xref: /openbmc/linux/kernel/panic.c (revision 96d3e6f0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/panic.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * This function is used through-out the kernel (including mm and fs)
10  * to indicate a major problem.
11  */
12 #include <linux/debug_locks.h>
13 #include <linux/sched/debug.h>
14 #include <linux/interrupt.h>
15 #include <linux/kgdb.h>
16 #include <linux/kmsg_dump.h>
17 #include <linux/kallsyms.h>
18 #include <linux/notifier.h>
19 #include <linux/vt_kern.h>
20 #include <linux/module.h>
21 #include <linux/random.h>
22 #include <linux/ftrace.h>
23 #include <linux/reboot.h>
24 #include <linux/delay.h>
25 #include <linux/kexec.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/sched.h>
28 #include <linux/sysrq.h>
29 #include <linux/init.h>
30 #include <linux/nmi.h>
31 #include <linux/console.h>
32 #include <linux/bug.h>
33 #include <linux/ratelimit.h>
34 #include <linux/debugfs.h>
35 #include <trace/events/error_report.h>
36 #include <asm/sections.h>
37 
38 #define PANIC_TIMER_STEP 100
39 #define PANIC_BLINK_SPD 18
40 
41 #ifdef CONFIG_SMP
42 /*
43  * Should we dump all CPUs backtraces in an oops event?
44  * Defaults to 0, can be changed via sysctl.
45  */
46 static unsigned int __read_mostly sysctl_oops_all_cpu_backtrace;
47 #else
48 #define sysctl_oops_all_cpu_backtrace 0
49 #endif /* CONFIG_SMP */
50 
51 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
52 static unsigned long tainted_mask =
53 	IS_ENABLED(CONFIG_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
54 static int pause_on_oops;
55 static int pause_on_oops_flag;
56 static DEFINE_SPINLOCK(pause_on_oops_lock);
57 bool crash_kexec_post_notifiers;
58 int panic_on_warn __read_mostly;
59 unsigned long panic_on_taint;
60 bool panic_on_taint_nousertaint = false;
61 
62 int panic_timeout = CONFIG_PANIC_TIMEOUT;
63 EXPORT_SYMBOL_GPL(panic_timeout);
64 
65 #define PANIC_PRINT_TASK_INFO		0x00000001
66 #define PANIC_PRINT_MEM_INFO		0x00000002
67 #define PANIC_PRINT_TIMER_INFO		0x00000004
68 #define PANIC_PRINT_LOCK_INFO		0x00000008
69 #define PANIC_PRINT_FTRACE_INFO		0x00000010
70 #define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
71 #define PANIC_PRINT_ALL_CPU_BT		0x00000040
72 unsigned long panic_print;
73 
74 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
75 
76 EXPORT_SYMBOL(panic_notifier_list);
77 
78 #if defined(CONFIG_SMP) && defined(CONFIG_SYSCTL)
79 static struct ctl_table kern_panic_table[] = {
80 	{
81 		.procname       = "oops_all_cpu_backtrace",
82 		.data           = &sysctl_oops_all_cpu_backtrace,
83 		.maxlen         = sizeof(int),
84 		.mode           = 0644,
85 		.proc_handler   = proc_dointvec_minmax,
86 		.extra1         = SYSCTL_ZERO,
87 		.extra2         = SYSCTL_ONE,
88 	},
89 	{ }
90 };
91 
92 static __init int kernel_panic_sysctls_init(void)
93 {
94 	register_sysctl_init("kernel", kern_panic_table);
95 	return 0;
96 }
97 late_initcall(kernel_panic_sysctls_init);
98 #endif
99 
100 static long no_blink(int state)
101 {
102 	return 0;
103 }
104 
105 /* Returns how long it waited in ms */
106 long (*panic_blink)(int state);
107 EXPORT_SYMBOL(panic_blink);
108 
109 /*
110  * Stop ourself in panic -- architecture code may override this
111  */
112 void __weak panic_smp_self_stop(void)
113 {
114 	while (1)
115 		cpu_relax();
116 }
117 
118 /*
119  * Stop ourselves in NMI context if another CPU has already panicked. Arch code
120  * may override this to prepare for crash dumping, e.g. save regs info.
