1 /* 2 * linux/kernel/panic.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * This function is used through-out the kernel (including mm and fs) 9 * to indicate a major problem. 10 */ 11 #include <linux/debug_locks.h> 12 #include <linux/sched/debug.h> 13 #include <linux/interrupt.h> 14 #include <linux/kmsg_dump.h> 15 #include <linux/kallsyms.h> 16 #include <linux/notifier.h> 17 #include <linux/vt_kern.h> 18 #include <linux/module.h> 19 #include <linux/random.h> 20 #include <linux/ftrace.h> 21 #include <linux/reboot.h> 22 #include <linux/delay.h> 23 #include <linux/kexec.h> 24 #include <linux/sched.h> 25 #include <linux/sysrq.h> 26 #include <linux/init.h> 27 #include <linux/nmi.h> 28 #include <linux/console.h> 29 #include <linux/bug.h> 30 #include <linux/ratelimit.h> 31 #include <linux/debugfs.h> 32 #include <asm/sections.h> 33 34 #define PANIC_TIMER_STEP 100 35 #define PANIC_BLINK_SPD 18 36 37 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 38 static unsigned long tainted_mask = 39 IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0; 40 static int pause_on_oops; 41 static int pause_on_oops_flag; 42 static DEFINE_SPINLOCK(pause_on_oops_lock); 43 bool crash_kexec_post_notifiers; 44 int panic_on_warn __read_mostly; 45 46 int panic_timeout = CONFIG_PANIC_TIMEOUT; 47 EXPORT_SYMBOL_GPL(panic_timeout); 48 49 #define PANIC_PRINT_TASK_INFO 0x00000001 50 #define PANIC_PRINT_MEM_INFO 0x00000002 51 #define PANIC_PRINT_TIMER_INFO 0x00000004 52 #define PANIC_PRINT_LOCK_INFO 0x00000008 53 #define PANIC_PRINT_FTRACE_INFO 0x00000010 54 unsigned long panic_print; 55 56 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 57 58 EXPORT_SYMBOL(panic_notifier_list); 59 60 static long no_blink(int state) 61 { 62 return 0; 63 } 64 65 /* Returns how long it waited in ms */ 66 long (*panic_blink)(int state); 67 EXPORT_SYMBOL(panic_blink); 68 69 /* 70 * Stop ourself in panic -- architecture code may override this 71 */ 72 void __weak panic_smp_self_stop(void) 73 { 74 while (1) 75 cpu_relax(); 76 } 77 78 /* 79 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 80 * may override this to prepare for crash dumping, e.g. save regs info. 81 */ 82 void __weak nmi_panic_self_stop(struct pt_regs *regs) 83 { 84 panic_smp_self_stop(); 85 } 86 87 /* 88 * Stop other CPUs in panic. Architecture dependent code may override this 89 * with more suitable version. For example, if the architecture supports 90 * crash dump, it should save registers of each stopped CPU and disable 91 * per-CPU features such as virtualization extensions. 92 */ 93 void __weak crash_smp_send_stop(void) 94 { 95 static int cpus_stopped; 96 97 /* 98 * This function can be called twice in panic path, but obviously 99 * we execute this only once. 100 */ 101 if (cpus_stopped) 102 return; 103 104 /* 105 * Note smp_send_stop is the usual smp shutdown function, which 106 * unfortunately means it may not be hardened to work in a panic 107 * situation. 108 */ 109 smp_send_stop(); 110 cpus_stopped = 1; 111 } 112 113 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 114 115 /* 116 * A variant of panic() called from NMI context. We return if we've already 117 * panicked on this CPU. If another CPU already panicked, loop in 118 * nmi_panic_self_stop() which can provide architecture dependent code such 119 * as saving register state for crash dump. 120 */ 121 void nmi_panic(struct pt_regs *regs, const char *msg) 122 { 123 int old_cpu, cpu; 124 125 cpu = raw_smp_processor_id(); 126 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); 127 128 if (old_cpu == PANIC_CPU_INVALID) 129 panic("%s", msg); 130 else if (old_cpu != cpu) 131 nmi_panic_self_stop(regs); 132 } 133 EXPORT_SYMBOL(nmi_panic); 134 135 static void panic_print_sys_info(void) 136 { 137 if (panic_print & PANIC_PRINT_TASK_INFO) 138 show_state(); 139 140 if (panic_print & PANIC_PRINT_MEM_INFO) 141 show_mem(0, NULL); 142 143 if (panic_print & PANIC_PRINT_TIMER_INFO) 144 sysrq_timer_list_show(); 145 146 if (panic_print & PANIC_PRINT_LOCK_INFO) 147 debug_show_all_locks(); 148 149 if (panic_print & PANIC_PRINT_FTRACE_INFO) 150 ftrace_dump(DUMP_ALL); 151 } 152 153 /** 154 * panic - halt the system 155 * @fmt: The text string to print 156 * 157 * Display a message, then perform cleanups. 