1 /* 2 * linux/kernel/panic.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * This function is used through-out the kernel (including mm and fs) 9 * to indicate a major problem. 10 */ 11 #include <linux/debug_locks.h> 12 #include <linux/sched/debug.h> 13 #include <linux/interrupt.h> 14 #include <linux/kmsg_dump.h> 15 #include <linux/kallsyms.h> 16 #include <linux/notifier.h> 17 #include <linux/module.h> 18 #include <linux/random.h> 19 #include <linux/ftrace.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/kexec.h> 23 #include <linux/sched.h> 24 #include <linux/sysrq.h> 25 #include <linux/init.h> 26 #include <linux/nmi.h> 27 #include <linux/console.h> 28 #include <linux/bug.h> 29 30 #define PANIC_TIMER_STEP 100 31 #define PANIC_BLINK_SPD 18 32 33 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 34 static unsigned long tainted_mask; 35 static int pause_on_oops; 36 static int pause_on_oops_flag; 37 static DEFINE_SPINLOCK(pause_on_oops_lock); 38 bool crash_kexec_post_notifiers; 39 int panic_on_warn __read_mostly; 40 41 int panic_timeout = CONFIG_PANIC_TIMEOUT; 42 EXPORT_SYMBOL_GPL(panic_timeout); 43 44 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 45 46 EXPORT_SYMBOL(panic_notifier_list); 47 48 static long no_blink(int state) 49 { 50 return 0; 51 } 52 53 /* Returns how long it waited in ms */ 54 long (*panic_blink)(int state); 55 EXPORT_SYMBOL(panic_blink); 56 57 /* 58 * Stop ourself in panic -- architecture code may override this 59 */ 60 void __weak panic_smp_self_stop(void) 61 { 62 while (1) 63 cpu_relax(); 64 } 65 66 /* 67 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 68 * may override this to prepare for crash dumping, e.g. save regs info. 69 */ 70 void __weak nmi_panic_self_stop(struct pt_regs *regs) 71 { 72 panic_smp_self_stop(); 73 } 74 75 /* 76 * Stop other CPUs in panic. Architecture dependent code may override this 77 * with more suitable version. For example, if the architecture supports 78 * crash dump, it should save registers of each stopped CPU and disable 79 * per-CPU features such as virtualization extensions. 80 */ 81 void __weak crash_smp_send_stop(void) 82 { 83 static int cpus_stopped; 84 85 /* 86 * This function can be called twice in panic path, but obviously 87 * we execute this only once. 88 */ 89 if (cpus_stopped) 90 return; 91 92 /* 93 * Note smp_send_stop is the usual smp shutdown function, which 94 * unfortunately means it may not be hardened to work in a panic 95 * situation. 96 */ 97 smp_send_stop(); 98 cpus_stopped = 1; 99 } 100 101 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 102 103 /* 104 * A variant of panic() called from NMI context. We return if we've already 105 * panicked on this CPU. If another CPU already panicked, loop in 106 * nmi_panic_self_stop() which can provide architecture dependent code such 107 * as saving register state for crash dump. 108 */ 109 void nmi_panic(struct pt_regs *regs, const char *msg) 110 { 111 int old_cpu, cpu; 112 113 cpu = raw_smp_processor_id(); 114 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); 115 116 if (old_cpu == PANIC_CPU_INVALID) 117 panic("%s", msg); 118 else if (old_cpu != cpu) 119 nmi_panic_self_stop(regs); 120 } 121 EXPORT_SYMBOL(nmi_panic); 122 123 /** 124 * panic - halt the system 125 * @fmt: The text string to print 126 * 127 * Display a message, then perform cleanups. 128 * 129 * This function never returns. 130 */ 131 void panic(const char *fmt, ...) 132 { 133 static char buf[1024]; 134 va_list args; 135 long i, i_next = 0; 136 int state = 0; 137 int old_cpu, this_cpu; 138 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 139 140 /* 141 * Disable local interrupts. This will prevent panic_smp_self_stop 142 * from deadlocking the first cpu that invokes the panic, since 143 * there is nothing to prevent an interrupt handler (that runs 144 * after setting panic_cpu) from invoking panic() again. 145 */ 146 local_irq_disable(); 147 148 /* 149 * It's possible to come here directly from a panic-assertion and 150 * not have preempt disabled. Some functions called from here want 151 * preempt to be disabled. No point enabling it later though... 152 * 153 * Only one CPU is allowed to execute the panic code from here. For 154 * multiple parallel invocations of panic, all other CPUs either 155 * stop themself or will wait until they are stopped by the 1st CPU 156 * with smp_send_stop(). 