121  */
122 void __weak nmi_panic_self_stop(struct pt_regs *regs)
123 {
124 	panic_smp_self_stop();
125 }
126 
127 /*
128  * Stop other CPUs in panic.  Architecture dependent code may override this
129  * with more suitable version.  For example, if the architecture supports
130  * crash dump, it should save registers of each stopped CPU and disable
131  * per-CPU features such as virtualization extensions.
132  */
133 void __weak crash_smp_send_stop(void)
134 {
135 	static int cpus_stopped;
136 
137 	/*
138 	 * This function can be called twice in panic path, but obviously
139 	 * we execute this only once.
140 	 */
141 	if (cpus_stopped)
142 		return;
143 
144 	/*
145 	 * Note smp_send_stop is the usual smp shutdown function, which
146 	 * unfortunately means it may not be hardened to work in a panic
147 	 * situation.
148 	 */
149 	smp_send_stop();
150 	cpus_stopped = 1;
151 }
152 
153 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
154 
155 /*
156  * A variant of panic() called from NMI context. We return if we've already
157  * panicked on this CPU. If another CPU already panicked, loop in
158  * nmi_panic_self_stop() which can provide architecture dependent code such
159  * as saving register state for crash dump.
160  */
161 void nmi_panic(struct pt_regs *regs, const char *msg)
162 {
163 	int old_cpu, cpu;
164 
165 	cpu = raw_smp_processor_id();
166 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
167 
168 	if (old_cpu == PANIC_CPU_INVALID)
169 		panic("%s", msg);
170 	else if (old_cpu != cpu)
171 		nmi_panic_self_stop(regs);
172 }
173 EXPORT_SYMBOL(nmi_panic);
174 
175 static void panic_print_sys_info(bool console_flush)
176 {
177 	if (console_flush) {
178 		if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
179 			console_flush_on_panic(CONSOLE_REPLAY_ALL);
180 		return;
181 	}
182 
183 	if (panic_print & PANIC_PRINT_ALL_CPU_BT)
184 		trigger_all_cpu_backtrace();
185 
186 	if (panic_print & PANIC_PRINT_TASK_INFO)
187 		show_state();
188 
189 	if (panic_print & PANIC_PRINT_MEM_INFO)
190 		show_mem(0, NULL);
191 
192 	if (panic_print & PANIC_PRINT_TIMER_INFO)
193 		sysrq_timer_list_show();
194 
195 	if (panic_print & PANIC_PRINT_LOCK_INFO)
196 		debug_show_all_locks();
197 
198 	if (panic_print & PANIC_PRINT_FTRACE_INFO)
199 		ftrace_dump(DUMP_ALL);
200 }
201 
202 /**
203  *	panic - halt the system
204  *	@fmt: The text string to print
205  *
206  *	Display a message, then perform cleanups.
207  *
208  *	This function never returns.
209  */
210 void panic(const char *fmt, ...)
211 {
212 	static char buf[1024];
213 	va_list args;
214 	long i, i_next = 0, len;
215 	int state = 0;
216 	int old_cpu, this_cpu;
217 	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
218 
219 	if (panic_on_warn) {
220 		/*
221 		 * This thread may hit another WARN() in the panic path.
222 		 * Resetting this prevents additional WARN() from panicking the
223 		 * system on this thread.  Other threads are blocked by the
224 		 * panic_mutex in panic().
225 		 */
226 		panic_on_warn = 0;
227 	}
228 
229 	/*
230 	 * Disable local interrupts. This will prevent panic_smp_self_stop
231 	 * from deadlocking the first cpu that invokes the panic, since
232 	 * there is nothing to prevent an interrupt handler (that runs
233 	 * after setting panic_cpu) from invoking panic() again.