158 * 159 * This function never returns. 160 */ 161 void panic(const char *fmt, ...) 162 { 163 static char buf[1024]; 164 va_list args; 165 long i, i_next = 0, len; 166 int state = 0; 167 int old_cpu, this_cpu; 168 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 169 170 /* 171 * Disable local interrupts. This will prevent panic_smp_self_stop 172 * from deadlocking the first cpu that invokes the panic, since 173 * there is nothing to prevent an interrupt handler (that runs 174 * after setting panic_cpu) from invoking panic() again. 175 */ 176 local_irq_disable(); 177 178 /* 179 * It's possible to come here directly from a panic-assertion and 180 * not have preempt disabled. Some functions called from here want 181 * preempt to be disabled. No point enabling it later though... 182 * 183 * Only one CPU is allowed to execute the panic code from here. For 184 * multiple parallel invocations of panic, all other CPUs either 185 * stop themself or will wait until they are stopped by the 1st CPU 186 * with smp_send_stop(). 187 * 188 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 189 * comes here, so go ahead. 190 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 191 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 192 */ 193 this_cpu = raw_smp_processor_id(); 194 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 195 196 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 197 panic_smp_self_stop(); 198 199 console_verbose(); 200 bust_spinlocks(1); 201 va_start(args, fmt); 202 len = vscnprintf(buf, sizeof(buf), fmt, args); 203 va_end(args); 204 205 if (len && buf[len - 1] == '\n') 206 buf[len - 1] = '\0'; 207 208 pr_emerg("Kernel panic - not syncing: %s\n", buf); 209 #ifdef CONFIG_DEBUG_BUGVERBOSE 210 /* 211 * Avoid nested stack-dumping if a panic occurs during oops processing 212 */ 213 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 214 dump_stack(); 215 #endif 216 217 /* 218 * If we have crashed and we have a crash kernel loaded let it handle 219 * everything else. 220 * If we want to run this after calling panic_notifiers, pass 221 * the "crash_kexec_post_notifiers" option to the kernel. 222 * 223 * Bypass the panic_cpu check and call __crash_kexec directly. 224 */ 225 if (!_crash_kexec_post_notifiers) { 226 printk_safe_flush_on_panic(); 227 __crash_kexec(NULL); 228 229 /* 230 * Note smp_send_stop is the usual smp shutdown function, which 231 * unfortunately means it may not be hardened to work in a 232 * panic situation. 233 */ 234 smp_send_stop(); 235 } else { 236 /* 237 * If we want to do crash dump after notifier calls and 238 * kmsg_dump, we will need architecture dependent extra 239 * works in addition to stopping other CPUs. 240 */ 241 crash_smp_send_stop(); 242 } 243 244 /* 245 * Run any panic handlers, including those that might need to 246 * add information to the kmsg dump output. 247 */ 248 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 249 250 /* Call flush even twice. It tries harder with a single online CPU */ 251 printk_safe_flush_on_panic(); 252 kmsg_dump(KMSG_DUMP_PANIC); 253 254 /* 255 * If you doubt kdump always works fine in any situation, 256 * "crash_kexec_post_notifiers" offers you a chance to run 257 * panic_notifiers and dumping kmsg before kdump. 258 * Note: since some panic_notifiers can make crashed kernel 259 * more unstable, it can increase risks of the kdump failure too. 260 * 261 * Bypass the panic_cpu check and call __crash_kexec directly. 