1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/panic.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * This function is used through-out the kernel (including mm and fs) 10 * to indicate a major problem. 11 */ 12 #include <linux/debug_locks.h> 13 #include <linux/sched/debug.h> 14 #include <linux/interrupt.h> 15 #include <linux/kgdb.h> 16 #include <linux/kmsg_dump.h> 17 #include <linux/kallsyms.h> 18 #include <linux/notifier.h> 19 #include <linux/vt_kern.h> 20 #include <linux/module.h> 21 #include <linux/random.h> 22 #include <linux/ftrace.h> 23 #include <linux/reboot.h> 24 #include <linux/delay.h> 25 #include <linux/kexec.h> 26 #include <linux/sched.h> 27 #include <linux/sysrq.h> 28 #include <linux/init.h> 29 #include <linux/nmi.h> 30 #include <linux/console.h> 31 #include <linux/bug.h> 32 #include <linux/ratelimit.h> 33 #include <linux/debugfs.h> 34 #include <asm/sections.h> 35 36 #define PANIC_TIMER_STEP 100 37 #define PANIC_BLINK_SPD 18 38 39 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 40 static unsigned long tainted_mask = 41 IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0; 42 static int pause_on_oops; 43 static int pause_on_oops_flag; 44 static DEFINE_SPINLOCK(pause_on_oops_lock); 45 bool crash_kexec_post_notifiers; 46 int panic_on_warn __read_mostly; 47 48 int panic_timeout = CONFIG_PANIC_TIMEOUT; 49 EXPORT_SYMBOL_GPL(panic_timeout); 50 51 #define PANIC_PRINT_TASK_INFO 0x00000001 52 #define PANIC_PRINT_MEM_INFO 0x00000002 53 #define PANIC_PRINT_TIMER_INFO 0x00000004 54 #define PANIC_PRINT_LOCK_INFO 0x00000008 55 #define PANIC_PRINT_FTRACE_INFO 0x00000010 56 #define PANIC_PRINT_ALL_PRINTK_MSG 0x00000020 57 unsigned long panic_print; 58 59 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 60 61 EXPORT_SYMBOL(panic_notifier_list); 62 63 static long no_blink(int state) 64 { 65 return 0; 66 } 67 68 /* Returns how long it waited in ms */ 69 long (*panic_blink)(int state); 70 EXPORT_SYMBOL(panic_blink); 71 72 /* 73 * Stop ourself in panic -- architecture code may override this 74 */ 75 void __weak panic_smp_self_stop(void) 76 { 77 while (1) 78 cpu_relax(); 79 } 80 81 /* 82 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 83 * may override this to prepare for crash dumping, e.g. save regs info. 84 */ 85 void __weak nmi_panic_self_stop(struct pt_regs *regs) 86 { 87 panic_smp_self_stop(); 88 } 89 90 /* 91 * Stop other CPUs in panic. Architecture dependent code may override this 92 * with more suitable version. For example, if the architecture supports 93 * crash dump, it should save registers of each stopped CPU and disable 94 * per-CPU features such as virtualization extensions. 95 */ 96 void __weak crash_smp_send_stop(void) 97 { 98 static int cpus_stopped; 99 100 /* 101 * This function can be called twice in panic path, but obviously 102 * we execute this only once. 103 */ 104 if (cpus_stopped) 105 return; 106 107 /* 108 * Note smp_send_stop is the usual smp shutdown function, which 109 * unfortunately means it may not be hardened to work in a panic 110 * situation. 111 */ 112 smp_send_stop(); 113 cpus_stopped = 1; 114 } 115 116 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 117 118 /* 119 * A variant of panic() called from NMI context. We return if we've already 120 * panicked on this CPU. If another CPU already panicked, loop in 121 * nmi_panic_self_stop() which can provide architecture dependent code such 122 * as saving register state for crash dump. 123 */ 124 void nmi_panic(struct pt_regs *regs, const char *msg) 125 { 126 int old_cpu, cpu; 127 128 cpu = raw_smp_processor_id(); 129 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); 130 131 if (old_cpu == PANIC_CPU_INVALID) 132 panic("%s", msg); 133 else if (old_cpu != cpu) 134 nmi_panic_self_stop(regs); 135 } 136 EXPORT_SYMBOL(nmi_panic); 137 138 static void panic_print_sys_info(void) 139 { 140 if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG) 141 console_flush_on_panic(CONSOLE_REPLAY_ALL); 142 143 if (panic_print & PANIC_PRINT_TASK_INFO) 144 show_state(); 145 146 if (panic_print & PANIC_PRINT_MEM_INFO) 147 show_mem(0, NULL); 148 149 if (panic_print & PANIC_PRINT_TIMER_INFO) 150 sysrq_timer_list_show(); 151 152 if (panic_print & PANIC_PRINT_LOCK_INFO) 153 debug_show_all_locks(); 154 155 if (panic_print & PANIC_PRINT_FTRACE_INFO) 156 ftrace_dump(DUMP_ALL); 157 } 158 159 /** 160 * panic - halt the system 161 * @fmt: The text string to print 162 * 163 * Display a message, then perform cleanups. 