234 	 */
235 	local_irq_disable();
236 	preempt_disable_notrace();
237 
238 	/*
239 	 * It's possible to come here directly from a panic-assertion and
240 	 * not have preempt disabled. Some functions called from here want
241 	 * preempt to be disabled. No point enabling it later though...
242 	 *
243 	 * Only one CPU is allowed to execute the panic code from here. For
244 	 * multiple parallel invocations of panic, all other CPUs either
245 	 * stop themself or will wait until they are stopped by the 1st CPU
246 	 * with smp_send_stop().
247 	 *
248 	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
249 	 * comes here, so go ahead.
250 	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
251 	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
252 	 */
253 	this_cpu = raw_smp_processor_id();
254 	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
255 
256 	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
257 		panic_smp_self_stop();
258 
259 	console_verbose();
260 	bust_spinlocks(1);
261 	va_start(args, fmt);
262 	len = vscnprintf(buf, sizeof(buf), fmt, args);
263 	va_end(args);
264 
265 	if (len && buf[len - 1] == '\n')
266 		buf[len - 1] = '\0';
267 
268 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
269 #ifdef CONFIG_DEBUG_BUGVERBOSE
270 	/*
271 	 * Avoid nested stack-dumping if a panic occurs during oops processing
272 	 */
273 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
274 		dump_stack();
275 #endif
276 
277 	/*
278 	 * If kgdb is enabled, give it a chance to run before we stop all
279 	 * the other CPUs or else we won't be able to debug processes left
280 	 * running on them.
281 	 */
282 	kgdb_panic(buf);
283 
284 	/*
285 	 * If we have crashed and we have a crash kernel loaded let it handle
286 	 * everything else.
287 	 * If we want to run this after calling panic_notifiers, pass
288 	 * the "crash_kexec_post_notifiers" option to the kernel.
289 	 *
290 	 * Bypass the panic_cpu check and call __crash_kexec directly.
291 	 */
292 	if (!_crash_kexec_post_notifiers) {
293 		__crash_kexec(NULL);
294 
295 		/*
296 		 * Note smp_send_stop is the usual smp shutdown function, which
297 		 * unfortunately means it may not be hardened to work in a
298 		 * panic situation.
299 		 */
300 		smp_send_stop();
301 	} else {
302 		/*
303 		 * If we want to do crash dump after notifier calls and
304 		 * kmsg_dump, we will need architecture dependent extra
305 		 * works in addition to stopping other CPUs.
306 		 */
307 		crash_smp_send_stop();
308 	}
309 
310 	/*
311 	 * Run any panic handlers, including those that might need to
312 	 * add information to the kmsg dump output.
313 	 */
314 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
315 
316 	panic_print_sys_info(false);
317 
318 	kmsg_dump(KMSG_DUMP_PANIC);
319 
320 	/*
321 	 * If you doubt kdump always works fine in any situation,
322 	 * "crash_kexec_post_notifiers" offers you a chance to run
323 	 * panic_notifiers and dumping kmsg before kdump.
324 	 * Note: since some panic_notifiers can make crashed kernel
325 	 * more unstable, it can increase risks of the kdump failure too.
326 	 *
327 	 * Bypass the panic_cpu check and call __crash_kexec directly.
328 	 */
329 	if (_crash_kexec_post_notifiers)
330 		__crash_kexec(NULL);
331 
332 #ifdef CONFIG_VT
333 	unblank_screen();
334 #endif
335 	console_unblank();
336 
337 	/*
338 	 * We may have ended up stopping the CPU holding the lock (in
339 	 * smp_send_stop()) while still having some valuable data in the console
340 	 * buffer.  Try to acquire the lock then release it regardless of the
341 	 * result.  The release will also print the buffers out.  Locks debug
342 	 * should be disabled to avoid reporting bad unlock balance when
343 	 * panic() is not being callled from OOPS.
344 	 */
345 	debug_locks_off();
346 	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
347 
348 	panic_print_sys_info(true);
349 
350 	if (!panic_blink)
351 		panic_blink = no_blink;
352 
353 	if (panic_timeout > 0) {
354 		/*
355 		 * Delay timeout seconds before rebooting the machine.
