xref: /openbmc/linux/kernel/panic.c (revision 6dfcd296)
1 /*
2  *  linux/kernel/panic.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * This function is used through-out the kernel (including mm and fs)
9  * to indicate a major problem.
10  */
11 #include <linux/debug_locks.h>
12 #include <linux/interrupt.h>
13 #include <linux/kmsg_dump.h>
14 #include <linux/kallsyms.h>
15 #include <linux/notifier.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/ftrace.h>
19 #include <linux/reboot.h>
20 #include <linux/delay.h>
21 #include <linux/kexec.h>
22 #include <linux/sched.h>
23 #include <linux/sysrq.h>
24 #include <linux/init.h>
25 #include <linux/nmi.h>
26 #include <linux/console.h>
27 #include <linux/bug.h>
28 
29 #define PANIC_TIMER_STEP 100
30 #define PANIC_BLINK_SPD 18
31 
32 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
33 static unsigned long tainted_mask;
34 static int pause_on_oops;
35 static int pause_on_oops_flag;
36 static DEFINE_SPINLOCK(pause_on_oops_lock);
37 bool crash_kexec_post_notifiers;
38 int panic_on_warn __read_mostly;
39 
40 int panic_timeout = CONFIG_PANIC_TIMEOUT;
41 EXPORT_SYMBOL_GPL(panic_timeout);
42 
43 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
44 
45 EXPORT_SYMBOL(panic_notifier_list);
46 
47 static long no_blink(int state)
48 {
49 	return 0;
50 }
51 
52 /* Returns how long it waited in ms */
53 long (*panic_blink)(int state);
54 EXPORT_SYMBOL(panic_blink);
55 
56 /*
57  * Stop ourself in panic -- architecture code may override this
58  */
59 void __weak panic_smp_self_stop(void)
60 {
61 	while (1)
62 		cpu_relax();
63 }
64 
65 /*
66  * Stop ourselves in NMI context if another CPU has already panicked. Arch code
67  * may override this to prepare for crash dumping, e.g. save regs info.
68  */
69 void __weak nmi_panic_self_stop(struct pt_regs *regs)
70 {
71 	panic_smp_self_stop();
72 }
73 
74 /*
75  * Stop other CPUs in panic.  Architecture dependent code may override this
76  * with more suitable version.  For example, if the architecture supports
77  * crash dump, it should save registers of each stopped CPU and disable
78  * per-CPU features such as virtualization extensions.
79  */
80 void __weak crash_smp_send_stop(void)
81 {
82 	static int cpus_stopped;
83 
84 	/*
85 	 * This function can be called twice in panic path, but obviously
86 	 * we execute this only once.
87 	 */
88 	if (cpus_stopped)
89 		return;
90 
91 	/*
92 	 * Note smp_send_stop is the usual smp shutdown function, which
93 	 * unfortunately means it may not be hardened to work in a panic
94 	 * situation.
95 	 */
96 	smp_send_stop();
97 	cpus_stopped = 1;
98 }
99 
100 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
101 
102 /*
103  * A variant of panic() called from NMI context. We return if we've already
104  * panicked on this CPU. If another CPU already panicked, loop in
105  * nmi_panic_self_stop() which can provide architecture dependent code such
106  * as saving register state for crash dump.
107  */
108 void nmi_panic(struct pt_regs *regs, const char *msg)
109 {
110 	int old_cpu, cpu;
111 
112 	cpu = raw_smp_processor_id();
113 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
114 
115 	if (old_cpu == PANIC_CPU_INVALID)
116 		panic("%s", msg);
117 	else if (old_cpu != cpu)
118 		nmi_panic_self_stop(regs);
119 }
120 EXPORT_SYMBOL(nmi_panic);
121 
122 /**
123  *	panic - halt the system
124  *	@fmt: The text string to print
125  *
126  *	Display a message, then perform cleanups.
127  *
128  *	This function never returns.
129  */
130 void panic(const char *fmt, ...)
