xref: /openbmc/linux/kernel/panic.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/panic.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * This function is used through-out the kernel (including mm and fs)
10  * to indicate a major problem.
11  */
12 #include <linux/debug_locks.h>
13 #include <linux/sched/debug.h>
14 #include <linux/interrupt.h>
15 #include <linux/kgdb.h>
16 #include <linux/kmsg_dump.h>
17 #include <linux/kallsyms.h>
18 #include <linux/notifier.h>
19 #include <linux/vt_kern.h>
20 #include <linux/module.h>
21 #include <linux/random.h>
22 #include <linux/ftrace.h>
23 #include <linux/reboot.h>
24 #include <linux/delay.h>
25 #include <linux/kexec.h>
26 #include <linux/sched.h>
27 #include <linux/sysrq.h>
28 #include <linux/init.h>
29 #include <linux/nmi.h>
30 #include <linux/console.h>
31 #include <linux/bug.h>
32 #include <linux/ratelimit.h>
33 #include <linux/debugfs.h>
34 #include <asm/sections.h>
35 
36 #define PANIC_TIMER_STEP 100
37 #define PANIC_BLINK_SPD 18
38 
39 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
40 static unsigned long tainted_mask =
41 	IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
42 static int pause_on_oops;
43 static int pause_on_oops_flag;
44 static DEFINE_SPINLOCK(pause_on_oops_lock);
45 bool crash_kexec_post_notifiers;
46 int panic_on_warn __read_mostly;
47 
48 int panic_timeout = CONFIG_PANIC_TIMEOUT;
49 EXPORT_SYMBOL_GPL(panic_timeout);
50 
51 #define PANIC_PRINT_TASK_INFO		0x00000001
52 #define PANIC_PRINT_MEM_INFO		0x00000002
53 #define PANIC_PRINT_TIMER_INFO		0x00000004
54 #define PANIC_PRINT_LOCK_INFO		0x00000008
55 #define PANIC_PRINT_FTRACE_INFO		0x00000010
56 #define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
57 unsigned long panic_print;
58 
59 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
60 
61 EXPORT_SYMBOL(panic_notifier_list);
62 
63 static long no_blink(int state)
64 {
65 	return 0;
66 }
67 
68 /* Returns how long it waited in ms */
69 long (*panic_blink)(int state);
70 EXPORT_SYMBOL(panic_blink);
71 
72 /*
73  * Stop ourself in panic -- architecture code may override this
74  */
75 void __weak panic_smp_self_stop(void)
76 {
77 	while (1)
78 		cpu_relax();
79 }
80 
81 /*
82  * Stop ourselves in NMI context if another CPU has already panicked. Arch code
83  * may override this to prepare for crash dumping, e.g. save regs info.
84  */
85 void __weak nmi_panic_self_stop(struct pt_regs *regs)
86 {
87 	panic_smp_self_stop();
88 }
89 
90 /*
91  * Stop other CPUs in panic.  Architecture dependent code may override this
92  * with more suitable version.  For example, if the architecture supports
93  * crash dump, it should save registers of each stopped CPU and disable
94  * per-CPU features such as virtualization extensions.
95  */
96 void __weak crash_smp_send_stop(void)
97 {
98 	static int cpus_stopped;
99 
100 	/*
101 	 * This function can be called twice in panic path, but obviously
102 	 * we execute this only once.
103 	 */
104 	if (cpus_stopped)
105 		return;
106 
107 	/*
108 	 * Note smp_send_stop is the usual smp shutdown function, which
109 	 * unfortunately means it may not be hardened to work in a panic
110 	 * situation.
111 	 */
112 	smp_send_stop();
113 	cpus_stopped = 1;
114 }
115 
116 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
117 
118 /*
119  * A variant of panic() called from NMI context. We return if we've already
120  * panicked on this CPU. If another CPU already panicked, loop in
121  * nmi_panic_self_stop() which can provide architecture dependent code such
122  * as saving register state for crash dump.
