1 /* 2 * linux/kernel/panic.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * This function is used through-out the kernel (including mm and fs) 9 * to indicate a major problem. 10 */ 11 #include <linux/debug_locks.h> 12 #include <linux/sched/debug.h> 13 #include <linux/interrupt.h> 14 #include <linux/kmsg_dump.h> 15 #include <linux/kallsyms.h> 16 #include <linux/notifier.h> 17 #include <linux/vt_kern.h> 18 #include <linux/module.h> 19 #include <linux/random.h> 20 #include <linux/ftrace.h> 21 #include <linux/reboot.h> 22 #include <linux/delay.h> 23 #include <linux/kexec.h> 24 #include <linux/sched.h> 25 #include <linux/sysrq.h> 26 #include <linux/init.h> 27 #include <linux/nmi.h> 28 #include <linux/console.h> 29 #include <linux/bug.h> 30 #include <linux/ratelimit.h> 31 #include <linux/debugfs.h> 32 #include <asm/sections.h> 33 34 #define PANIC_TIMER_STEP 100 35 #define PANIC_BLINK_SPD 18 36 37 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 38 static unsigned long tainted_mask = 39 IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0; 40 static int pause_on_oops; 41 static int pause_on_oops_flag; 42 static DEFINE_SPINLOCK(pause_on_oops_lock); 43 bool crash_kexec_post_notifiers; 44 int panic_on_warn __read_mostly; 45 46 int panic_timeout = CONFIG_PANIC_TIMEOUT; 47 EXPORT_SYMBOL_GPL(panic_timeout); 48 49 #define PANIC_PRINT_TASK_INFO 0x00000001 50 #define PANIC_PRINT_MEM_INFO 0x00000002 51 #define PANIC_PRINT_TIMER_INFO 0x00000004 52 #define PANIC_PRINT_LOCK_INFO 0x00000008 53 #define PANIC_PRINT_FTRACE_INFO 0x00000010 54 #define PANIC_PRINT_ALL_PRINTK_MSG 0x00000020 55 unsigned long panic_print; 56 57 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 58 59 EXPORT_SYMBOL(panic_notifier_list); 60 61 static long no_blink(int state) 62 { 63 return 0; 64 } 65 66 /* Returns how long it waited in ms */ 67 long (*panic_blink)(int state); 68 EXPORT_SYMBOL(panic_blink); 69 70 /* 71 * Stop ourself in panic -- architecture code may override this 72 */ 73 void __weak panic_smp_self_stop(void) 74 { 75 while (1) 76 cpu_relax(); 77 } 78 79 /* 80 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 81 * may override this to prepare for crash dumping, e.g. save regs info. 82 */ 83 void __weak nmi_panic_self_stop(struct pt_regs *regs) 84 { 85 panic_smp_self_stop(); 86 } 87 88 /* 89 * Stop other CPUs in panic. Architecture dependent code may override this 90 * with more suitable version. For example, if the architecture supports 91 * crash dump, it should save registers of each stopped CPU and disable 92 * per-CPU features such as virtualization extensions. 93 */ 94 void __weak crash_smp_send_stop(void) 95 { 96 static int cpus_stopped; 97 98 /* 99 * This function can be called twice in panic path, but obviously 100 * we execute this only once. 101 */ 102 if (cpus_stopped) 103 return; 104 105 /* 106 * Note smp_send_stop is the usual smp shutdown function, which 107 * unfortunately means it may not be hardened to work in a panic 108 * situation. 109 */ 110 smp_send_stop(); 111 cpus_stopped = 1; 112 } 113 114 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 115 116 /* 117 * A variant of panic() called from NMI context. We return if we've already 118 * panicked on this CPU. If another CPU already panicked, loop in 119 * nmi_panic_self_stop() which can provide architecture dependent code such 120 * as saving register state for crash dump. 121 */ 122 void nmi_panic(struct pt_regs *regs, const char *msg) 123 { 124 int old_cpu, cpu; 125 126 cpu = raw_smp_processor_id(); 127 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); 128 129 if (old_cpu == PANIC_CPU_INVALID) 130 panic("%s", msg); 131 else if (old_cpu != cpu) 132 nmi_panic_self_stop(regs); 133 } 134 EXPORT_SYMBOL(nmi_panic); 135 136 static void panic_print_sys_info(void) 137 { 138 if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG) 139 console_flush_on_panic(CONSOLE_REPLAY_ALL); 140 141 if (panic_print & PANIC_PRINT_TASK_INFO) 142 show_state(); 143 144 if (panic_print & PANIC_PRINT_MEM_INFO) 145 show_mem(0, NULL); 146 147 if (panic_print & PANIC_PRINT_TIMER_INFO) 148 sysrq_timer_list_show(); 149 150 if (panic_print & PANIC_PRINT_LOCK_INFO) 151 debug_show_all_locks(); 152 153 if (panic_print & PANIC_PRINT_FTRACE_INFO) 154 ftrace_dump(DUMP_ALL); 155 } 156 157 /** 158 * panic - halt the system 159 * @fmt: The text string to print 160 * 161 * Display a message, then perform cleanups. 