164 * 165 * This function never returns. 166 */ 167 void panic(const char *fmt, ...) 168 { 169 static char buf[1024]; 170 va_list args; 171 long i, i_next = 0, len; 172 int state = 0; 173 int old_cpu, this_cpu; 174 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 175 176 /* 177 * Disable local interrupts. This will prevent panic_smp_self_stop 178 * from deadlocking the first cpu that invokes the panic, since 179 * there is nothing to prevent an interrupt handler (that runs 180 * after setting panic_cpu) from invoking panic() again. 181 */ 182 local_irq_disable(); 183 preempt_disable_notrace(); 184 185 /* 186 * It's possible to come here directly from a panic-assertion and 187 * not have preempt disabled. Some functions called from here want 188 * preempt to be disabled. No point enabling it later though... 189 * 190 * Only one CPU is allowed to execute the panic code from here. For 191 * multiple parallel invocations of panic, all other CPUs either 192 * stop themself or will wait until they are stopped by the 1st CPU 193 * with smp_send_stop(). 194 * 195 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 196 * comes here, so go ahead. 197 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 198 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 199 */ 200 this_cpu = raw_smp_processor_id(); 201 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 202 203 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 204 panic_smp_self_stop(); 205 206 console_verbose(); 207 bust_spinlocks(1); 208 va_start(args, fmt); 209 len = vscnprintf(buf, sizeof(buf), fmt, args); 210 va_end(args); 211 212 if (len && buf[len - 1] == '\n') 213 buf[len - 1] = '\0'; 214 215 pr_emerg("Kernel panic - not syncing: %s\n", buf); 216 #ifdef CONFIG_DEBUG_BUGVERBOSE 217 /* 218 * Avoid nested stack-dumping if a panic occurs during oops processing 219 */ 220 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 221 dump_stack(); 222 #endif 223 224 /* 225 * If kgdb is enabled, give it a chance to run before we stop all 226 * the other CPUs or else we won't be able to debug processes left 227 * running on them. 228 */ 229 kgdb_panic(buf); 230 231 /* 232 * If we have crashed and we have a crash kernel loaded let it handle 233 * everything else. 234 * If we want to run this after calling panic_notifiers, pass 235 * the "crash_kexec_post_notifiers" option to the kernel. 236 * 237 * Bypass the panic_cpu check and call __crash_kexec directly. 238 */ 239 if (!_crash_kexec_post_notifiers) { 240 printk_safe_flush_on_panic(); 241 __crash_kexec(NULL); 242 243 /* 244 * Note smp_send_stop is the usual smp shutdown function, which 245 * unfortunately means it may not be hardened to work in a 246 * panic situation. 247 */ 248 smp_send_stop(); 249 } else { 250 /* 251 * If we want to do crash dump after notifier calls and 252 * kmsg_dump, we will need architecture dependent extra 253 * works in addition to stopping other CPUs. 254 */ 255 crash_smp_send_stop(); 256 } 257 258 /* 259 * Run any panic handlers, including those that might need to 260 * add information to the kmsg dump output. 261 */ 262 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 263 264 /* Call flush even twice. It tries harder with a single online CPU */ 265 printk_safe_flush_on_panic(); 266 kmsg_dump(KMSG_DUMP_PANIC); 267 268 /* 269 * If you doubt kdump always works fine in any situation, 270 * "crash_kexec_post_notifiers" offers you a chance to run 271 * panic_notifiers and dumping kmsg before kdump. 