262 */ 263 if (_crash_kexec_post_notifiers) 264 __crash_kexec(NULL); 265 266 #ifdef CONFIG_VT 267 unblank_screen(); 268 #endif 269 console_unblank(); 270 271 /* 272 * We may have ended up stopping the CPU holding the lock (in 273 * smp_send_stop()) while still having some valuable data in the console 274 * buffer. Try to acquire the lock then release it regardless of the 275 * result. The release will also print the buffers out. Locks debug 276 * should be disabled to avoid reporting bad unlock balance when 277 * panic() is not being callled from OOPS. 278 */ 279 debug_locks_off(); 280 console_flush_on_panic(); 281 282 panic_print_sys_info(); 283 284 if (!panic_blink) 285 panic_blink = no_blink; 286 287 if (panic_timeout > 0) { 288 /* 289 * Delay timeout seconds before rebooting the machine. 290 * We can't use the "normal" timers since we just panicked. 291 */ 292 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 293 294 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 295 touch_nmi_watchdog(); 296 if (i >= i_next) { 297 i += panic_blink(state ^= 1); 298 i_next = i + 3600 / PANIC_BLINK_SPD; 299 } 300 mdelay(PANIC_TIMER_STEP); 301 } 302 } 303 if (panic_timeout != 0) { 304 /* 305 * This will not be a clean reboot, with everything 306 * shutting down. But if there is a chance of 307 * rebooting the system it will be rebooted. 308 */ 309 emergency_restart(); 310 } 311 #ifdef __sparc__ 312 { 313 extern int stop_a_enabled; 314 /* Make sure the user can actually press Stop-A (L1-A) */ 315 stop_a_enabled = 1; 316 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 317 "twice on console to return to the boot prom\n"); 318 } 319 #endif 320 #if defined(CONFIG_S390) 321 disabled_wait(); 322 #endif 323 pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf); 324 local_irq_enable(); 325 for (i = 0; ; i += PANIC_TIMER_STEP) { 326 touch_softlockup_watchdog(); 327 if (i >= i_next) { 328 i += panic_blink(state ^= 1); 329 i_next = i + 3600 / PANIC_BLINK_SPD; 330 } 331 mdelay(PANIC_TIMER_STEP); 332 } 333 } 334 335 EXPORT_SYMBOL(panic); 336 337 /* 338 * TAINT_FORCED_RMMOD could be a per-module flag but the module 339 * is being removed anyway. 340 */ 341 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 342 [ TAINT_PROPRIETARY_MODULE ] = { 'P', 'G', true }, 343 [ TAINT_FORCED_MODULE ] = { 'F', ' ', true }, 344 [ TAINT_CPU_OUT_OF_SPEC ] = { 'S', ' ', false }, 345 [ TAINT_FORCED_RMMOD ] = { 'R', ' ', false }, 346 [ TAINT_MACHINE_CHECK ] = { 'M', ' ', false }, 347 [ TAINT_BAD_PAGE ] = { 'B', ' ', false }, 348 [ TAINT_USER ] = { 'U', ' ', false }, 349 [ TAINT_DIE ] = { 'D', ' ', false }, 350 [ TAINT_OVERRIDDEN_ACPI_TABLE ] = { 'A', ' ', false }, 351 [ TAINT_WARN ] = { 'W', ' ', false }, 352 [ TAINT_CRAP ] = { 'C', ' ', true }, 353 [ TAINT_FIRMWARE_WORKAROUND ] = { 'I', ' ', false }, 354 [ TAINT_OOT_MODULE ] = { 'O', ' ', true }, 355 [ TAINT_UNSIGNED_MODULE ] = { 'E', ' ', true }, 356 [ TAINT_SOFTLOCKUP ] = { 'L', ' ', false }, 357 [ TAINT_LIVEPATCH ] = { 'K', ' ', true }, 358 [ TAINT_AUX ] = { 'X', ' ', true }, 359 [ TAINT_RANDSTRUCT ] = { 'T', ' ', true }, 360 }; 361 362 /** 363 * print_tainted - return a string to represent the kernel taint state. 364 * 365 * For individual taint flag meanings, see Documentation/sysctl/kernel.txt 366 * 367 * The string is overwritten by the next call to print_tainted(), 368 * but is always NULL terminated. 369 */ 370 const char *print_tainted(void) 371 { 372 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; 373 374 BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT); 375 376 if (tainted_mask) { 377 char *s; 378 int i; 379 380 s = buf + sprintf(buf, "Tainted: "); 381 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 382 const struct taint_flag *t = &taint_flags[i]; 383 *s++ = test_bit(i, &tainted_mask) ? 