131 {
132 	static char buf[1024];
133 	va_list args;
134 	long i, i_next = 0;
135 	int state = 0;
136 	int old_cpu, this_cpu;
137 	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
138 
139 	/*
140 	 * Disable local interrupts. This will prevent panic_smp_self_stop
141 	 * from deadlocking the first cpu that invokes the panic, since
142 	 * there is nothing to prevent an interrupt handler (that runs
143 	 * after setting panic_cpu) from invoking panic() again.
144 	 */
145 	local_irq_disable();
146 
147 	/*
148 	 * It's possible to come here directly from a panic-assertion and
149 	 * not have preempt disabled. Some functions called from here want
150 	 * preempt to be disabled. No point enabling it later though...
151 	 *
152 	 * Only one CPU is allowed to execute the panic code from here. For
153 	 * multiple parallel invocations of panic, all other CPUs either
154 	 * stop themself or will wait until they are stopped by the 1st CPU
155 	 * with smp_send_stop().
156 	 *
157 	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
158 	 * comes here, so go ahead.
159 	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
160 	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
161 	 */
162 	this_cpu = raw_smp_processor_id();
163 	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
164 
165 	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
166 		panic_smp_self_stop();
167 
168 	console_verbose();
169 	bust_spinlocks(1);
170 	va_start(args, fmt);
171 	vsnprintf(buf, sizeof(buf), fmt, args);
172 	va_end(args);
173 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
174 #ifdef CONFIG_DEBUG_BUGVERBOSE
175 	/*
176 	 * Avoid nested stack-dumping if a panic occurs during oops processing
177 	 */
178 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
179 		dump_stack();
180 #endif
181 
182 	/*
183 	 * If we have crashed and we have a crash kernel loaded let it handle
184 	 * everything else.
185 	 * If we want to run this after calling panic_notifiers, pass
186 	 * the "crash_kexec_post_notifiers" option to the kernel.
187 	 *
188 	 * Bypass the panic_cpu check and call __crash_kexec directly.
189 	 */
190 	if (!_crash_kexec_post_notifiers) {
191 		printk_nmi_flush_on_panic();
192 		__crash_kexec(NULL);
193 
194 		/*
195 		 * Note smp_send_stop is the usual smp shutdown function, which
196 		 * unfortunately means it may not be hardened to work in a
197 		 * panic situation.
198 		 */
199 		smp_send_stop();
200 	} else {
201 		/*
202 		 * If we want to do crash dump after notifier calls and
203 		 * kmsg_dump, we will need architecture dependent extra
204 		 * works in addition to stopping other CPUs.
205 		 */
206 		crash_smp_send_stop();
207 	}
208 
209 	/*
210 	 * Run any panic handlers, including those that might need to
211 	 * add information to the kmsg dump output.
212 	 */
213 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
214 
215 	/* Call flush even twice. It tries harder with a single online CPU */
216 	printk_nmi_flush_on_panic();
217 	kmsg_dump(KMSG_DUMP_PANIC);
218 
219 	/*
220 	 * If you doubt kdump always works fine in any situation,
221 	 * "crash_kexec_post_notifiers" offers you a chance to run
222 	 * panic_notifiers and dumping kmsg before kdump.
223 	 * Note: since some panic_notifiers can make crashed kernel
224 	 * more unstable, it can increase risks of the kdump failure too.
225 	 *
226 	 * Bypass the panic_cpu check and call __crash_kexec directly.
227 	 */
228 	if (_crash_kexec_post_notifiers)
229 		__crash_kexec(NULL);
230 
231 	bust_spinlocks(0);
232 
233 	/*
234 	 * We may have ended up stopping the CPU holding the lock (in
235 	 * smp_send_stop()) while still having some valuable data in the console
236 	 * buffer.  Try to acquire the lock then release it regardless of the
237 	 * result.  The release will also print the buffers out.  Locks debug
238 	 * should be disabled to avoid reporting bad unlock balance when
239 	 * panic() is not being callled from OOPS.
