1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/panic.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * This function is used through-out the kernel (including mm and fs) 10 * to indicate a major problem. 11 */ 12 #include <linux/debug_locks.h> 13 #include <linux/sched/debug.h> 14 #include <linux/interrupt.h> 15 #include <linux/kgdb.h> 16 #include <linux/kmsg_dump.h> 17 #include <linux/kallsyms.h> 18 #include <linux/notifier.h> 19 #include <linux/vt_kern.h> 20 #include <linux/module.h> 21 #include <linux/random.h> 22 #include <linux/ftrace.h> 23 #include <linux/reboot.h> 24 #include <linux/delay.h> 25 #include <linux/kexec.h> 26 #include <linux/sched.h> 27 #include <linux/sysrq.h> 28 #include <linux/init.h> 29 #include <linux/nmi.h> 30 #include <linux/console.h> 31 #include <linux/bug.h> 32 #include <linux/ratelimit.h> 33 #include <linux/debugfs.h> 34 #include <asm/sections.h> 35 36 #define PANIC_TIMER_STEP 100 37 #define PANIC_BLINK_SPD 18 38 39 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 40 static unsigned long tainted_mask = 41 IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0; 42 static int pause_on_oops; 43 static int pause_on_oops_flag; 44 static DEFINE_SPINLOCK(pause_on_oops_lock); 45 bool crash_kexec_post_notifiers; 46 int panic_on_warn __read_mostly; 47 48 int panic_timeout = CONFIG_PANIC_TIMEOUT; 49 EXPORT_SYMBOL_GPL(panic_timeout); 50 51 #define PANIC_PRINT_TASK_INFO 0x00000001 52 #define PANIC_PRINT_MEM_INFO 0x00000002 53 #define PANIC_PRINT_TIMER_INFO 0x00000004 54 #define PANIC_PRINT_LOCK_INFO 0x00000008 55 #define PANIC_PRINT_FTRACE_INFO 0x00000010 56 #define PANIC_PRINT_ALL_PRINTK_MSG 0x00000020 57 unsigned long panic_print; 58 59 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 60 61 EXPORT_SYMBOL(panic_notifier_list); 62 63 static long no_blink(int state) 64 { 65 return 0; 66 } 67 68 /* Returns how long it waited in ms */ 69 long (*panic_blink)(int state); 70 EXPORT_SYMBOL(panic_blink); 71 72 /* 73 * Stop ourself in panic -- architecture code may override this 74 */ 75 void __weak panic_smp_self_stop(void) 76 { 77 while (1) 78 cpu_relax(); 79 } 80 81 /* 82 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 83 * may override this to prepare for crash dumping, e.g. save regs info. 84 */ 85 void __weak nmi_panic_self_stop(struct pt_regs *regs) 86 { 87 panic_smp_self_stop(); 88 } 89 90 /* 91 * Stop other CPUs in panic. Architecture dependent code may override this 92 * with more suitable version. For example, if the architecture supports 93 * crash dump, it should save registers of each stopped CPU and disable 94 * per-CPU features such as virtualization extensions. 95 */ 96 void __weak crash_smp_send_stop(void) 97 { 98 static int cpus_stopped; 99 100 /* 101 * This function can be called twice in panic path, but obviously 102 * we execute this only once. 103 */ 104 if (cpus_stopped) 105 return; 106 107 /* 108 * Note smp_send_stop is the usual smp shutdown function, which 109 * unfortunately means it may not be hardened to work in a panic 110 * situation. 111 */ 112 smp_send_stop(); 113 cpus_stopped = 1; 114 } 115 116 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 117 118 /* 119 * A variant of panic() called from NMI context. We return if we've already 120 * panicked on this CPU. If another CPU already panicked, loop in 121 * nmi_panic_self_stop() which can provide architecture dependent code such 122 * as saving register state for crash dump. 123 */ 124 void nmi_panic(struct pt_regs *regs, const char *msg) 125 { 126 int old_cpu, cpu; 127 128 cpu = raw_smp_processor_id(); 129 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); 130 131 if (old_cpu == PANIC_CPU_INVALID) 132 panic("%s", msg); 133 else if (old_cpu != cpu) 134 nmi_panic_self_stop(regs); 135 } 136 EXPORT_SYMBOL(nmi_panic); 137 138 static void panic_print_sys_info(void) 139 { 140 if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG) 141 console_flush_on_panic(CONSOLE_REPLAY_ALL); 142 143 if (panic_print & PANIC_PRINT_TASK_INFO) 144 show_state(); 145 146 if (panic_print & PANIC_PRINT_MEM_INFO) 147 show_mem(0, NULL); 148 149 if (panic_print & PANIC_PRINT_TIMER_INFO) 150 sysrq_timer_list_show(); 151 152 if (panic_print & PANIC_PRINT_LOCK_INFO) 153 debug_show_all_locks(); 154 155 if (panic_print & PANIC_PRINT_FTRACE_INFO) 156 ftrace_dump(DUMP_ALL); 157 } 158 159 /** 160 * panic - halt the system 161 * @fmt: The text string to print 162 * 163 * Display a message, then perform cleanups. 