356 		 * We can't use the "normal" timers since we just panicked.
357 		 */
358 		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
359 
360 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
361 			touch_nmi_watchdog();
362 			if (i >= i_next) {
363 				i += panic_blink(state ^= 1);
364 				i_next = i + 3600 / PANIC_BLINK_SPD;
365 			}
366 			mdelay(PANIC_TIMER_STEP);
367 		}
368 	}
369 	if (panic_timeout != 0) {
370 		/*
371 		 * This will not be a clean reboot, with everything
372 		 * shutting down.  But if there is a chance of
373 		 * rebooting the system it will be rebooted.
374 		 */
375 		if (panic_reboot_mode != REBOOT_UNDEFINED)
376 			reboot_mode = panic_reboot_mode;
377 		emergency_restart();
378 	}
379 #ifdef __sparc__
380 	{
381 		extern int stop_a_enabled;
382 		/* Make sure the user can actually press Stop-A (L1-A) */
383 		stop_a_enabled = 1;
384 		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
385 			 "twice on console to return to the boot prom\n");
386 	}
387 #endif
388 #if defined(CONFIG_S390)
389 	disabled_wait();
390 #endif
391 	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
392 
393 	/* Do not scroll important messages printed above */
394 	suppress_printk = 1;
395 	local_irq_enable();
396 	for (i = 0; ; i += PANIC_TIMER_STEP) {
397 		touch_softlockup_watchdog();
398 		if (i >= i_next) {
399 			i += panic_blink(state ^= 1);
400 			i_next = i + 3600 / PANIC_BLINK_SPD;
401 		}
402 		mdelay(PANIC_TIMER_STEP);
403 	}
404 }
405 
406 EXPORT_SYMBOL(panic);
407 
408 /*
409  * TAINT_FORCED_RMMOD could be a per-module flag but the module
410  * is being removed anyway.
411  */
412 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
413 	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
414 	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
415 	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
416 	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
417 	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
418 	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
419 	[ TAINT_USER ]			= { 'U', ' ', false },
420 	[ TAINT_DIE ]			= { 'D', ' ', false },
421 	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
422 	[ TAINT_WARN ]			= { 'W', ' ', false },
423 	[ TAINT_CRAP ]			= { 'C', ' ', true },
424 	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
425 	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
426 	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
427 	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
428 	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
429 	[ TAINT_AUX ]			= { 'X', ' ', true },
430 	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
431 	[ TAINT_TEST ]			= { 'N', ' ', true },
432 };
433 
434 /**
435  * print_tainted - return a string to represent the kernel taint state.
436  *
437  * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
438  *
439  * The string is overwritten by the next call to print_tainted(),
440  * but is always NULL terminated.
441  */
442 const char *print_tainted(void)
443 {
444 	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
445 
446 	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
447 
448 	if (tainted_mask) {
449 		char *s;
450 		int i;
451 
452 		s = buf + sprintf(buf, "Tainted: ");
453 		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
454 			const struct taint_flag *t = &taint_flags[i];
455 			*s++ = test_bit(i, &tainted_mask) ?
456 					t->c_true : t->c_false;
457 		}
458 		*s = 0;
459 	} else
460 		snprintf(buf, sizeof(buf), "Not tainted");
461 
462 	return buf;
463 }
464 
465 int test_taint(unsigned flag)
466 {
467 	return test_bit(flag, &tainted_mask);
468 }
469 EXPORT_SYMBOL(test_taint);
470 
471 unsigned long get_taint(void)
472 {
473 	return tainted_mask;
474 }
475 
476 /**
477  * add_taint: add a taint flag if not already set.
478  * @flag: one of the TAINT_* constants.
479  * @lockdep_ok: whether lock debugging is still OK.
480  *
481  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
482  * some notewortht-but-not-corrupting cases, it can be set to true.