384 t->c_true : t->c_false; 385 } 386 *s = 0; 387 } else 388 snprintf(buf, sizeof(buf), "Not tainted"); 389 390 return buf; 391 } 392 393 int test_taint(unsigned flag) 394 { 395 return test_bit(flag, &tainted_mask); 396 } 397 EXPORT_SYMBOL(test_taint); 398 399 unsigned long get_taint(void) 400 { 401 return tainted_mask; 402 } 403 404 /** 405 * add_taint: add a taint flag if not already set. 406 * @flag: one of the TAINT_* constants. 407 * @lockdep_ok: whether lock debugging is still OK. 408 * 409 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 410 * some notewortht-but-not-corrupting cases, it can be set to true. 411 */ 412 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 413 { 414 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 415 pr_warn("Disabling lock debugging due to kernel taint\n"); 416 417 set_bit(flag, &tainted_mask); 418 } 419 EXPORT_SYMBOL(add_taint); 420 421 static void spin_msec(int msecs) 422 { 423 int i; 424 425 for (i = 0; i < msecs; i++) { 426 touch_nmi_watchdog(); 427 mdelay(1); 428 } 429 } 430 431 /* 432 * It just happens that oops_enter() and oops_exit() are identically 433 * implemented... 434 */ 435 static void do_oops_enter_exit(void) 436 { 437 unsigned long flags; 438 static int spin_counter; 439 440 if (!pause_on_oops) 441 return; 442 443 spin_lock_irqsave(&pause_on_oops_lock, flags); 444 if (pause_on_oops_flag == 0) { 445 /* This CPU may now print the oops message */ 446 pause_on_oops_flag = 1; 447 } else { 448 /* We need to stall this CPU */ 449 if (!spin_counter) { 450 /* This CPU gets to do the counting */ 451 spin_counter = pause_on_oops; 452 do { 453 spin_unlock(&pause_on_oops_lock); 454 spin_msec(MSEC_PER_SEC); 455 spin_lock(&pause_on_oops_lock); 456 } while (--spin_counter); 457 pause_on_oops_flag = 0; 458 } else { 459 /* This CPU waits for a different one */ 460 while (spin_counter) { 461 spin_unlock(&pause_on_oops_lock); 462 spin_msec(1); 463 spin_lock(&pause_on_oops_lock); 464 } 465 } 466 } 467 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 468 } 469 470 /* 471 * Return true if the calling CPU is allowed to print oops-related info. 472 * This is a bit racy.. 473 */ 474 int oops_may_print(void) 475 { 476 return pause_on_oops_flag == 0; 477 } 478 479 /* 480 * Called when the architecture enters its oops handler, before it prints 481 * anything. If this is the first CPU to oops, and it's oopsing the first 482 * time then let it proceed. 483 * 484 * This is all enabled by the pause_on_oops kernel boot option. We do all 485 * this to ensure that oopses don't scroll off the screen. It has the 486 * side-effect of preventing later-oopsing CPUs from mucking up the display, 487 * too. 488 * 489 * It turns out that the CPU which is allowed to print ends up pausing for 490 * the right duration, whereas all the other CPUs pause for twice as long: 491 * once in oops_enter(), once in oops_exit(). 492 */ 493 void oops_enter(void) 494 { 495 tracing_off(); 496 /* can't trust the integrity of the kernel anymore: */ 497 debug_locks_off(); 498 do_oops_enter_exit(); 499 } 500 501 /* 502 * 64-bit random ID for oopses: 503 */ 504 static u64 oops_id; 505 506 static int init_oops_id(void) 507 { 508 if (!oops_id) 509 get_random_bytes(&oops_id, sizeof(oops_id)); 510 else 511 oops_id++; 512 513 return 0; 514 } 515 late_initcall(init_oops_id); 516 517 void print_oops_end_marker(void) 518 { 519 init_oops_id(); 520 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); 521 } 522 523 /* 524 * Called when the architecture exits its oops handler, after printing 525 * everything. 