272 * Note: since some panic_notifiers can make crashed kernel 273 * more unstable, it can increase risks of the kdump failure too. 274 * 275 * Bypass the panic_cpu check and call __crash_kexec directly. 276 */ 277 if (_crash_kexec_post_notifiers) 278 __crash_kexec(NULL); 279 280 #ifdef CONFIG_VT 281 unblank_screen(); 282 #endif 283 console_unblank(); 284 285 /* 286 * We may have ended up stopping the CPU holding the lock (in 287 * smp_send_stop()) while still having some valuable data in the console 288 * buffer. Try to acquire the lock then release it regardless of the 289 * result. The release will also print the buffers out. Locks debug 290 * should be disabled to avoid reporting bad unlock balance when 291 * panic() is not being callled from OOPS. 292 */ 293 debug_locks_off(); 294 console_flush_on_panic(CONSOLE_FLUSH_PENDING); 295 296 panic_print_sys_info(); 297 298 if (!panic_blink) 299 panic_blink = no_blink; 300 301 if (panic_timeout > 0) { 302 /* 303 * Delay timeout seconds before rebooting the machine. 304 * We can't use the "normal" timers since we just panicked. 305 */ 306 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 307 308 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 309 touch_nmi_watchdog(); 310 if (i >= i_next) { 311 i += panic_blink(state ^= 1); 312 i_next = i + 3600 / PANIC_BLINK_SPD; 313 } 314 mdelay(PANIC_TIMER_STEP); 315 } 316 } 317 if (panic_timeout != 0) { 318 /* 319 * This will not be a clean reboot, with everything 320 * shutting down. But if there is a chance of 321 * rebooting the system it will be rebooted. 322 */ 323 if (panic_reboot_mode != REBOOT_UNDEFINED) 324 reboot_mode = panic_reboot_mode; 325 emergency_restart(); 326 } 327 #ifdef __sparc__ 328 { 329 extern int stop_a_enabled; 330 /* Make sure the user can actually press Stop-A (L1-A) */ 331 stop_a_enabled = 1; 332 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 333 "twice on console to return to the boot prom\n"); 334 } 335 #endif 336 #if defined(CONFIG_S390) 337 disabled_wait(); 338 #endif 339 pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf); 340 341 /* Do not scroll important messages printed above */ 342 suppress_printk = 1; 343 local_irq_enable(); 344 for (i = 0; ; i += PANIC_TIMER_STEP) { 345 touch_softlockup_watchdog(); 346 if (i >= i_next) { 347 i += panic_blink(state ^= 1); 348 i_next = i + 3600 / PANIC_BLINK_SPD; 349 } 350 mdelay(PANIC_TIMER_STEP); 351 } 352 } 353 354 EXPORT_SYMBOL(panic); 355 356 /* 357 * TAINT_FORCED_RMMOD could be a per-module flag but the module 358 * is being removed anyway. 359 */ 360 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 361 [ TAINT_PROPRIETARY_MODULE ] = { 'P', 'G', true }, 362 [ TAINT_FORCED_MODULE ] = { 'F', ' ', true }, 363 [ TAINT_CPU_OUT_OF_SPEC ] = { 'S', ' ', false }, 364 [ TAINT_FORCED_RMMOD ] = { 'R', ' ', false }, 365 [ TAINT_MACHINE_CHECK ] = { 'M', ' ', false }, 366 [ TAINT_BAD_PAGE ] = { 'B', ' ', false }, 367 [ TAINT_USER ] = { 'U', ' ', false }, 368 [ TAINT_DIE ] = { 'D', ' ', false }, 369 [ TAINT_OVERRIDDEN_ACPI_TABLE ] = { 'A', ' ', false }, 370 [ TAINT_WARN ] = { 'W', ' ', false }, 371 [ TAINT_CRAP ] = { 'C', ' ', true }, 372 [ TAINT_FIRMWARE_WORKAROUND ] = { 'I', ' ', false }, 373 [ TAINT_OOT_MODULE ] = { 'O', ' ', true }, 374 [ TAINT_UNSIGNED_MODULE ] = { 'E', ' ', true }, 375 [ TAINT_SOFTLOCKUP ] = { 'L', ' ', false }, 376 [ TAINT_LIVEPATCH ] = { 'K', ' ', true }, 377 [ TAINT_AUX ] = { 'X', ' ', true }, 378 [ TAINT_RANDSTRUCT ] = { 'T', ' ', true }, 379 }; 380 381 /** 382 * print_tainted - return a string to represent the kernel taint state. 383 * 384 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst 385 * 386 * The string is overwritten by the next call to print_tainted(), 387 * but is always NULL terminated. 