164 * 165 * This function never returns. 166 */ 167 void panic(const char *fmt, ...) 168 { 169 static char buf[1024]; 170 va_list args; 171 long i, i_next = 0, len; 172 int state = 0; 173 int old_cpu, this_cpu; 174 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 175 176 /* 177 * Disable local interrupts. This will prevent panic_smp_self_stop 178 * from deadlocking the first cpu that invokes the panic, since 179 * there is nothing to prevent an interrupt handler (that runs 180 * after setting panic_cpu) from invoking panic() again. 181 */ 182 local_irq_disable(); 183 184 /* 185 * It's possible to come here directly from a panic-assertion and 186 * not have preempt disabled. Some functions called from here want 187 * preempt to be disabled. No point enabling it later though... 188 * 189 * Only one CPU is allowed to execute the panic code from here. For 190 * multiple parallel invocations of panic, all other CPUs either 191 * stop themself or will wait until they are stopped by the 1st CPU 192 * with smp_send_stop(). 193 * 194 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 195 * comes here, so go ahead. 196 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 197 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 198 */ 199 this_cpu = raw_smp_processor_id(); 200 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 201 202 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 203 panic_smp_self_stop(); 204 205 console_verbose(); 206 bust_spinlocks(1); 207 va_start(args, fmt); 208 len = vscnprintf(buf, sizeof(buf), fmt, args); 209 va_end(args); 210 211 if (len && buf[len - 1] == '\n') 212 buf[len - 1] = '\0'; 213 214 pr_emerg("Kernel panic - not syncing: %s\n", buf); 215 #ifdef CONFIG_DEBUG_BUGVERBOSE 216 /* 217 * Avoid nested stack-dumping if a panic occurs during oops processing 218 */ 219 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 220 dump_stack(); 221 #endif 222 223 /* 224 * If kgdb is enabled, give it a chance to run before we stop all 225 * the other CPUs or else we won't be able to debug processes left 226 * running on them. 227 */ 228 kgdb_panic(buf); 229 230 /* 231 * If we have crashed and we have a crash kernel loaded let it handle 232 * everything else. 233 * If we want to run this after calling panic_notifiers, pass 234 * the "crash_kexec_post_notifiers" option to the kernel. 235 * 236 * Bypass the panic_cpu check and call __crash_kexec directly. 237 */ 238 if (!_crash_kexec_post_notifiers) { 239 printk_safe_flush_on_panic(); 240 __crash_kexec(NULL); 241 242 /* 243 * Note smp_send_stop is the usual smp shutdown function, which 244 * unfortunately means it may not be hardened to work in a 245 * panic situation. 246 */ 247 smp_send_stop(); 248 } else { 249 /* 250 * If we want to do crash dump after notifier calls and 251 * kmsg_dump, we will need architecture dependent extra 252 * works in addition to stopping other CPUs. 253 */ 254 crash_smp_send_stop(); 255 } 256 257 /* 258 * Run any panic handlers, including those that might need to 259 * add information to the kmsg dump output. 260 */ 261 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 262 263 /* Call flush even twice. It tries harder with a single online CPU */ 264 printk_safe_flush_on_panic(); 265 kmsg_dump(KMSG_DUMP_PANIC); 266 267 /* 268 * If you doubt kdump always works fine in any situation, 269 * "crash_kexec_post_notifiers" offers you a chance to run 270 * panic_notifiers and dumping kmsg before kdump. 