162 * 163 * This function never returns. 164 */ 165 void panic(const char *fmt, ...) 166 { 167 static char buf[1024]; 168 va_list args; 169 long i, i_next = 0, len; 170 int state = 0; 171 int old_cpu, this_cpu; 172 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 173 174 /* 175 * Disable local interrupts. This will prevent panic_smp_self_stop 176 * from deadlocking the first cpu that invokes the panic, since 177 * there is nothing to prevent an interrupt handler (that runs 178 * after setting panic_cpu) from invoking panic() again. 179 */ 180 local_irq_disable(); 181 182 /* 183 * It's possible to come here directly from a panic-assertion and 184 * not have preempt disabled. Some functions called from here want 185 * preempt to be disabled. No point enabling it later though... 186 * 187 * Only one CPU is allowed to execute the panic code from here. For 188 * multiple parallel invocations of panic, all other CPUs either 189 * stop themself or will wait until they are stopped by the 1st CPU 190 * with smp_send_stop(). 191 * 192 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 193 * comes here, so go ahead. 194 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 195 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 196 */ 197 this_cpu = raw_smp_processor_id(); 198 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 199 200 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 201 panic_smp_self_stop(); 202 203 console_verbose(); 204 bust_spinlocks(1); 205 va_start(args, fmt); 206 len = vscnprintf(buf, sizeof(buf), fmt, args); 207 va_end(args); 208 209 if (len && buf[len - 1] == '\n') 210 buf[len - 1] = '\0'; 211 212 pr_emerg("Kernel panic - not syncing: %s\n", buf); 213 #ifdef CONFIG_DEBUG_BUGVERBOSE 214 /* 215 * Avoid nested stack-dumping if a panic occurs during oops processing 216 */ 217 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 218 dump_stack(); 219 #endif 220 221 /* 222 * If we have crashed and we have a crash kernel loaded let it handle 223 * everything else. 224 * If we want to run this after calling panic_notifiers, pass 225 * the "crash_kexec_post_notifiers" option to the kernel. 226 * 227 * Bypass the panic_cpu check and call __crash_kexec directly. 228 */ 229 if (!_crash_kexec_post_notifiers) { 230 printk_safe_flush_on_panic(); 231 __crash_kexec(NULL); 232 233 /* 234 * Note smp_send_stop is the usual smp shutdown function, which 235 * unfortunately means it may not be hardened to work in a 236 * panic situation. 237 */ 238 smp_send_stop(); 239 } else { 240 /* 241 * If we want to do crash dump after notifier calls and 242 * kmsg_dump, we will need architecture dependent extra 243 * works in addition to stopping other CPUs. 244 */ 245 crash_smp_send_stop(); 246 } 247 248 /* 249 * Run any panic handlers, including those that might need to 250 * add information to the kmsg dump output. 251 */ 252 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 253 254 /* Call flush even twice. It tries harder with a single online CPU */ 255 printk_safe_flush_on_panic(); 256 kmsg_dump(KMSG_DUMP_PANIC); 257 258 /* 259 * If you doubt kdump always works fine in any situation, 260 * "crash_kexec_post_notifiers" offers you a chance to run 261 * panic_notifiers and dumping kmsg before kdump. 262 * Note: since some panic_notifiers can make crashed kernel 263 * more unstable, it can increase risks of the kdump failure too. 264 * 265 * Bypass the panic_cpu check and call __crash_kexec directly. 