388 */ 389 const char *print_tainted(void) 390 { 391 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; 392 393 BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT); 394 395 if (tainted_mask) { 396 char *s; 397 int i; 398 399 s = buf + sprintf(buf, "Tainted: "); 400 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 401 const struct taint_flag *t = &taint_flags[i]; 402 *s++ = test_bit(i, &tainted_mask) ? 403 t->c_true : t->c_false; 404 } 405 *s = 0; 406 } else 407 snprintf(buf, sizeof(buf), "Not tainted"); 408 409 return buf; 410 } 411 412 int test_taint(unsigned flag) 413 { 414 return test_bit(flag, &tainted_mask); 415 } 416 EXPORT_SYMBOL(test_taint); 417 418 unsigned long get_taint(void) 419 { 420 return tainted_mask; 421 } 422 423 /** 424 * add_taint: add a taint flag if not already set. 425 * @flag: one of the TAINT_* constants. 426 * @lockdep_ok: whether lock debugging is still OK. 427 * 428 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 429 * some notewortht-but-not-corrupting cases, it can be set to true. 430 */ 431 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 432 { 433 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 434 pr_warn("Disabling lock debugging due to kernel taint\n"); 435 436 set_bit(flag, &tainted_mask); 437 } 438 EXPORT_SYMBOL(add_taint); 439 440 static void spin_msec(int msecs) 441 { 442 int i; 443 444 for (i = 0; i < msecs; i++) { 445 touch_nmi_watchdog(); 446 mdelay(1); 447 } 448 } 449 450 /* 451 * It just happens that oops_enter() and oops_exit() are identically 452 * implemented... 453 */ 454 static void do_oops_enter_exit(void) 455 { 456 unsigned long flags; 457 static int spin_counter; 458 459 if (!pause_on_oops) 460 return; 461 462 spin_lock_irqsave(&pause_on_oops_lock, flags); 463 if (pause_on_oops_flag == 0) { 464 /* This CPU may now print the oops message */ 465 pause_on_oops_flag = 1; 466 } else { 467 /* We need to stall this CPU */ 468 if (!spin_counter) { 469 /* This CPU gets to do the counting */ 470 spin_counter = pause_on_oops; 471 do { 472 spin_unlock(&pause_on_oops_lock); 473 spin_msec(MSEC_PER_SEC); 474 spin_lock(&pause_on_oops_lock); 475 } while (--spin_counter); 476 pause_on_oops_flag = 0; 477 } else { 478 /* This CPU waits for a different one */ 479 while (spin_counter) { 480 spin_unlock(&pause_on_oops_lock); 481 spin_msec(1); 482 spin_lock(&pause_on_oops_lock); 483 } 484 } 485 } 486 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 487 } 488 489 /* 490 * Return true if the calling CPU is allowed to print oops-related info. 491 * This is a bit racy.. 492 */ 493 int oops_may_print(void) 494 { 495 return pause_on_oops_flag == 0; 496 } 497 498 /* 499 * Called when the architecture enters its oops handler, before it prints 500 * anything. If this is the first CPU to oops, and it's oopsing the first 501 * time then let it proceed. 502 * 503 * This is all enabled by the pause_on_oops kernel boot option. We do all 504 * this to ensure that oopses don't scroll off the screen. It has the 505 * side-effect of preventing later-oopsing CPUs from mucking up the display, 506 * too. 507 * 508 * It turns out that the CPU which is allowed to print ends up pausing for 509 * the right duration, whereas all the other CPUs pause for twice as long: 510 * once in oops_enter(), once in oops_exit(). 511 */ 512 void oops_enter(void) 513 { 514 tracing_off(); 515 /* can't trust the integrity of the kernel anymore: */ 516 debug_locks_off(); 517 do_oops_enter_exit(); 518 } 519 520 /* 521 * 64-bit random ID for oopses: 522 */ 523 static u64 oops_id; 524 525 static int init_oops_id(void) 526 { 527 if (!oops_id) 528 get_random_bytes(&oops_id, sizeof(oops_id)); 529 else 530 oops_id++; 531 532 return 0; 533 } 534 late_initcall(init_oops_id); 535 536 void print_oops_end_marker(void) 537 { 538 init_oops_id(); 539 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); 540 } 541 542 /* 543 * Called when the architecture exits its oops handler, after printing 544 * everything. 