123  */
124 void nmi_panic(struct pt_regs *regs, const char *msg)
125 {
126 	int old_cpu, cpu;
127 
128 	cpu = raw_smp_processor_id();
129 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
130 
131 	if (old_cpu == PANIC_CPU_INVALID)
132 		panic("%s", msg);
133 	else if (old_cpu != cpu)
134 		nmi_panic_self_stop(regs);
135 }
136 EXPORT_SYMBOL(nmi_panic);
137 
138 static void panic_print_sys_info(void)
139 {
140 	if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
141 		console_flush_on_panic(CONSOLE_REPLAY_ALL);
142 
143 	if (panic_print & PANIC_PRINT_TASK_INFO)
144 		show_state();
145 
146 	if (panic_print & PANIC_PRINT_MEM_INFO)
147 		show_mem(0, NULL);
148 
149 	if (panic_print & PANIC_PRINT_TIMER_INFO)
150 		sysrq_timer_list_show();
151 
152 	if (panic_print & PANIC_PRINT_LOCK_INFO)
153 		debug_show_all_locks();
154 
155 	if (panic_print & PANIC_PRINT_FTRACE_INFO)
156 		ftrace_dump(DUMP_ALL);
157 }
158 
159 /**
160  *	panic - halt the system
161  *	@fmt: The text string to print
162  *
163  *	Display a message, then perform cleanups.
164  *
165  *	This function never returns.
166  */
167 void panic(const char *fmt, ...)
168 {
169 	static char buf[1024];
170 	va_list args;
171 	long i, i_next = 0, len;
172 	int state = 0;
173 	int old_cpu, this_cpu;
174 	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
175 
176 	/*
177 	 * Disable local interrupts. This will prevent panic_smp_self_stop
178 	 * from deadlocking the first cpu that invokes the panic, since
179 	 * there is nothing to prevent an interrupt handler (that runs
180 	 * after setting panic_cpu) from invoking panic() again.
181 	 */
182 	local_irq_disable();
183 	preempt_disable_notrace();
184 
185 	/*
186 	 * It's possible to come here directly from a panic-assertion and
187 	 * not have preempt disabled. Some functions called from here want
188 	 * preempt to be disabled. No point enabling it later though...
189 	 *
190 	 * Only one CPU is allowed to execute the panic code from here. For
191 	 * multiple parallel invocations of panic, all other CPUs either
192 	 * stop themself or will wait until they are stopped by the 1st CPU
193 	 * with smp_send_stop().
194 	 *
195 	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
196 	 * comes here, so go ahead.
197 	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
198 	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
199 	 */
200 	this_cpu = raw_smp_processor_id();
201 	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
202 
203 	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
204 		panic_smp_self_stop();
205 
206 	console_verbose();
207 	bust_spinlocks(1);
208 	va_start(args, fmt);
209 	len = vscnprintf(buf, sizeof(buf), fmt, args);
210 	va_end(args);
211 
212 	if (len && buf[len - 1] == '\n')
213 		buf[len - 1] = '\0';
214 
215 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
216 #ifdef CONFIG_DEBUG_BUGVERBOSE
217 	/*
218 	 * Avoid nested stack-dumping if a panic occurs during oops processing
219 	 */
220 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
221 		dump_stack();
222 #endif
223 
224 	/*
225 	 * If kgdb is enabled, give it a chance to run before we stop all
226 	 * the other CPUs or else we won't be able to debug processes left
227 	 * running on them.
228 	 */
229 	kgdb_panic(buf);
230 
231 	/*
232 	 * If we have crashed and we have a crash kernel loaded let it handle
233 	 * everything else.
234 	 * If we want to run this after calling panic_notifiers, pass
235 	 * the "crash_kexec_post_notifiers" option to the kernel.
236 	 *
237 	 * Bypass the panic_cpu check and call __crash_kexec directly.
238 	 */
239 	if (!_crash_kexec_post_notifiers) {
240 		printk_safe_flush_on_panic();
241 		__crash_kexec(NULL);
242 
243 		/*
244 		 * Note smp_send_stop is the usual smp shutdown function, which
245 		 * unfortunately means it may not be hardened to work in a
246 		 * panic situation.
247 		 */
248 		smp_send_stop();
249 	} else {
250 		/*
251 		 * If we want to do crash dump after notifier calls and
252 		 * kmsg_dump, we will need architecture dependent extra
253 		 * works in addition to stopping other CPUs.
254 		 */
255 		crash_smp_send_stop();
256 	}
257 
258 	/*
259 	 * Run any panic handlers, including those that might need to
260 	 * add information to the kmsg dump output.