266 */ 267 if (_crash_kexec_post_notifiers) 268 __crash_kexec(NULL); 269 270 #ifdef CONFIG_VT 271 unblank_screen(); 272 #endif 273 console_unblank(); 274 275 /* 276 * We may have ended up stopping the CPU holding the lock (in 277 * smp_send_stop()) while still having some valuable data in the console 278 * buffer. Try to acquire the lock then release it regardless of the 279 * result. The release will also print the buffers out. Locks debug 280 * should be disabled to avoid reporting bad unlock balance when 281 * panic() is not being callled from OOPS. 282 */ 283 debug_locks_off(); 284 console_flush_on_panic(CONSOLE_FLUSH_PENDING); 285 286 panic_print_sys_info(); 287 288 if (!panic_blink) 289 panic_blink = no_blink; 290 291 if (panic_timeout > 0) { 292 /* 293 * Delay timeout seconds before rebooting the machine. 294 * We can't use the "normal" timers since we just panicked. 295 */ 296 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 297 298 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 299 touch_nmi_watchdog(); 300 if (i >= i_next) { 301 i += panic_blink(state ^= 1); 302 i_next = i + 3600 / PANIC_BLINK_SPD; 303 } 304 mdelay(PANIC_TIMER_STEP); 305 } 306 } 307 if (panic_timeout != 0) { 308 /* 309 * This will not be a clean reboot, with everything 310 * shutting down. But if there is a chance of 311 * rebooting the system it will be rebooted. 312 */ 313 if (panic_reboot_mode != REBOOT_UNDEFINED) 314 reboot_mode = panic_reboot_mode; 315 emergency_restart(); 316 } 317 #ifdef __sparc__ 318 { 319 extern int stop_a_enabled; 320 /* Make sure the user can actually press Stop-A (L1-A) */ 321 stop_a_enabled = 1; 322 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 323 "twice on console to return to the boot prom\n"); 324 } 325 #endif 326 #if defined(CONFIG_S390) 327 disabled_wait(); 328 #endif 329 pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf); 330 331 /* Do not scroll important messages printed above */ 332 suppress_printk = 1; 333 local_irq_enable(); 334 for (i = 0; ; i += PANIC_TIMER_STEP) { 335 touch_softlockup_watchdog(); 336 if (i >= i_next) { 337 i += panic_blink(state ^= 1); 338 i_next = i + 3600 / PANIC_BLINK_SPD; 339 } 340 mdelay(PANIC_TIMER_STEP); 341 } 342 } 343 344 EXPORT_SYMBOL(panic); 345 346 /* 347 * TAINT_FORCED_RMMOD could be a per-module flag but the module 348 * is being removed anyway. 349 */ 350 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 351 [ TAINT_PROPRIETARY_MODULE ] = { 'P', 'G', true }, 352 [ TAINT_FORCED_MODULE ] = { 'F', ' ', true }, 353 [ TAINT_CPU_OUT_OF_SPEC ] = { 'S', ' ', false }, 354 [ TAINT_FORCED_RMMOD ] = { 'R', ' ', false }, 355 [ TAINT_MACHINE_CHECK ] = { 'M', ' ', false }, 356 [ TAINT_BAD_PAGE ] = { 'B', ' ', false }, 357 [ TAINT_USER ] = { 'U', ' ', false }, 358 [ TAINT_DIE ] = { 'D', ' ', false }, 359 [ TAINT_OVERRIDDEN_ACPI_TABLE ] = { 'A', ' ', false }, 360 [ TAINT_WARN ] = { 'W', ' ', false }, 361 [ TAINT_CRAP ] = { 'C', ' ', true }, 362 [ TAINT_FIRMWARE_WORKAROUND ] = { 'I', ' ', false }, 363 [ TAINT_OOT_MODULE ] = { 'O', ' ', true }, 364 [ TAINT_UNSIGNED_MODULE ] = { 'E', ' ', true }, 365 [ TAINT_SOFTLOCKUP ] = { 'L', ' ', false }, 366 [ TAINT_LIVEPATCH ] = { 'K', ' ', true }, 367 [ TAINT_AUX ] = { 'X', ' ', true }, 368 [ TAINT_RANDSTRUCT ] = { 'T', ' ', true }, 369 }; 370 371 /** 372 * print_tainted - return a string to represent the kernel taint state. 373 * 374 * For individual taint flag meanings, see Documentation/sysctl/kernel.txt 375 * 376 * The string is overwritten by the next call to print_tainted(), 377 * but is always NULL terminated. 378 */ 379 const char *print_tainted(void) 380 { 381 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; 382 383 BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT); 384 385 if (tainted_mask) { 386 char *s; 387 int i; 388 389 s = buf + sprintf(buf, "Tainted: "); 390 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 391 const struct taint_flag *t = &taint_flags[i]; 392 *s++ = test_bit(i, &tainted_mask) ? 