240 	 */
241 	debug_locks_off();
242 	console_flush_on_panic();
243 
244 	if (!panic_blink)
245 		panic_blink = no_blink;
246 
247 	if (panic_timeout > 0) {
248 		/*
249 		 * Delay timeout seconds before rebooting the machine.
250 		 * We can't use the "normal" timers since we just panicked.
251 		 */
252 		pr_emerg("Rebooting in %d seconds..", panic_timeout);
253 
254 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
255 			touch_nmi_watchdog();
256 			if (i >= i_next) {
257 				i += panic_blink(state ^= 1);
258 				i_next = i + 3600 / PANIC_BLINK_SPD;
259 			}
260 			mdelay(PANIC_TIMER_STEP);
261 		}
262 	}
263 	if (panic_timeout != 0) {
264 		/*
265 		 * This will not be a clean reboot, with everything
266 		 * shutting down.  But if there is a chance of
267 		 * rebooting the system it will be rebooted.
268 		 */
269 		emergency_restart();
270 	}
271 #ifdef __sparc__
272 	{
273 		extern int stop_a_enabled;
274 		/* Make sure the user can actually press Stop-A (L1-A) */
275 		stop_a_enabled = 1;
276 		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
277 	}
278 #endif
279 #if defined(CONFIG_S390)
280 	{
281 		unsigned long caller;
282 
283 		caller = (unsigned long)__builtin_return_address(0);
284 		disabled_wait(caller);
285 	}
286 #endif
287 	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
288 	local_irq_enable();
289 	for (i = 0; ; i += PANIC_TIMER_STEP) {
290 		touch_softlockup_watchdog();
291 		if (i >= i_next) {
292 			i += panic_blink(state ^= 1);
293 			i_next = i + 3600 / PANIC_BLINK_SPD;
294 		}
295 		mdelay(PANIC_TIMER_STEP);
296 	}
297 }
298 
299 EXPORT_SYMBOL(panic);
300 
301 
302 struct tnt {
303 	u8	bit;
304 	char	true;
305 	char	false;
306 };
307 
308 static const struct tnt tnts[] = {
309 	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
310 	{ TAINT_FORCED_MODULE,		'F', ' ' },
311 	{ TAINT_CPU_OUT_OF_SPEC,	'S', ' ' },
312 	{ TAINT_FORCED_RMMOD,		'R', ' ' },
313 	{ TAINT_MACHINE_CHECK,		'M', ' ' },
314 	{ TAINT_BAD_PAGE,		'B', ' ' },
315 	{ TAINT_USER,			'U', ' ' },
316 	{ TAINT_DIE,			'D', ' ' },
317 	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
318 	{ TAINT_WARN,			'W', ' ' },
319 	{ TAINT_CRAP,			'C', ' ' },
320 	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
321 	{ TAINT_OOT_MODULE,		'O', ' ' },
322 	{ TAINT_UNSIGNED_MODULE,	'E', ' ' },
323 	{ TAINT_SOFTLOCKUP,		'L', ' ' },
324 	{ TAINT_LIVEPATCH,		'K', ' ' },
325 };
326 
327 /**
328  *	print_tainted - return a string to represent the kernel taint state.
329  *
330  *  'P' - Proprietary module has been loaded.
331  *  'F' - Module has been forcibly loaded.
332  *  'S' - SMP with CPUs not designed for SMP.
333  *  'R' - User forced a module unload.
334  *  'M' - System experienced a machine check exception.
335  *  'B' - System has hit bad_page.
336  *  'U' - Userspace-defined naughtiness.
337  *  'D' - Kernel has oopsed before
338  *  'A' - ACPI table overridden.
339  *  'W' - Taint on warning.
340  *  'C' - modules from drivers/staging are loaded.
341  *  'I' - Working around severe firmware bug.
342  *  'O' - Out-of-tree module has been loaded.
343  *  'E' - Unsigned module has been loaded.
344  *  'L' - A soft lockup has previously occurred.
