*
452  * Return true if the calling CPU is allowed to print oops-related info.
453  * This is a bit racy..
454  */
455 int oops_may_print(void)
456 {
457 	return pause_on_oops_flag == 0;
458 }
459 
460 /*
461  * Called when the architecture enters its oops handler, before it prints
462  * anything.  If this is the first CPU to oops, and it's oopsing the first
463  * time then let it proceed.
464  *
465  * This is all enabled by the pause_on_oops kernel boot option.  We do all
466  * this to ensure that oopses don't scroll off the screen.  It has the
467  * side-effect of preventing later-oopsing CPUs from mucking up the display,
468  * too.
469  *
470  * It turns out that the CPU which is allowed to print ends up pausing for
471  * the right duration, whereas all the other CPUs pause for twice as long:
472  * once in oops_enter(), once in oops_exit().
473  */
474 void oops_enter(void)
475 {
476 	tracing_off();
477 	/* can't trust the integrity of the kernel anymore: */
478 	debug_locks_off();
479 	do_oops_enter_exit();
480 }
481 
482 /*
483  * 64-bit random ID for oopses:
484  */
485 static u64 oops_id;
486 
487 static int init_oops_id(void)
488 {
489 	if (!oops_id)
490 		get_random_bytes(&oops_id, sizeof(oops_id));
491 	else
492 		oops_id++;
493 
494 	return 0;
495 }
496 late_initcall(init_oops_id);
497 
498 void print_oops_end_marker(void)
499 {
500 	init_oops_id();
501 	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
502 }
503 
504 /*
505  * Called when the architecture exits its oops handler, after printing
506  * everything.
507  */
508 void oops_exit(void)
509 {
510 	do_oops_enter_exit();
511 	print_oops_end_marker();
512 	kmsg_dump(KMSG_DUMP_OOPS);
513 }
514 
515 struct warn_args {
516 	const char *fmt;
517 	va_list args;
518 };
519 
520 void __warn(const char *file, int line, void *caller, unsigned taint,
521 	    struct pt_regs *regs, struct warn_args *args)
522 {
523 	disable_trace_on_warning();
524 
525 	if (args)
526 		pr_warn(CUT_HERE);
527 
528 	if (file)
529 		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
530 			raw_smp_processor_id(), current->pid, file, line,
531 			caller);
532 	else
533 		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
534 			raw_smp_processor_id(), current->pid, caller);
535 
536 	if (args)
537 		vprintk(args->fmt, args->args);
538 
539 	if (panic_on_warn) {
540 		/*
541 		 * This thread may hit another WARN() in the panic path.
542 		 * Resetting this prevents additional WARN() from panicking the
543 		 * system on this thread.  Other threads are blocked by the
544 		 * panic_mutex in panic().
545 		 */
546 		panic_on_warn = 0;
547 		panic("panic_on_warn set ...\n");
548 	}
549 
550 	print_modules();
551 
552 	if (regs)
553 		show_regs(regs);
554 	else
555 		dump_stack();
556 
557 	print_oops_end_marker();
558 
559 	/* Just a warning, don't kill lockdep. */
560 	add_taint(taint, LOCKDEP_STILL_OK);
561 }
562 
563 #ifdef WANT_WARN_ON_SLOWPATH
564 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
565 {
566 	struct warn_args args;
567 
568 	args.fmt = fmt;
569 	va_start(args.args, fmt);
570 	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
571 	       &args);
572 	va_end(args.args);
573 }
574 EXPORT_SYMBOL(warn_slowpath_fmt);
575 
576 void warn_slowpath_fmt_taint(const char *file, int line,
577 			     unsigned taint, const char *fmt, ...)
578 {
579 	struct warn_args args;
580 
581 	args.fmt = fmt;
582 	va_start(args.args, fmt);
583 	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
584 	va_end(args.args);
585 }
586 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
587 
588 void warn_slowpath_null(const char *file, int line)
589 {
590 	pr_warn(CUT_HERE);
591 	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
592 }
593 EXPORT_SYMBOL(warn_slowpath_null);
594 #else
595 void __warn_printk(const char *fmt, ...)
596 {
597 	va_list args;
598 
599 	pr_warn(CUT_HERE);
600 
601 	va_start(args, fmt);
602 	vprintk(fmt, args);
603 	va_end(args);
604 }
605 EXPORT_SYMBOL(__warn_printk);
606 #endif
607 
608 #ifdef CONFIG_BUG
609 
610 /* Support resetting WARN*_ONCE state */
611 
612 static int clear_warn_once_set(void *data, u64 val)
613 {
614 	generic_bug_clear_once();
615 	memset(__start_once, 0, __end_once - __start_once);
616 	return 0;
617 }
618 
619 DEFINE_SIMPLE_ATTRIBUTE(clear_warn_once_fops,
620 			NULL,
621 			clear_warn_once_set,
622 			"%lld\n");
623 
624 static __init int register_warn_debugfs(void)
625 {
626 	/* Don't care about failure */
627 	debugfs_create_file("clear_warn_once", 0200, NULL,
628 			    NULL, &clear_warn_once_fops);
629 	return 0;
630 }
631 
632 device_initcall(register_warn_debugfs);
633 #endif
634 
635 #ifdef CONFIG_CC_STACKPROTECTOR
636 
637 /*
638  * Called when gcc's -fstack-protector feature is used, and
639  * gcc detects corruption of the on-stack canary value
640  */
641 __visible void __stack_chk_fail(void)
642 {
643 	panic("stack-protector: Kernel stack is corrupted in: %p\n",
644 		__builtin_return_address(0));
645 }
646 EXPORT_SYMBOL(__stack_chk_fail);
647 
648 #endif
649 
650 #ifdef CONFIG_ARCH_HAS_REFCOUNT
651 void refcount_error_report(struct pt_regs *regs, const char *err)
652 {
653 	WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n",
654 		err, (void *)instruction_pointer(regs),
655 		current->comm, task_pid_nr(current),
656 		from_kuid_munged(&init_user_ns, current_uid()),
657 		from_kuid_munged(&init_user_ns, current_euid()));
658 }
659 #endif
660 
661 core_param(panic, panic_timeout, int, 0644);
662 core_param(pause_on_oops, pause_on_oops, int, 0644);
663 core_param(panic_on_warn, panic_on_warn, int, 0644);
664 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
665 
666 static int __init oops_setup(char *s)
667 {
668 	if (!s)
669 		return -EINVAL;
670 	if (!strcmp(s, "panic"))
671 		panic_on_oops = 1;
672 	return 0;
673 }
674 early_param("oops", oops_setup);
675