157 * 158 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 159 * comes here, so go ahead. 160 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 161 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 162 */ 163 this_cpu = raw_smp_processor_id(); 164 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 165 166 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 167 panic_smp_self_stop(); 168 169 console_verbose(); 170 bust_spinlocks(1); 171 va_start(args, fmt); 172 vsnprintf(buf, sizeof(buf), fmt, args); 173 va_end(args); 174 pr_emerg("Kernel panic - not syncing: %s\n", buf); 175 #ifdef CONFIG_DEBUG_BUGVERBOSE 176 /* 177 * Avoid nested stack-dumping if a panic occurs during oops processing 178 */ 179 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 180 dump_stack(); 181 #endif 182 183 /* 184 * If we have crashed and we have a crash kernel loaded let it handle 185 * everything else. 186 * If we want to run this after calling panic_notifiers, pass 187 * the "crash_kexec_post_notifiers" option to the kernel. 188 * 189 * Bypass the panic_cpu check and call __crash_kexec directly. 190 */ 191 if (!_crash_kexec_post_notifiers) { 192 printk_safe_flush_on_panic(); 193 __crash_kexec(NULL); 194 195 /* 196 * Note smp_send_stop is the usual smp shutdown function, which 197 * unfortunately means it may not be hardened to work in a 198 * panic situation. 199 */ 200 smp_send_stop(); 201 } else { 202 /* 203 * If we want to do crash dump after notifier calls and 204 * kmsg_dump, we will need architecture dependent extra 205 * works in addition to stopping other CPUs. 206 */ 207 crash_smp_send_stop(); 208 } 209 210 /* 211 * Run any panic handlers, including those that might need to 212 * add information to the kmsg dump output. 213 */ 214 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 215 216 /* Call flush even twice. It tries harder with a single online CPU */ 217 printk_safe_flush_on_panic(); 218 kmsg_dump(KMSG_DUMP_PANIC); 219 220 /* 221 * If you doubt kdump always works fine in any situation, 222 * "crash_kexec_post_notifiers" offers you a chance to run 223 * panic_notifiers and dumping kmsg before kdump. 224 * Note: since some panic_notifiers can make crashed kernel 225 * more unstable, it can increase risks of the kdump failure too. 226 * 227 * Bypass the panic_cpu check and call __crash_kexec directly. 228 */ 229 if (_crash_kexec_post_notifiers) 230 __crash_kexec(NULL); 231 232 bust_spinlocks(0); 233 234 /* 235 * We may have ended up stopping the CPU holding the lock (in 236 * smp_send_stop()) while still having some valuable data in the console 237 * buffer. Try to acquire the lock then release it regardless of the 238 * result. The release will also print the buffers out. Locks debug 239 * should be disabled to avoid reporting bad unlock balance when 240 * panic() is not being callled from OOPS. 241 */ 242 debug_locks_off(); 243 console_flush_on_panic(); 244 245 if (!panic_blink) 246 panic_blink = no_blink; 247 248 if (panic_timeout > 0) { 249 /* 250 * Delay timeout seconds before rebooting the machine. 251 * We can't use the "normal" timers since we just panicked. 252 */ 253 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 254 255 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 256 touch_nmi_watchdog(); 257 if (i >= i_next) { 258 i += panic_blink(state ^= 1); 259 i_next = i + 3600 / PANIC_BLINK_SPD; 260 } 261 mdelay(PANIC_TIMER_STEP); 262 } 263 } 264 if (panic_timeout != 0) { 265 /* 266 * This will not be a clean reboot, with everything 267 * shutting down. But if there is a chance of 268 * rebooting the system it will be rebooted. 269 */ 270 emergency_restart(); 271 } 272 #ifdef __sparc__ 273 { 274 extern int stop_a_enabled; 275 /* Make sure the user can actually press Stop-A (L1-A) */ 276 stop_a_enabled = 1; 277 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 278 "twice on console to return to the boot prom\n"); 279 } 280 #endif 281 #if defined(CONFIG_S390) 282 { 283 unsigned long caller; 284 285 caller = (unsigned long)__builtin_return_address(0); 286 disabled_wait(caller); 287 } 288 #endif 289 pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf); 290 local_irq_enable(); 291 for (i = 0; ; i += PANIC_TIMER_STEP) { 292 touch_softlockup_watchdog(); 293 if (i >= i_next) { 294 i += panic_blink(state ^= 1); 295 i_next = i + 3600 / PANIC_BLINK_SPD; 296 } 297 mdelay(PANIC_TIMER_STEP); 298 } 299 } 300 301 EXPORT_SYMBOL(panic); 302 303 /* 304 * TAINT_FORCED_RMMOD could be a per-module flag but the module 305 * is being removed anyway. 