345  *  'K' - Kernel has been live patched.
346  *
347  *	The string is overwritten by the next call to print_tainted().
348  */
349 const char *print_tainted(void)
350 {
351 	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
352 
353 	if (tainted_mask) {
354 		char *s;
355 		int i;
356 
357 		s = buf + sprintf(buf, "Tainted: ");
358 		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
359 			const struct tnt *t = &tnts[i];
360 			*s++ = test_bit(t->bit, &tainted_mask) ?
361 					t->true : t->false;
362 		}
363 		*s = 0;
364 	} else
365 		snprintf(buf, sizeof(buf), "Not tainted");
366 
367 	return buf;
368 }
369 
370 int test_taint(unsigned flag)
371 {
372 	return test_bit(flag, &tainted_mask);
373 }
374 EXPORT_SYMBOL(test_taint);
375 
376 unsigned long get_taint(void)
377 {
378 	return tainted_mask;
379 }
380 
381 /**
382  * add_taint: add a taint flag if not already set.
383  * @flag: one of the TAINT_* constants.
384  * @lockdep_ok: whether lock debugging is still OK.
385  *
386  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
387  * some notewortht-but-not-corrupting cases, it can be set to true.
388  */
389 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
390 {
391 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
392 		pr_warn("Disabling lock debugging due to kernel taint\n");
393 
394 	set_bit(flag, &tainted_mask);
395 }
396 EXPORT_SYMBOL(add_taint);
397 
398 static void spin_msec(int msecs)
399 {
400 	int i;
401 
402 	for (i = 0; i < msecs; i++) {
403 		touch_nmi_watchdog();
404 		mdelay(1);
405 	}
406 }
407 
408 /*
409  * It just happens that oops_enter() and oops_exit() are identically
410  * implemented...
411  */
412 static void do_oops_enter_exit(void)
413 {
414 	unsigned long flags;
415 	static int spin_counter;
416 
417 	if (!pause_on_oops)
418 		return;
419 
420 	spin_lock_irqsave(&pause_on_oops_lock, flags);
421 	if (pause_on_oops_flag == 0) {
422 		/* This CPU may now print the oops message */
423 		pause_on_oops_flag = 1;
424 	} else {
425 		/* We need to stall this CPU */
426 		if (!spin_counter) {
427 			/* This CPU gets to do the counting */
428 			spin_counter = pause_on_oops;
429 			do {
430 				spin_unlock(&pause_on_oops_lock);
431 				spin_msec(MSEC_PER_SEC);
432 				spin_lock(&pause_on_oops_lock);
433 			} while (--spin_counter);
434 			pause_on_oops_flag = 0;
435 		} else {
436 			/* This CPU waits for a different one */
437 			while (spin_counter) {
438 				spin_unlock(&pause_on_oops_lock);
439 				spin_msec(1);
440 				spin_lock(&pause_on_oops_lock);
441 			}
442 		}
443 	}
444 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
445 }
446 
447 /*
448  * Return true if the calling CPU is allowed to print oops-related info.
449  * This is a bit racy..
450  */
451 int oops_may_print(void)
452 {
453 	return pause_on_oops_flag == 0;
454 }
455 
456 /*
457  * Called when the architecture enters its oops handler, before it prints
458  * anything.  If this is the first CPU to oops, and it's oopsing the first
459  * time then let it proceed.
460  *
461  * This is all enabled by the pause_on_oops kernel boot option.  We do all
462  * this to ensure that oopses don't scroll off the screen.  It has the
463  * side-effect of preventing later-oopsing CPUs from mucking up the display,
464  * too.
465  *
466  * It turns out that the CPU which is allowed to print ends up pausing for
467  * the right duration, whereas all the other CPUs pause for twice as long:
468  * once in oops_enter(), once in oops_exit().