261 	 */
262 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
263 
264 	/* Call flush even twice. It tries harder with a single online CPU */
265 	printk_safe_flush_on_panic();
266 	kmsg_dump(KMSG_DUMP_PANIC);
267 
268 	/*
269 	 * If you doubt kdump always works fine in any situation,
270 	 * "crash_kexec_post_notifiers" offers you a chance to run
271 	 * panic_notifiers and dumping kmsg before kdump.
272 	 * Note: since some panic_notifiers can make crashed kernel
273 	 * more unstable, it can increase risks of the kdump failure too.
274 	 *
275 	 * Bypass the panic_cpu check and call __crash_kexec directly.
276 	 */
277 	if (_crash_kexec_post_notifiers)
278 		__crash_kexec(NULL);
279 
280 #ifdef CONFIG_VT
281 	unblank_screen();
282 #endif
283 	console_unblank();
284 
285 	/*
286 	 * We may have ended up stopping the CPU holding the lock (in
287 	 * smp_send_stop()) while still having some valuable data in the console
288 	 * buffer.  Try to acquire the lock then release it regardless of the
289 	 * result.  The release will also print the buffers out.  Locks debug
290 	 * should be disabled to avoid reporting bad unlock balance when
291 	 * panic() is not being callled from OOPS.
292 	 */
293 	debug_locks_off();
294 	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
295 
296 	panic_print_sys_info();
297 
298 	if (!panic_blink)
299 		panic_blink = no_blink;
300 
301 	if (panic_timeout > 0) {
302 		/*
303 		 * Delay timeout seconds before rebooting the machine.
304 		 * We can't use the "normal" timers since we just panicked.
305 		 */
306 		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
307 
308 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
309 			touch_nmi_watchdog();
310 			if (i >= i_next) {
311 				i += panic_blink(state ^= 1);
312 				i_next = i + 3600 / PANIC_BLINK_SPD;
313 			}
314 			mdelay(PANIC_TIMER_STEP);
315 		}
316 	}
317 	if (panic_timeout != 0) {
318 		/*
319 		 * This will not be a clean reboot, with everything
320 		 * shutting down.  But if there is a chance of
321 		 * rebooting the system it will be rebooted.
322 		 */
323 		if (panic_reboot_mode != REBOOT_UNDEFINED)
324 			reboot_mode = panic_reboot_mode;
325 		emergency_restart();
326 	}
327 #ifdef __sparc__
328 	{
329 		extern int stop_a_enabled;
330 		/* Make sure the user can actually press Stop-A (L1-A) */
331 		stop_a_enabled = 1;
332 		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
333 			 "twice on console to return to the boot prom\n");
334 	}
335 #endif
336 #if defined(CONFIG_S390)
337 	disabled_wait();
338 #endif
339 	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
340 
341 	/* Do not scroll important messages printed above */
342 	suppress_printk = 1;
343 	local_irq_enable();
344 	for (i = 0; ; i += PANIC_TIMER_STEP) {
345 		touch_softlockup_watchdog();
346 		if (i >= i_next) {
347 			i += panic_blink(state ^= 1);
348 			i_next = i + 3600 / PANIC_BLINK_SPD;
349 		}
350 		mdelay(PANIC_TIMER_STEP);
351 	}
352 }
353 
354 EXPORT_SYMBOL(panic);
355 
356 /*
357  * TAINT_FORCED_RMMOD could be a per-module flag but the module
358  * is being removed anyway.
359  */
360 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
361 	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
362 	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
363 	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
364 	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
365 	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
366 	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
367 	[ TAINT_USER ]			= { 'U', ' ', false },
368 	[ TAINT_DIE ]			= { 'D', ' ', false },
369 	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
370 	[ TAINT_WARN ]			= { 'W', ' ', false },
371 	[ TAINT_CRAP ]			= { 'C', ' ', true },
372 	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
373 	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
374 	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
375 	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
376 	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
377 	[ TAINT_AUX ]			= { 'X', ' ', true },
378 	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
379 };
380 
381 /**
382  * print_tainted - return a string to represent the kernel taint state.
383  *
384  * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
385  *
386  * The string is overwritten by the next call to print_tainted(),
387  * but is always NULL terminated.