306 */ 307 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 308 { 'P', 'G', true }, /* TAINT_PROPRIETARY_MODULE */ 309 { 'F', ' ', true }, /* TAINT_FORCED_MODULE */ 310 { 'S', ' ', false }, /* TAINT_CPU_OUT_OF_SPEC */ 311 { 'R', ' ', false }, /* TAINT_FORCED_RMMOD */ 312 { 'M', ' ', false }, /* TAINT_MACHINE_CHECK */ 313 { 'B', ' ', false }, /* TAINT_BAD_PAGE */ 314 { 'U', ' ', false }, /* TAINT_USER */ 315 { 'D', ' ', false }, /* TAINT_DIE */ 316 { 'A', ' ', false }, /* TAINT_OVERRIDDEN_ACPI_TABLE */ 317 { 'W', ' ', false }, /* TAINT_WARN */ 318 { 'C', ' ', true }, /* TAINT_CRAP */ 319 { 'I', ' ', false }, /* TAINT_FIRMWARE_WORKAROUND */ 320 { 'O', ' ', true }, /* TAINT_OOT_MODULE */ 321 { 'E', ' ', true }, /* TAINT_UNSIGNED_MODULE */ 322 { 'L', ' ', false }, /* TAINT_SOFTLOCKUP */ 323 { 'K', ' ', true }, /* TAINT_LIVEPATCH */ 324 }; 325 326 /** 327 * print_tainted - return a string to represent the kernel taint state. 328 * 329 * 'P' - Proprietary module has been loaded. 330 * 'F' - Module has been forcibly loaded. 331 * 'S' - SMP with CPUs not designed for SMP. 332 * 'R' - User forced a module unload. 333 * 'M' - System experienced a machine check exception. 334 * 'B' - System has hit bad_page. 335 * 'U' - Userspace-defined naughtiness. 336 * 'D' - Kernel has oopsed before 337 * 'A' - ACPI table overridden. 338 * 'W' - Taint on warning. 339 * 'C' - modules from drivers/staging are loaded. 340 * 'I' - Working around severe firmware bug. 341 * 'O' - Out-of-tree module has been loaded. 342 * 'E' - Unsigned module has been loaded. 343 * 'L' - A soft lockup has previously occurred. 344 * 'K' - Kernel has been live patched. 345 * 346 * The string is overwritten by the next call to print_tainted(). 347 */ 348 const char *print_tainted(void) 349 { 350 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; 351 352 if (tainted_mask) { 353 char *s; 354 int i; 355 356 s = buf + sprintf(buf, "Tainted: "); 357 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 358 const struct taint_flag *t = &taint_flags[i]; 359 *s++ = test_bit(i, &tainted_mask) ? 360 t->c_true : t->c_false; 361 } 362 *s = 0; 363 } else 364 snprintf(buf, sizeof(buf), "Not tainted"); 365 366 return buf; 367 } 368 369 int test_taint(unsigned flag) 370 { 371 return test_bit(flag, &tainted_mask); 372 } 373 EXPORT_SYMBOL(test_taint); 374 375 unsigned long get_taint(void) 376 { 377 return tainted_mask; 378 } 379 380 /** 381 * add_taint: add a taint flag if not already set. 382 * @flag: one of the TAINT_* constants. 383 * @lockdep_ok: whether lock debugging is still OK. 384 * 385 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 386 * some notewortht-but-not-corrupting cases, it can be set to true. 387 */ 388 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 389 { 390 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 391 pr_warn("Disabling lock debugging due to kernel taint\n"); 392 393 set_bit(flag, &tainted_mask); 394 } 395 EXPORT_SYMBOL(add_taint); 396 397 static void spin_msec(int msecs) 398 { 399 int i; 400 401 for (i = 0; i < msecs; i++) { 402 touch_nmi_watchdog(); 403 mdelay(1); 404 } 405 } 406 407 /* 408 * It just happens that oops_enter() and oops_exit() are identically 409 * implemented... 410 */ 411 static void do_oops_enter_exit(void) 412 { 413 unsigned long flags; 414 static int spin_counter; 415 416 if (!pause_on_oops) 417 return; 418 419 spin_lock_irqsave(&pause_on_oops_lock, flags); 420 if (pause_on_oops_flag == 0) { 421 /* This CPU may now print the oops message */ 422 pause_on_oops_flag = 1; 423 } else { 424 /* We need to stall this CPU */ 425 if (!spin_counter) { 426 /* This CPU gets to do the counting */ 427 spin_counter = pause_on_oops; 428 do { 429 spin_unlock(&pause_on_oops_lock); 430 spin_msec(MSEC_PER_SEC); 431 spin_lock(&pause_on_oops_lock); 432 } while (--spin_counter); 433 pause_on_oops_flag = 0; 434 } else { 435 /* This CPU waits for a different one */ 436 while (spin_counter) { 437 spin_unlock(&pause_on_oops_lock); 438 spin_msec(1); 439 spin_lock(&pause_on_oops_lock); 440 } 441 } 442 } 443 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 444 } 445 446 /* 447 * Return true if the calling CPU is allowed to print oops-related info. 448 * This is a bit racy.. 449 */ 450 int oops_may_print(void) 451 { 452 return pause_on_oops_flag == 0; 453 } 454 455 /* 456 * Called when the architecture enters its oops handler, before it prints 457 * anything. If this is the first CPU to oops, and it's oopsing the first 458 * time then let it proceed. 