271 * Note: since some panic_notifiers can make crashed kernel 272 * more unstable, it can increase risks of the kdump failure too. 273 * 274 * Bypass the panic_cpu check and call __crash_kexec directly. 275 */ 276 if (_crash_kexec_post_notifiers) 277 __crash_kexec(NULL); 278 279 #ifdef CONFIG_VT 280 unblank_screen(); 281 #endif 282 console_unblank(); 283 284 /* 285 * We may have ended up stopping the CPU holding the lock (in 286 * smp_send_stop()) while still having some valuable data in the console 287 * buffer. Try to acquire the lock then release it regardless of the 288 * result. The release will also print the buffers out. Locks debug 289 * should be disabled to avoid reporting bad unlock balance when 290 * panic() is not being callled from OOPS. 291 */ 292 debug_locks_off(); 293 console_flush_on_panic(CONSOLE_FLUSH_PENDING); 294 295 panic_print_sys_info(); 296 297 if (!panic_blink) 298 panic_blink = no_blink; 299 300 if (panic_timeout > 0) { 301 /* 302 * Delay timeout seconds before rebooting the machine. 303 * We can't use the "normal" timers since we just panicked. 304 */ 305 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 306 307 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 308 touch_nmi_watchdog(); 309 if (i >= i_next) { 310 i += panic_blink(state ^= 1); 311 i_next = i + 3600 / PANIC_BLINK_SPD; 312 } 313 mdelay(PANIC_TIMER_STEP); 314 } 315 } 316 if (panic_timeout != 0) { 317 /* 318 * This will not be a clean reboot, with everything 319 * shutting down. But if there is a chance of 320 * rebooting the system it will be rebooted. 321 */ 322 if (panic_reboot_mode != REBOOT_UNDEFINED) 323 reboot_mode = panic_reboot_mode; 324 emergency_restart(); 325 } 326 #ifdef __sparc__ 327 { 328 extern int stop_a_enabled; 329 /* Make sure the user can actually press Stop-A (L1-A) */ 330 stop_a_enabled = 1; 331 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 332 "twice on console to return to the boot prom\n"); 333 } 334 #endif 335 #if defined(CONFIG_S390) 336 disabled_wait(); 337 #endif 338 pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf); 339 340 /* Do not scroll important messages printed above */ 341 suppress_printk = 1; 342 local_irq_enable(); 343 for (i = 0; ; i += PANIC_TIMER_STEP) { 344 touch_softlockup_watchdog(); 345 if (i >= i_next) { 346 i += panic_blink(state ^= 1); 347 i_next = i + 3600 / PANIC_BLINK_SPD; 348 } 349 mdelay(PANIC_TIMER_STEP); 350 } 351 } 352 353 EXPORT_SYMBOL(panic); 354 355 /* 356 * TAINT_FORCED_RMMOD could be a per-module flag but the module 357 * is being removed anyway. 358 */ 359 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 360 [ TAINT_PROPRIETARY_MODULE ] = { 'P', 'G', true }, 361 [ TAINT_FORCED_MODULE ] = { 'F', ' ', true }, 362 [ TAINT_CPU_OUT_OF_SPEC ] = { 'S', ' ', false }, 363 [ TAINT_FORCED_RMMOD ] = { 'R', ' ', false }, 364 [ TAINT_MACHINE_CHECK ] = { 'M', ' ', false }, 365 [ TAINT_BAD_PAGE ] = { 'B', ' ', false }, 366 [ TAINT_USER ] = { 'U', ' ', false }, 367 [ TAINT_DIE ] = { 'D', ' ', false }, 368 [ TAINT_OVERRIDDEN_ACPI_TABLE ] = { 'A', ' ', false }, 369 [ TAINT_WARN ] = { 'W', ' ', false }, 370 [ TAINT_CRAP ] = { 'C', ' ', true }, 371 [ TAINT_FIRMWARE_WORKAROUND ] = { 'I', ' ', false }, 372 [ TAINT_OOT_MODULE ] = { 'O', ' ', true }, 373 [ TAINT_UNSIGNED_MODULE ] = { 'E', ' ', true }, 374 [ TAINT_SOFTLOCKUP ] = { 'L', ' ', false }, 375 [ TAINT_LIVEPATCH ] = { 'K', ' ', true }, 376 [ TAINT_AUX ] = { 'X', ' ', true }, 377 [ TAINT_RANDSTRUCT ] = { 'T', ' ', true }, 378 }; 379 380 /** 381 * print_tainted - return a string to represent the kernel taint state. 382 * 383 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst 384 * 385 * The string is overwritten by the next call to print_tainted(), 386 * but is always NULL terminated. 