388  */
389 const char *print_tainted(void)
390 {
391 	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
392 
393 	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
394 
395 	if (tainted_mask) {
396 		char *s;
397 		int i;
398 
399 		s = buf + sprintf(buf, "Tainted: ");
400 		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
401 			const struct taint_flag *t = &taint_flags[i];
402 			*s++ = test_bit(i, &tainted_mask) ?
403 					t->c_true : t->c_false;
404 		}
405 		*s = 0;
406 	} else
407 		snprintf(buf, sizeof(buf), "Not tainted");
408 
409 	return buf;
410 }
411 
412 int test_taint(unsigned flag)
413 {
414 	return test_bit(flag, &tainted_mask);
415 }
416 EXPORT_SYMBOL(test_taint);
417 
418 unsigned long get_taint(void)
419 {
420 	return tainted_mask;
421 }
422 
423 /**
424  * add_taint: add a taint flag if not already set.
425  * @flag: one of the TAINT_* constants.
426  * @lockdep_ok: whether lock debugging is still OK.
427  *
428  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
429  * some notewortht-but-not-corrupting cases, it can be set to true.
430  */
431 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
432 {
433 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
434 		pr_warn("Disabling lock debugging due to kernel taint\n");
435 
436 	set_bit(flag, &tainted_mask);
437 }
438 EXPORT_SYMBOL(add_taint);
439 
440 static void spin_msec(int msecs)
441 {
442 	int i;
443 
444 	for (i = 0; i < msecs; i++) {
445 		touch_nmi_watchdog();
446 		mdelay(1);
447 	}
448 }
449 
450 /*
451  * It just happens that oops_enter() and oops_exit() are identically
452  * implemented...
453  */
454 static void do_oops_enter_exit(void)
455 {
456 	unsigned long flags;
457 	static int spin_counter;
458 
459 	if (!pause_on_oops)
460 		return;
461 
462 	spin_lock_irqsave(&pause_on_oops_lock, flags);
463 	if (pause_on_oops_flag == 0) {
464 		/* This CPU may now print the oops message */
465 		pause_on_oops_flag = 1;
466 	} else {
467 		/* We need to stall this CPU */
468 		if (!spin_counter) {
469 			/* This CPU gets to do the counting */
470 			spin_counter = pause_on_oops;
471 			do {
472 				spin_unlock(&pause_on_oops_lock);
473 				spin_msec(MSEC_PER_SEC);
474 				spin_lock(&pause_on_oops_lock);
475 			} while (--spin_counter);
476 			pause_on_oops_flag = 0;
477 		} else {
478 			/* This CPU waits for a different one */
479 			while (spin_counter) {
480 				spin_unlock(&pause_on_oops_lock);
481 				spin_msec(1);
482 				spin_lock(&pause_on_oops_lock);
483 			}
484 		}
485 	}
486 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
487 }
488 
489 /*
490  * Return true if the calling CPU is allowed to print oops-related info.
491  * This is a bit racy..
492  */
493 int oops_may_print(void)
494 {
495 	return pause_on_oops_flag == 0;
496 }
497 
498 /*
499  * Called when the architecture enters its oops handler, before it prints
500  * anything.  If this is the first CPU to oops, and it's oopsing the first
501  * time then let it proceed.
502  *
503  * This is all enabled by the pause_on_oops kernel boot option.  We do all
504  * this to ensure that oopses don't scroll off the screen.  It has the
505  * side-effect of preventing later-oopsing CPUs from mucking up the display,
506  * too.
507  *
508  * It turns out that the CPU which is allowed to print ends up pausing for
509  * the right duration, whereas all the other CPUs pause for twice as long:
510  * once in oops_enter(), once in oops_exit().
511  */
512 void oops_enter(void)
513 {
514 	tracing_off();
515 	/* can't trust the integrity of the kernel anymore: */
516 	debug_locks_off();
517 	do_oops_enter_exit();
518 }
519 
520 /*
521  * 64-bit random ID for oopses:
522  */
523 static u64 oops_id;
524 
525 static int init_oops_id(void)
526 {
527 	if (!oops_id)
528 		get_random_bytes(&oops_id, sizeof(oops_id));
529 	else
530 		oops_id++;
531 
532 	return 0;
533 }
534 late_initcall(init_oops_id);
535 
536 void print_oops_end_marker(void)
537 {
538 	init_oops_id();
539 	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
540 }
541 
542 /*
543  * Called when the architecture exits its oops handler, after printing
544  * everything.