393 t->c_true : t->c_false; 394 } 395 *s = 0; 396 } else 397 snprintf(buf, sizeof(buf), "Not tainted"); 398 399 return buf; 400 } 401 402 int test_taint(unsigned flag) 403 { 404 return test_bit(flag, &tainted_mask); 405 } 406 EXPORT_SYMBOL(test_taint); 407 408 unsigned long get_taint(void) 409 { 410 return tainted_mask; 411 } 412 413 /** 414 * add_taint: add a taint flag if not already set. 415 * @flag: one of the TAINT_* constants. 416 * @lockdep_ok: whether lock debugging is still OK. 417 * 418 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 419 * some notewortht-but-not-corrupting cases, it can be set to true. 420 */ 421 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 422 { 423 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 424 pr_warn("Disabling lock debugging due to kernel taint\n"); 425 426 set_bit(flag, &tainted_mask); 427 } 428 EXPORT_SYMBOL(add_taint); 429 430 static void spin_msec(int msecs) 431 { 432 int i; 433 434 for (i = 0; i < msecs; i++) { 435 touch_nmi_watchdog(); 436 mdelay(1); 437 } 438 } 439 440 /* 441 * It just happens that oops_enter() and oops_exit() are identically 442 * implemented... 443 */ 444 static void do_oops_enter_exit(void) 445 { 446 unsigned long flags; 447 static int spin_counter; 448 449 if (!pause_on_oops) 450 return; 451 452 spin_lock_irqsave(&pause_on_oops_lock, flags); 453 if (pause_on_oops_flag == 0) { 454 /* This CPU may now print the oops message */ 455 pause_on_oops_flag = 1; 456 } else { 457 /* We need to stall this CPU */ 458 if (!spin_counter) { 459 /* This CPU gets to do the counting */ 460 spin_counter = pause_on_oops; 461 do { 462 spin_unlock(&pause_on_oops_lock); 463 spin_msec(MSEC_PER_SEC); 464 spin_lock(&pause_on_oops_lock); 465 } while (--spin_counter); 466 pause_on_oops_flag = 0; 467 } else { 468 /* This CPU waits for a different one */ 469 while (spin_counter) { 470 spin_unlock(&pause_on_oops_lock); 471 spin_msec(1); 472 spin_lock(&pause_on_oops_lock); 473 } 474 } 475 } 476 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 477 } 478 479 /* 480 * Return true if the calling CPU is allowed to print oops-related info. 481 * This is a bit racy.. 482 */ 483 int oops_may_print(void) 484 { 485 return pause_on_oops_flag == 0; 486 } 487 488 /* 489 * Called when the architecture enters its oops handler, before it prints 490 * anything. If this is the first CPU to oops, and it's oopsing the first 491 * time then let it proceed. 492 * 493 * This is all enabled by the pause_on_oops kernel boot option. We do all 494 * this to ensure that oopses don't scroll off the screen. It has the 495 * side-effect of preventing later-oopsing CPUs from mucking up the display, 496 * too. 497 * 498 * It turns out that the CPU which is allowed to print ends up pausing for 499 * the right duration, whereas all the other CPUs pause for twice as long: 500 * once in oops_enter(), once in oops_exit(). 501 */ 502 void oops_enter(void) 503 { 504 tracing_off(); 505 /* can't trust the integrity of the kernel anymore: */ 506 debug_locks_off(); 507 do_oops_enter_exit(); 508 } 509 510 /* 511 * 64-bit random ID for oopses: 512 */ 513 static u64 oops_id; 514 515 static int init_oops_id(void) 516 { 517 if (!oops_id) 518 get_random_bytes(&oops_id, sizeof(oops_id)); 519 else 520 oops_id++; 521 522 return 0; 523 } 524 late_initcall(init_oops_id); 525 526 void print_oops_end_marker(void) 527 { 528 init_oops_id(); 529 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); 530 } 531 532 /* 533 * Called when the architecture exits its oops handler, after printing 534 * everything. 