387 */ 388 const char *print_tainted(void) 389 { 390 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; 391 392 BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT); 393 394 if (tainted_mask) { 395 char *s; 396 int i; 397 398 s = buf + sprintf(buf, "Tainted: "); 399 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 400 const struct taint_flag *t = &taint_flags[i]; 401 *s++ = test_bit(i, &tainted_mask) ? 402 t->c_true : t->c_false; 403 } 404 *s = 0; 405 } else 406 snprintf(buf, sizeof(buf), "Not tainted"); 407 408 return buf; 409 } 410 411 int test_taint(unsigned flag) 412 { 413 return test_bit(flag, &tainted_mask); 414 } 415 EXPORT_SYMBOL(test_taint); 416 417 unsigned long get_taint(void) 418 { 419 return tainted_mask; 420 } 421 422 /** 423 * add_taint: add a taint flag if not already set. 424 * @flag: one of the TAINT_* constants. 425 * @lockdep_ok: whether lock debugging is still OK. 426 * 427 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 428 * some notewortht-but-not-corrupting cases, it can be set to true. 429 */ 430 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 431 { 432 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 433 pr_warn("Disabling lock debugging due to kernel taint\n"); 434 435 set_bit(flag, &tainted_mask); 436 } 437 EXPORT_SYMBOL(add_taint); 438 439 static void spin_msec(int msecs) 440 { 441 int i; 442 443 for (i = 0; i < msecs; i++) { 444 touch_nmi_watchdog(); 445 mdelay(1); 446 } 447 } 448 449 /* 450 * It just happens that oops_enter() and oops_exit() are identically 451 * implemented... 452 */ 453 static void do_oops_enter_exit(void) 454 { 455 unsigned long flags; 456 static int spin_counter; 457 458 if (!pause_on_oops) 459 return; 460 461 spin_lock_irqsave(&pause_on_oops_lock, flags); 462 if (pause_on_oops_flag == 0) { 463 /* This CPU may now print the oops message */ 464 pause_on_oops_flag = 1; 465 } else { 466 /* We need to stall this CPU */ 467 if (!spin_counter) { 468 /* This CPU gets to do the counting */ 469 spin_counter = pause_on_oops; 470 do { 471 spin_unlock(&pause_on_oops_lock); 472 spin_msec(MSEC_PER_SEC); 473 spin_lock(&pause_on_oops_lock); 474 } while (--spin_counter); 475 pause_on_oops_flag = 0; 476 } else { 477 /* This CPU waits for a different one */ 478 while (spin_counter) { 479 spin_unlock(&pause_on_oops_lock); 480 spin_msec(1); 481 spin_lock(&pause_on_oops_lock); 482 } 483 } 484 } 485 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 486 } 487 488 /* 489 * Return true if the calling CPU is allowed to print oops-related info. 490 * This is a bit racy.. 491 */ 492 int oops_may_print(void) 493 { 494 return pause_on_oops_flag == 0; 495 } 496 497 /* 498 * Called when the architecture enters its oops handler, before it prints 499 * anything. If this is the first CPU to oops, and it's oopsing the first 500 * time then let it proceed. 501 * 502 * This is all enabled by the pause_on_oops kernel boot option. We do all 503 * this to ensure that oopses don't scroll off the screen. It has the 504 * side-effect of preventing later-oopsing CPUs from mucking up the display, 505 * too. 506 * 507 * It turns out that the CPU which is allowed to print ends up pausing for 508 * the right duration, whereas all the other CPUs pause for twice as long: 509 * once in oops_enter(), once in oops_exit(). 510 */ 511 void oops_enter(void) 512 { 513 tracing_off(); 514 /* can't trust the integrity of the kernel anymore: */ 515 debug_locks_off(); 516 do_oops_enter_exit(); 517 } 518 519 /* 520 * 64-bit random ID for oopses: 521 */ 522 static u64 oops_id; 523 524 static int init_oops_id(void) 525 { 526 if (!oops_id) 527 get_random_bytes(&oops_id, sizeof(oops_id)); 528 else 529 oops_id++; 530 531 return 0; 532 } 533 late_initcall(init_oops_id); 534 535 void print_oops_end_marker(void) 536 { 537 init_oops_id(); 538 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); 539 } 540 541 /* 542 * Called when the architecture exits its oops handler, after printing 543 * everything. 