526 */ 527 void oops_exit(void) 528 { 529 do_oops_enter_exit(); 530 print_oops_end_marker(); 531 kmsg_dump(KMSG_DUMP_OOPS); 532 } 533 534 struct warn_args { 535 const char *fmt; 536 va_list args; 537 }; 538 539 void __warn(const char *file, int line, void *caller, unsigned taint, 540 struct pt_regs *regs, struct warn_args *args) 541 { 542 disable_trace_on_warning(); 543 544 if (args) 545 pr_warn(CUT_HERE); 546 547 if (file) 548 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 549 raw_smp_processor_id(), current->pid, file, line, 550 caller); 551 else 552 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 553 raw_smp_processor_id(), current->pid, caller); 554 555 if (args) 556 vprintk(args->fmt, args->args); 557 558 if (panic_on_warn) { 559 /* 560 * This thread may hit another WARN() in the panic path. 561 * Resetting this prevents additional WARN() from panicking the 562 * system on this thread. Other threads are blocked by the 563 * panic_mutex in panic(). 564 */ 565 panic_on_warn = 0; 566 panic("panic_on_warn set ...\n"); 567 } 568 569 print_modules(); 570 571 if (regs) 572 show_regs(regs); 573 else 574 dump_stack(); 575 576 print_irqtrace_events(current); 577 578 print_oops_end_marker(); 579 580 /* Just a warning, don't kill lockdep. */ 581 add_taint(taint, LOCKDEP_STILL_OK); 582 } 583 584 #ifdef WANT_WARN_ON_SLOWPATH 585 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...) 586 { 587 struct warn_args args; 588 589 args.fmt = fmt; 590 va_start(args.args, fmt); 591 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, 592 &args); 593 va_end(args.args); 594 } 595 EXPORT_SYMBOL(warn_slowpath_fmt); 596 597 void warn_slowpath_fmt_taint(const char *file, int line, 598 unsigned taint, const char *fmt, ...) 599 { 600 struct warn_args args; 601 602 args.fmt = fmt; 603 va_start(args.args, fmt); 604 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 605 va_end(args.args); 606 } 607 EXPORT_SYMBOL(warn_slowpath_fmt_taint); 608 609 void warn_slowpath_null(const char *file, int line) 610 { 611 pr_warn(CUT_HERE); 612 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL); 613 } 614 EXPORT_SYMBOL(warn_slowpath_null); 615 #else 616 void __warn_printk(const char *fmt, ...) 617 { 618 va_list args; 619 620 pr_warn(CUT_HERE); 621 622 va_start(args, fmt); 623 vprintk(fmt, args); 624 va_end(args); 625 } 626 EXPORT_SYMBOL(__warn_printk); 627 #endif 628 629 #ifdef CONFIG_BUG 630 631 /* Support resetting WARN*_ONCE state */ 632 633 static int clear_warn_once_set(void *data, u64 val) 634 { 635 generic_bug_clear_once(); 636 memset(__start_once, 0, __end_once - __start_once); 637 return 0; 638 } 639 640 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set, 641 "%lld\n"); 642 643 static __init int register_warn_debugfs(void) 644 { 645 /* Don't care about failure */ 646 debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL, 647 &clear_warn_once_fops); 648 return 0; 649 } 650 651 device_initcall(register_warn_debugfs); 652 #endif 653 654 #ifdef CONFIG_STACKPROTECTOR 655 656 /* 657 * Called when gcc's -fstack-protector feature is used, and 658 * gcc detects corruption of the on-stack canary value 659 */ 660 __visible void __stack_chk_fail(void) 661 { 662 panic("stack-protector: Kernel stack is corrupted in: %pB", 663 __builtin_return_address(0)); 664 } 665 EXPORT_SYMBOL(__stack_chk_fail); 666 667 #endif 668 669 #ifdef CONFIG_ARCH_HAS_REFCOUNT 670 void refcount_error_report(struct pt_regs *regs, const char *err) 671 { 672 WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n", 673 err, (void *)instruction_pointer(regs), 674 current->comm, task_pid_nr(current), 675 from_kuid_munged(&init_user_ns, current_uid()), 676 from_kuid_munged(&init_user_ns, current_euid())); 677 } 678 #endif 679 680 core_param(panic, panic_timeout, int, 0644); 681 core_param(panic_print, panic_print, ulong, 0644); 682 core_param(pause_on_oops, pause_on_oops, int, 0644); 683 core_param(panic_on_warn, panic_on_warn, int, 0644); 684 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 685 686 static int __init oops_setup(char *s) 687 { 688 if (!s) 689 return -EINVAL; 690 if (!strcmp(s, "panic")) 691 panic_on_oops = 1; 692 return 0; 693 } 694 early_param("oops", oops_setup); 695