469  */
470 void oops_enter(void)
471 {
472 	tracing_off();
473 	/* can't trust the integrity of the kernel anymore: */
474 	debug_locks_off();
475 	do_oops_enter_exit();
476 }
477 
478 /*
479  * 64-bit random ID for oopses:
480  */
481 static u64 oops_id;
482 
483 static int init_oops_id(void)
484 {
485 	if (!oops_id)
486 		get_random_bytes(&oops_id, sizeof(oops_id));
487 	else
488 		oops_id++;
489 
490 	return 0;
491 }
492 late_initcall(init_oops_id);
493 
494 void print_oops_end_marker(void)
495 {
496 	init_oops_id();
497 	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
498 }
499 
500 /*
501  * Called when the architecture exits its oops handler, after printing
502  * everything.
503  */
504 void oops_exit(void)
505 {
506 	do_oops_enter_exit();
507 	print_oops_end_marker();
508 	kmsg_dump(KMSG_DUMP_OOPS);
509 }
510 
511 struct warn_args {
512 	const char *fmt;
513 	va_list args;
514 };
515 
516 void __warn(const char *file, int line, void *caller, unsigned taint,
517 	    struct pt_regs *regs, struct warn_args *args)
518 {
519 	disable_trace_on_warning();
520 
521 	pr_warn("------------[ cut here ]------------\n");
522 
523 	if (file)
524 		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
525 			raw_smp_processor_id(), current->pid, file, line,
526 			caller);
527 	else
528 		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
529 			raw_smp_processor_id(), current->pid, caller);
530 
531 	if (args)
532 		vprintk(args->fmt, args->args);
533 
534 	if (panic_on_warn) {
535 		/*
536 		 * This thread may hit another WARN() in the panic path.
537 		 * Resetting this prevents additional WARN() from panicking the
538 		 * system on this thread.  Other threads are blocked by the
539 		 * panic_mutex in panic().
540 		 */
541 		panic_on_warn = 0;
542 		panic("panic_on_warn set ...\n");
543 	}
544 
545 	print_modules();
546 
547 	if (regs)
548 		show_regs(regs);
549 	else
550 		dump_stack();
551 
552 	print_oops_end_marker();
553 
554 	/* Just a warning, don't kill lockdep. */
555 	add_taint(taint, LOCKDEP_STILL_OK);
556 }
557 
558 #ifdef WANT_WARN_ON_SLOWPATH
559 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
560 {
561 	struct warn_args args;
562 
563 	args.fmt = fmt;
564 	va_start(args.args, fmt);
565 	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
566 	       &args);
567 	va_end(args.args);
568 }
569 EXPORT_SYMBOL(warn_slowpath_fmt);
570 
571 void warn_slowpath_fmt_taint(const char *file, int line,
572 			     unsigned taint, const char *fmt, ...)
573 {
574 	struct warn_args args;
575 
576 	args.fmt = fmt;
577 	va_start(args.args, fmt);
578 	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
579 	va_end(args.args);
580 }
581 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
582 
583 void warn_slowpath_null(const char *file, int line)
584 {
585 	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
586 }
587 EXPORT_SYMBOL(warn_slowpath_null);
588 #endif
589 
590 #ifdef CONFIG_CC_STACKPROTECTOR
591 
592 /*
593  * Called when gcc's -fstack-protector feature is used, and
594  * gcc detects corruption of the on-stack canary value
595  */
596 __visible void __stack_chk_fail(void)
597 {
598 	panic("stack-protector: Kernel stack is corrupted in: %p\n",
599 		__builtin_return_address(0));
600 }
601 EXPORT_SYMBOL(__stack_chk_fail);
602 
603 #endif
604 
605 core_param(panic, panic_timeout, int, 0644);
606 core_param(pause_on_oops, pause_on_oops, int, 0644);
607 core_param(panic_on_warn, panic_on_warn, int, 0644);
608 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
609 
610 static int __init oops_setup(char *s)
611 {
612 	if (!s)
613 		return -EINVAL;
614 	if (!strcmp(s, "panic"))
615 		panic_on_oops = 1;
616 	return 0;
617 }
618 early_param("oops", oops_setup);
619