544 */ 545 void oops_exit(void) 546 { 547 do_oops_enter_exit(); 548 print_oops_end_marker(); 549 kmsg_dump(KMSG_DUMP_OOPS); 550 } 551 552 struct warn_args { 553 const char *fmt; 554 va_list args; 555 }; 556 557 void __warn(const char *file, int line, void *caller, unsigned taint, 558 struct pt_regs *regs, struct warn_args *args) 559 { 560 disable_trace_on_warning(); 561 562 if (file) 563 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 564 raw_smp_processor_id(), current->pid, file, line, 565 caller); 566 else 567 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 568 raw_smp_processor_id(), current->pid, caller); 569 570 if (args) 571 vprintk(args->fmt, args->args); 572 573 if (panic_on_warn) { 574 /* 575 * This thread may hit another WARN() in the panic path. 576 * Resetting this prevents additional WARN() from panicking the 577 * system on this thread. Other threads are blocked by the 578 * panic_mutex in panic(). 579 */ 580 panic_on_warn = 0; 581 panic("panic_on_warn set ...\n"); 582 } 583 584 print_modules(); 585 586 if (regs) 587 show_regs(regs); 588 else 589 dump_stack(); 590 591 print_irqtrace_events(current); 592 593 print_oops_end_marker(); 594 595 /* Just a warning, don't kill lockdep. */ 596 add_taint(taint, LOCKDEP_STILL_OK); 597 } 598 599 #ifndef __WARN_FLAGS 600 void warn_slowpath_fmt(const char *file, int line, unsigned taint, 601 const char *fmt, ...) 602 { 603 struct warn_args args; 604 605 pr_warn(CUT_HERE); 606 607 if (!fmt) { 608 __warn(file, line, __builtin_return_address(0), taint, 609 NULL, NULL); 610 return; 611 } 612 613 args.fmt = fmt; 614 va_start(args.args, fmt); 615 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 616 va_end(args.args); 617 } 618 EXPORT_SYMBOL(warn_slowpath_fmt); 619 #else 620 void __warn_printk(const char *fmt, ...) 621 { 622 va_list args; 623 624 pr_warn(CUT_HERE); 625 626 va_start(args, fmt); 627 vprintk(fmt, args); 628 va_end(args); 629 } 630 EXPORT_SYMBOL(__warn_printk); 631 #endif 632 633 #ifdef CONFIG_BUG 634 635 /* Support resetting WARN*_ONCE state */ 636 637 static int clear_warn_once_set(void *data, u64 val) 638 { 639 generic_bug_clear_once(); 640 memset(__start_once, 0, __end_once - __start_once); 641 return 0; 642 } 643 644 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set, 645 "%lld\n"); 646 647 static __init int register_warn_debugfs(void) 648 { 649 /* Don't care about failure */ 650 debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL, 651 &clear_warn_once_fops); 652 return 0; 653 } 654 655 device_initcall(register_warn_debugfs); 656 #endif 657 658 #ifdef CONFIG_STACKPROTECTOR 659 660 /* 661 * Called when gcc's -fstack-protector feature is used, and 662 * gcc detects corruption of the on-stack canary value 663 */ 664 __visible void __stack_chk_fail(void) 665 { 666 panic("stack-protector: Kernel stack is corrupted in: %pB", 667 __builtin_return_address(0)); 668 } 669 EXPORT_SYMBOL(__stack_chk_fail); 670 671 #endif 672 673 #ifdef CONFIG_ARCH_HAS_REFCOUNT 674 void refcount_error_report(struct pt_regs *regs, const char *err) 675 { 676 WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n", 677 err, (void *)instruction_pointer(regs), 678 current->comm, task_pid_nr(current), 679 from_kuid_munged(&init_user_ns, current_uid()), 680 from_kuid_munged(&init_user_ns, current_euid())); 681 } 682 #endif 683 684 core_param(panic, panic_timeout, int, 0644); 685 core_param(panic_print, panic_print, ulong, 0644); 686 core_param(pause_on_oops, pause_on_oops, int, 0644); 687 core_param(panic_on_warn, panic_on_warn, int, 0644); 688 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 689 690 static int __init oops_setup(char *s) 691 { 692 if (!s) 693 return -EINVAL; 694 if (!strcmp(s, "panic")) 695 panic_on_oops = 1; 696 return 0; 697 } 698 early_param("oops", oops_setup); 699