459 * 460 * This is all enabled by the pause_on_oops kernel boot option. We do all 461 * this to ensure that oopses don't scroll off the screen. It has the 462 * side-effect of preventing later-oopsing CPUs from mucking up the display, 463 * too. 464 * 465 * It turns out that the CPU which is allowed to print ends up pausing for 466 * the right duration, whereas all the other CPUs pause for twice as long: 467 * once in oops_enter(), once in oops_exit(). 468 */ 469 void oops_enter(void) 470 { 471 tracing_off(); 472 /* can't trust the integrity of the kernel anymore: */ 473 debug_locks_off(); 474 do_oops_enter_exit(); 475 } 476 477 /* 478 * 64-bit random ID for oopses: 479 */ 480 static u64 oops_id; 481 482 static int init_oops_id(void) 483 { 484 if (!oops_id) 485 get_random_bytes(&oops_id, sizeof(oops_id)); 486 else 487 oops_id++; 488 489 return 0; 490 } 491 late_initcall(init_oops_id); 492 493 void print_oops_end_marker(void) 494 { 495 init_oops_id(); 496 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); 497 } 498 499 /* 500 * Called when the architecture exits its oops handler, after printing 501 * everything. 502 */ 503 void oops_exit(void) 504 { 505 do_oops_enter_exit(); 506 print_oops_end_marker(); 507 kmsg_dump(KMSG_DUMP_OOPS); 508 } 509 510 struct warn_args { 511 const char *fmt; 512 va_list args; 513 }; 514 515 void __warn(const char *file, int line, void *caller, unsigned taint, 516 struct pt_regs *regs, struct warn_args *args) 517 { 518 disable_trace_on_warning(); 519 520 pr_warn("------------[ cut here ]------------\n"); 521 522 if (file) 523 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 524 raw_smp_processor_id(), current->pid, file, line, 525 caller); 526 else 527 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 528 raw_smp_processor_id(), current->pid, caller); 529 530 if (args) 531 vprintk(args->fmt, args->args); 532 533 if (panic_on_warn) { 534 /* 535 * This thread may hit another WARN() in the panic path. 536 * Resetting this prevents additional WARN() from panicking the 537 * system on this thread. Other threads are blocked by the 538 * panic_mutex in panic(). 539 */ 540 panic_on_warn = 0; 541 panic("panic_on_warn set ...\n"); 542 } 543 544 print_modules(); 545 546 if (regs) 547 show_regs(regs); 548 else 549 dump_stack(); 550 551 print_oops_end_marker(); 552 553 /* Just a warning, don't kill lockdep. */ 554 add_taint(taint, LOCKDEP_STILL_OK); 555 } 556 557 #ifdef WANT_WARN_ON_SLOWPATH 558 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...) 559 { 560 struct warn_args args; 561 562 args.fmt = fmt; 563 va_start(args.args, fmt); 564 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, 565 &args); 566 va_end(args.args); 567 } 568 EXPORT_SYMBOL(warn_slowpath_fmt); 569 570 void warn_slowpath_fmt_taint(const char *file, int line, 571 unsigned taint, const char *fmt, ...) 572 { 573 struct warn_args args; 574 575 args.fmt = fmt; 576 va_start(args.args, fmt); 577 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 578 va_end(args.args); 579 } 580 EXPORT_SYMBOL(warn_slowpath_fmt_taint); 581 582 void warn_slowpath_null(const char *file, int line) 583 { 584 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL); 585 } 586 EXPORT_SYMBOL(warn_slowpath_null); 587 #endif 588 589 #ifdef CONFIG_CC_STACKPROTECTOR 590 591 /* 592 * Called when gcc's -fstack-protector feature is used, and 593 * gcc detects corruption of the on-stack canary value 594 */ 595 __visible void __stack_chk_fail(void) 596 { 597 panic("stack-protector: Kernel stack is corrupted in: %p\n", 598 __builtin_return_address(0)); 599 } 600 EXPORT_SYMBOL(__stack_chk_fail); 601 602 #endif 603 604 core_param(panic, panic_timeout, int, 0644); 605 core_param(pause_on_oops, pause_on_oops, int, 0644); 606 core_param(panic_on_warn, panic_on_warn, int, 0644); 607 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 608 609 static int __init oops_setup(char *s) 610 { 611 if (!s) 612 return -EINVAL; 613 if (!strcmp(s, "panic")) 614 panic_on_oops = 1; 615 return 0; 616 } 617 early_param("oops", oops_setup); 618