483  */
484 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
485 {
486 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
487 		pr_warn("Disabling lock debugging due to kernel taint\n");
488 
489 	set_bit(flag, &tainted_mask);
490 
491 	if (tainted_mask & panic_on_taint) {
492 		panic_on_taint = 0;
493 		panic("panic_on_taint set ...");
494 	}
495 }
496 EXPORT_SYMBOL(add_taint);
497 
498 static void spin_msec(int msecs)
499 {
500 	int i;
501 
502 	for (i = 0; i < msecs; i++) {
503 		touch_nmi_watchdog();
504 		mdelay(1);
505 	}
506 }
507 
508 /*
509  * It just happens that oops_enter() and oops_exit() are identically
510  * implemented...
511  */
512 static void do_oops_enter_exit(void)
513 {
514 	unsigned long flags;
515 	static int spin_counter;
516 
517 	if (!pause_on_oops)
518 		return;
519 
520 	spin_lock_irqsave(&pause_on_oops_lock, flags);
521 	if (pause_on_oops_flag == 0) {
522 		/* This CPU may now print the oops message */
523 		pause_on_oops_flag = 1;
524 	} else {
525 		/* We need to stall this CPU */
526 		if (!spin_counter) {
527 			/* This CPU gets to do the counting */
528 			spin_counter = pause_on_oops;
529 			do {
530 				spin_unlock(&pause_on_oops_lock);
531 				spin_msec(MSEC_PER_SEC);
532 				spin_lock(&pause_on_oops_lock);
533 			} while (--spin_counter);
534 			pause_on_oops_flag = 0;
535 		} else {
536 			/* This CPU waits for a different one */
537 			while (spin_counter) {
538 				spin_unlock(&pause_on_oops_lock);
539 				spin_msec(1);
540 				spin_lock(&pause_on_oops_lock);
541 			}
542 		}
543 	}
544 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
545 }
546 
547 /*
548  * Return true if the calling CPU is allowed to print oops-related info.
549  * This is a bit racy..
550  */
551 bool oops_may_print(void)
552 {
553 	return pause_on_oops_flag == 0;
554 }
555 
556 /*
557  * Called when the architecture enters its oops handler, before it prints
558  * anything.  If this is the first CPU to oops, and it's oopsing the first
559  * time then let it proceed.
560  *
561  * This is all enabled by the pause_on_oops kernel boot option.  We do all
562  * this to ensure that oopses don't scroll off the screen.  It has the
563  * side-effect of preventing later-oopsing CPUs from mucking up the display,
564  * too.
565  *
566  * It turns out that the CPU which is allowed to print ends up pausing for
567  * the right duration, whereas all the other CPUs pause for twice as long:
568  * once in oops_enter(), once in oops_exit().
569  */
570 void oops_enter(void)
571 {
572 	tracing_off();
573 	/* can't trust the integrity of the kernel anymore: */
574 	debug_locks_off();
575 	do_oops_enter_exit();
576 
577 	if (sysctl_oops_all_cpu_backtrace)
578 		trigger_all_cpu_backtrace();
579 }
580 
581 static void print_oops_end_marker(void)
582 {
583 	pr_warn("---[ end trace %016llx ]---\n", 0ULL);
584 }
585 
586 /*
587  * Called when the architecture exits its oops handler, after printing
588  * everything.
589  */
590 void oops_exit(void)
591 {
592 	do_oops_enter_exit();
593 	print_oops_end_marker();
594 	kmsg_dump(KMSG_DUMP_OOPS);
595 }
596 
597 struct warn_args {
598 	const char *fmt;
599 	va_list args;
600 };
601 
602 void __warn(const char *file, int line, void *caller, unsigned taint,
603 	    struct pt_regs *regs, struct warn_args *args)
604 {
605 	disable_trace_on_warning();
606 
607 	if (file)
608 		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
609 			raw_smp_processor_id(), current->pid, file, line,
610 			caller);
611 	else
612 		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
613 			raw_smp_processor_id(), current->pid, caller);
614 
615 	if (args)
616 		vprintk(args->fmt, args->args);
617 
618 	print_modules();
619 
620 	if (regs)
621 		show_regs(regs);
622 
623 	if (panic_on_warn)
624 		panic("panic_on_warn set ...\n");
625 
626 	if (!regs)
627 		dump_stack();
628 
629 	print_irqtrace_events(current);
630 
631 	print_oops_end_marker();
632 	trace_error_report_end(ERROR_DETECTOR_WARN, (unsigned long)caller);
633 
634 	/* Just a warning, don't kill lockdep. */
635 	add_taint(taint, LOCKDEP_STILL_OK);
636 }
637 
638 #ifndef __WARN_FLAGS
639 void warn_slowpath_fmt(const char *file, int line, unsigned taint,
640 		       const char *fmt, ...)