545  */
546 void oops_exit(void)
547 {
548 	do_oops_enter_exit();
549 	print_oops_end_marker();
550 	kmsg_dump(KMSG_DUMP_OOPS);
551 }
552 
553 struct warn_args {
554 	const char *fmt;
555 	va_list args;
556 };
557 
558 void __warn(const char *file, int line, void *caller, unsigned taint,
559 	    struct pt_regs *regs, struct warn_args *args)
560 {
561 	disable_trace_on_warning();
562 
563 	if (file)
564 		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
565 			raw_smp_processor_id(), current->pid, file, line,
566 			caller);
567 	else
568 		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
569 			raw_smp_processor_id(), current->pid, caller);
570 
571 	if (args)
572 		vprintk(args->fmt, args->args);
573 
574 	if (panic_on_warn) {
575 		/*
576 		 * This thread may hit another WARN() in the panic path.
577 		 * Resetting this prevents additional WARN() from panicking the
578 		 * system on this thread.  Other threads are blocked by the
579 		 * panic_mutex in panic().
580 		 */
581 		panic_on_warn = 0;
582 		panic("panic_on_warn set ...\n");
583 	}
584 
585 	print_modules();
586 
587 	if (regs)
588 		show_regs(regs);
589 	else
590 		dump_stack();
591 
592 	print_irqtrace_events(current);
593 
594 	print_oops_end_marker();
595 
596 	/* Just a warning, don't kill lockdep. */
597 	add_taint(taint, LOCKDEP_STILL_OK);
598 }
599 
600 #ifndef __WARN_FLAGS
601 void warn_slowpath_fmt(const char *file, int line, unsigned taint,
602 		       const char *fmt, ...)
603 {
604 	struct warn_args args;
605 
606 	pr_warn(CUT_HERE);
607 
608 	if (!fmt) {
609 		__warn(file, line, __builtin_return_address(0), taint,
610 		       NULL, NULL);
611 		return;
612 	}
613 
614 	args.fmt = fmt;
615 	va_start(args.args, fmt);
616 	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
617 	va_end(args.args);
618 }
619 EXPORT_SYMBOL(warn_slowpath_fmt);
620 #else
621 void __warn_printk(const char *fmt, ...)
622 {
623 	va_list args;
624 
625 	pr_warn(CUT_HERE);
626 
627 	va_start(args, fmt);
628 	vprintk(fmt, args);
629 	va_end(args);
630 }
631 EXPORT_SYMBOL(__warn_printk);
632 #endif
633 
634 #ifdef CONFIG_BUG
635 
636 /* Support resetting WARN*_ONCE state */
637 
638 static int clear_warn_once_set(void *data, u64 val)
639 {
640 	generic_bug_clear_once();
641 	memset(__start_once, 0, __end_once - __start_once);
642 	return 0;
643 }
644 
645 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
646 			 "%lld\n");
647 
648 static __init int register_warn_debugfs(void)
649 {
650 	/* Don't care about failure */
651 	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
652 				   &clear_warn_once_fops);
653 	return 0;
654 }
655 
656 device_initcall(register_warn_debugfs);
657 #endif
658 
659 #ifdef CONFIG_STACKPROTECTOR
660 
661 /*
662  * Called when gcc's -fstack-protector feature is used, and
663  * gcc detects corruption of the on-stack canary value
664  */
665 __visible void __stack_chk_fail(void)
666 {
667 	panic("stack-protector: Kernel stack is corrupted in: %pB",
668 		__builtin_return_address(0));
669 }
670 EXPORT_SYMBOL(__stack_chk_fail);
671 
672 #endif
673 
674 core_param(panic, panic_timeout, int, 0644);
675 core_param(panic_print, panic_print, ulong, 0644);
676 core_param(pause_on_oops, pause_on_oops, int, 0644);
677 core_param(panic_on_warn, panic_on_warn, int, 0644);
678 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
679 
680 static int __init oops_setup(char *s)
681 {
682 	if (!s)
683 		return -EINVAL;
684 	if (!strcmp(s, "panic"))
685 		panic_on_oops = 1;
686 	return 0;
687 }
688 early_param("oops", oops_setup);
689