545 */ 546 void oops_exit(void) 547 { 548 do_oops_enter_exit(); 549 print_oops_end_marker(); 550 kmsg_dump(KMSG_DUMP_OOPS); 551 } 552 553 struct warn_args { 554 const char *fmt; 555 va_list args; 556 }; 557 558 void __warn(const char *file, int line, void *caller, unsigned taint, 559 struct pt_regs *regs, struct warn_args *args) 560 { 561 disable_trace_on_warning(); 562 563 if (file) 564 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 565 raw_smp_processor_id(), current->pid, file, line, 566 caller); 567 else 568 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 569 raw_smp_processor_id(), current->pid, caller); 570 571 if (args) 572 vprintk(args->fmt, args->args); 573 574 if (panic_on_warn) { 575 /* 576 * This thread may hit another WARN() in the panic path. 577 * Resetting this prevents additional WARN() from panicking the 578 * system on this thread. Other threads are blocked by the 579 * panic_mutex in panic(). 580 */ 581 panic_on_warn = 0; 582 panic("panic_on_warn set ...\n"); 583 } 584 585 print_modules(); 586 587 if (regs) 588 show_regs(regs); 589 else 590 dump_stack(); 591 592 print_irqtrace_events(current); 593 594 print_oops_end_marker(); 595 596 /* Just a warning, don't kill lockdep. */ 597 add_taint(taint, LOCKDEP_STILL_OK); 598 } 599 600 #ifndef __WARN_FLAGS 601 void warn_slowpath_fmt(const char *file, int line, unsigned taint, 602 const char *fmt, ...) 603 { 604 struct warn_args args; 605 606 pr_warn(CUT_HERE); 607 608 if (!fmt) { 609 __warn(file, line, __builtin_return_address(0), taint, 610 NULL, NULL); 611 return; 612 } 613 614 args.fmt = fmt; 615 va_start(args.args, fmt); 616 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 617 va_end(args.args); 618 } 619 EXPORT_SYMBOL(warn_slowpath_fmt); 620 #else 621 void __warn_printk(const char *fmt, ...) 622 { 623 va_list args; 624 625 pr_warn(CUT_HERE); 626 627 va_start(args, fmt); 628 vprintk(fmt, args); 629 va_end(args); 630 } 631 EXPORT_SYMBOL(__warn_printk); 632 #endif 633 634 #ifdef CONFIG_BUG 635 636 /* Support resetting WARN*_ONCE state */ 637 638 static int clear_warn_once_set(void *data, u64 val) 639 { 640 generic_bug_clear_once(); 641 memset(__start_once, 0, __end_once - __start_once); 642 return 0; 643 } 644 645 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set, 646 "%lld\n"); 647 648 static __init int register_warn_debugfs(void) 649 { 650 /* Don't care about failure */ 651 debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL, 652 &clear_warn_once_fops); 653 return 0; 654 } 655 656 device_initcall(register_warn_debugfs); 657 #endif 658 659 #ifdef CONFIG_STACKPROTECTOR 660 661 /* 662 * Called when gcc's -fstack-protector feature is used, and 663 * gcc detects corruption of the on-stack canary value 664 */ 665 __visible void __stack_chk_fail(void) 666 { 667 panic("stack-protector: Kernel stack is corrupted in: %pB", 668 __builtin_return_address(0)); 669 } 670 EXPORT_SYMBOL(__stack_chk_fail); 671 672 #endif 673 674 #ifdef CONFIG_ARCH_HAS_REFCOUNT 675 void refcount_error_report(struct pt_regs *regs, const char *err) 676 { 677 WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n", 678 err, (void *)instruction_pointer(regs), 679 current->comm, task_pid_nr(current), 680 from_kuid_munged(&init_user_ns, current_uid()), 681 from_kuid_munged(&init_user_ns, current_euid())); 682 } 683 #endif 684 685 core_param(panic, panic_timeout, int, 0644); 686 core_param(panic_print, panic_print, ulong, 0644); 687 core_param(pause_on_oops, pause_on_oops, int, 0644); 688 core_param(panic_on_warn, panic_on_warn, int, 0644); 689 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 690 691 static int __init oops_setup(char *s) 692 { 693 if (!s) 694 return -EINVAL; 695 if (!strcmp(s, "panic")) 696 panic_on_oops = 1; 697 return 0; 698 } 699 early_param("oops", oops_setup); 700