641 {
642 	struct warn_args args;
643 
644 	pr_warn(CUT_HERE);
645 
646 	if (!fmt) {
647 		__warn(file, line, __builtin_return_address(0), taint,
648 		       NULL, NULL);
649 		return;
650 	}
651 
652 	args.fmt = fmt;
653 	va_start(args.args, fmt);
654 	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
655 	va_end(args.args);
656 }
657 EXPORT_SYMBOL(warn_slowpath_fmt);
658 #else
659 void __warn_printk(const char *fmt, ...)
660 {
661 	va_list args;
662 
663 	pr_warn(CUT_HERE);
664 
665 	va_start(args, fmt);
666 	vprintk(fmt, args);
667 	va_end(args);
668 }
669 EXPORT_SYMBOL(__warn_printk);
670 #endif
671 
672 #ifdef CONFIG_BUG
673 
674 /* Support resetting WARN*_ONCE state */
675 
676 static int clear_warn_once_set(void *data, u64 val)
677 {
678 	generic_bug_clear_once();
679 	memset(__start_once, 0, __end_once - __start_once);
680 	return 0;
681 }
682 
683 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
684 			 "%lld\n");
685 
686 static __init int register_warn_debugfs(void)
687 {
688 	/* Don't care about failure */
689 	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
690 				   &clear_warn_once_fops);
691 	return 0;
692 }
693 
694 device_initcall(register_warn_debugfs);
695 #endif
696 
697 #ifdef CONFIG_STACKPROTECTOR
698 
699 /*
700  * Called when gcc's -fstack-protector feature is used, and
701  * gcc detects corruption of the on-stack canary value
702  */
703 __visible noinstr void __stack_chk_fail(void)
704 {
705 	instrumentation_begin();
706 	panic("stack-protector: Kernel stack is corrupted in: %pB",
707 		__builtin_return_address(0));
708 	instrumentation_end();
709 }
710 EXPORT_SYMBOL(__stack_chk_fail);
711 
712 #endif
713 
714 core_param(panic, panic_timeout, int, 0644);
715 core_param(panic_print, panic_print, ulong, 0644);
716 core_param(pause_on_oops, pause_on_oops, int, 0644);
717 core_param(panic_on_warn, panic_on_warn, int, 0644);
718 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
719 
720 static int __init oops_setup(char *s)
721 {
722 	if (!s)
723 		return -EINVAL;
724 	if (!strcmp(s, "panic"))
725 		panic_on_oops = 1;
726 	return 0;
727 }
728 early_param("oops", oops_setup);
729 
730 static int __init panic_on_taint_setup(char *s)
731 {
732 	char *taint_str;
733 
734 	if (!s)
735 		return -EINVAL;
736 
737 	taint_str = strsep(&s, ",");
738 	if (kstrtoul(taint_str, 16, &panic_on_taint))
739 		return -EINVAL;
740 
741 	/* make sure panic_on_taint doesn't hold out-of-range TAINT flags */
742 	panic_on_taint &= TAINT_FLAGS_MAX;
743 
744 	if (!panic_on_taint)
745 		return -EINVAL;
746 
747 	if (s && !strcmp(s, "nousertaint"))
748 		panic_on_taint_nousertaint = true;
749 
750 	pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%sabled\n",
751 		panic_on_taint, panic_on_taint_nousertaint ? "en" : "dis");
752 
753 	return 0;
754 }
755 early_param("panic_on_taint", panic_on_taint_setup);
756