535 */ 536 void oops_exit(void) 537 { 538 do_oops_enter_exit(); 539 print_oops_end_marker(); 540 kmsg_dump(KMSG_DUMP_OOPS); 541 } 542 543 struct warn_args { 544 const char *fmt; 545 va_list args; 546 }; 547 548 void __warn(const char *file, int line, void *caller, unsigned taint, 549 struct pt_regs *regs, struct warn_args *args) 550 { 551 disable_trace_on_warning(); 552 553 if (args) 554 pr_warn(CUT_HERE); 555 556 if (file) 557 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 558 raw_smp_processor_id(), current->pid, file, line, 559 caller); 560 else 561 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 562 raw_smp_processor_id(), current->pid, caller); 563 564 if (args) 565 vprintk(args->fmt, args->args); 566 567 if (panic_on_warn) { 568 /* 569 * This thread may hit another WARN() in the panic path. 570 * Resetting this prevents additional WARN() from panicking the 571 * system on this thread. Other threads are blocked by the 572 * panic_mutex in panic(). 573 */ 574 panic_on_warn = 0; 575 panic("panic_on_warn set ...\n"); 576 } 577 578 print_modules(); 579 580 if (regs) 581 show_regs(regs); 582 else 583 dump_stack(); 584 585 print_irqtrace_events(current); 586 587 print_oops_end_marker(); 588 589 /* Just a warning, don't kill lockdep. */ 590 add_taint(taint, LOCKDEP_STILL_OK); 591 } 592 593 #ifdef WANT_WARN_ON_SLOWPATH 594 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...) 595 { 596 struct warn_args args; 597 598 args.fmt = fmt; 599 va_start(args.args, fmt); 600 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, 601 &args); 602 va_end(args.args); 603 } 604 EXPORT_SYMBOL(warn_slowpath_fmt); 605 606 void warn_slowpath_fmt_taint(const char *file, int line, 607 unsigned taint, const char *fmt, ...) 608 { 609 struct warn_args args; 610 611 args.fmt = fmt; 612 va_start(args.args, fmt); 613 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 614 va_end(args.args); 615 } 616 EXPORT_SYMBOL(warn_slowpath_fmt_taint); 617 618 void warn_slowpath_null(const char *file, int line) 619 { 620 pr_warn(CUT_HERE); 621 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL); 622 } 623 EXPORT_SYMBOL(warn_slowpath_null); 624 #else 625 void __warn_printk(const char *fmt, ...) 626 { 627 va_list args; 628 629 pr_warn(CUT_HERE); 630 631 va_start(args, fmt); 632 vprintk(fmt, args); 633 va_end(args); 634 } 635 EXPORT_SYMBOL(__warn_printk); 636 #endif 637 638 #ifdef CONFIG_BUG 639 640 /* Support resetting WARN*_ONCE state */ 641 642 static int clear_warn_once_set(void *data, u64 val) 643 { 644 generic_bug_clear_once(); 645 memset(__start_once, 0, __end_once - __start_once); 646 return 0; 647 } 648 649 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set, 650 "%lld\n"); 651 652 static __init int register_warn_debugfs(void) 653 { 654 /* Don't care about failure */ 655 debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL, 656 &clear_warn_once_fops); 657 return 0; 658 } 659 660 device_initcall(register_warn_debugfs); 661 #endif 662 663 #ifdef CONFIG_STACKPROTECTOR 664 665 /* 666 * Called when gcc's -fstack-protector feature is used, and 667 * gcc detects corruption of the on-stack canary value 668 */ 669 __visible void __stack_chk_fail(void) 670 { 671 panic("stack-protector: Kernel stack is corrupted in: %pB", 672 __builtin_return_address(0)); 673 } 674 EXPORT_SYMBOL(__stack_chk_fail); 675 676 #endif 677 678 #ifdef CONFIG_ARCH_HAS_REFCOUNT 679 void refcount_error_report(struct pt_regs *regs, const char *err) 680 { 681 WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n", 682 err, (void *)instruction_pointer(regs), 683 current->comm, task_pid_nr(current), 684 from_kuid_munged(&init_user_ns, current_uid()), 685 from_kuid_munged(&init_user_ns, current_euid())); 686 } 687 #endif 688 689 core_param(panic, panic_timeout, int, 0644); 690 core_param(panic_print, panic_print, ulong, 0644); 691 core_param(pause_on_oops, pause_on_oops, int, 0644); 692 core_param(panic_on_warn, panic_on_warn, int, 0644); 693 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 694 695 static int __init oops_setup(char *s) 696 { 697 if (!s) 698 return -EINVAL; 699 if (!strcmp(s, "panic")) 700 panic_on_oops = 1; 701 return 0; 702 } 703 early_param("oops", oops_setup); 704