xref: /openbmc/linux/kernel/panic.c (revision 59bd9ded)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/panic.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * This function is used through-out the kernel (including mm and fs)
10  * to indicate a major problem.
11  */
12 #include <linux/debug_locks.h>
13 #include <linux/sched/debug.h>
14 #include <linux/interrupt.h>
15 #include <linux/kmsg_dump.h>
16 #include <linux/kallsyms.h>
17 #include <linux/notifier.h>
18 #include <linux/vt_kern.h>
19 #include <linux/module.h>
20 #include <linux/random.h>
21 #include <linux/ftrace.h>
22 #include <linux/reboot.h>
23 #include <linux/delay.h>
24 #include <linux/kexec.h>
25 #include <linux/sched.h>
26 #include <linux/sysrq.h>
27 #include <linux/init.h>
28 #include <linux/nmi.h>
29 #include <linux/console.h>
30 #include <linux/bug.h>
31 #include <linux/ratelimit.h>
32 #include <linux/debugfs.h>
33 #include <asm/sections.h>
34 
35 #define PANIC_TIMER_STEP 100
36 #define PANIC_BLINK_SPD 18
37 
38 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
39 static unsigned long tainted_mask =
40 	IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
41 static int pause_on_oops;
42 static int pause_on_oops_flag;
43 static DEFINE_SPINLOCK(pause_on_oops_lock);
44 bool crash_kexec_post_notifiers;
45 int panic_on_warn __read_mostly;
46 
47 int panic_timeout = CONFIG_PANIC_TIMEOUT;
48 EXPORT_SYMBOL_GPL(panic_timeout);
49 
50 #define PANIC_PRINT_TASK_INFO		0x00000001
51 #define PANIC_PRINT_MEM_INFO		0x00000002
52 #define PANIC_PRINT_TIMER_INFO		0x00000004
53 #define PANIC_PRINT_LOCK_INFO		0x00000008
54 #define PANIC_PRINT_FTRACE_INFO		0x00000010
55 #define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
56 unsigned long panic_print;
57 
58 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
59 
60 EXPORT_SYMBOL(panic_notifier_list);
61 
62 static long no_blink(int state)
63 {
64 	return 0;
65 }
66 
67 /* Returns how long it waited in ms */
68 long (*panic_blink)(int state);
69 EXPORT_SYMBOL(panic_blink);
70 
71 /*
72  * Stop ourself in panic -- architecture code may override this
73  */
74 void __weak panic_smp_self_stop(void)
75 {
76 	while (1)
77 		cpu_relax();
78 }
79 
80 /*
81  * Stop ourselves in NMI context if another CPU has already panicked. Arch code
82  * may override this to prepare for crash dumping, e.g. save regs info.
83  */
84 void __weak nmi_panic_self_stop(struct pt_regs *regs)
85 {
86 	panic_smp_self_stop();
87 }
88 
89 /*
90  * Stop other CPUs in panic.  Architecture dependent code may override this
91  * with more suitable version.  For example, if the architecture supports
92  * crash dump, it should save registers of each stopped CPU and disable
93  * per-CPU features such as virtualization extensions.
94  */
95 void __weak crash_smp_send_stop(void)
96 {
97 	static int cpus_stopped;
98 
99 	/*
100 	 * This function can be called twice in panic path, but obviously
101 	 * we execute this only once.
102 	 */
103 	if (cpus_stopped)
104 		return;
105 
106 	/*
107 	 * Note smp_send_stop is the usual smp shutdown function, which
108 	 * unfortunately means it may not be hardened to work in a panic
109 	 * situation.
110 	 */
111 	smp_send_stop();
112 	cpus_stopped = 1;
113 }
114 
115 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
116 
117 /*
118  * A variant of panic() called from NMI context. We return if we've already
119  * panicked on this CPU. If another CPU already panicked, loop in
120  * nmi_panic_self_stop() which can provide architecture dependent code such
121  * as saving register state for crash dump.
122  */
123 void nmi_panic(struct pt_regs *regs, const char *msg)
124 {
125 	int old_cpu, cpu;
126 
127 	cpu = raw_smp_processor_id();
128 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
129 
130 	if (old_cpu == PANIC_CPU_INVALID)
131 		panic("%s", msg);
132 	else if (old_cpu != cpu)
133 		nmi_panic_self_stop(regs);
134 }
135 EXPORT_SYMBOL(nmi_panic);
136 
137 static void panic_print_sys_info(void)
138 {
139 	if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
140 		console_flush_on_panic(CONSOLE_REPLAY_ALL);
141 
142 	if (panic_print & PANIC_PRINT_TASK_INFO)
143 		show_state();
144 
145 	if (panic_print & PANIC_PRINT_MEM_INFO)
146 		show_mem(0, NULL);
147 
148 	if (panic_print & PANIC_PRINT_TIMER_INFO)
149 		sysrq_timer_list_show();
150 
151 	if (panic_print & PANIC_PRINT_LOCK_INFO)
152 		debug_show_all_locks();
153 
154 	if (panic_print & PANIC_PRINT_FTRACE_INFO)
155 		ftrace_dump(DUMP_ALL);
156 }
157 
158 /**
159  *	panic - halt the system
160  *	@fmt: The text string to print
161  *
162  *	Display a message, then perform cleanups.
163  *
164  *	This function never returns.
165  */
166 void panic(const char *fmt, ...)
167 {
168 	static char buf[1024];
169 	va_list args;
170 	long i, i_next = 0, len;
171 	int state = 0;
172 	int old_cpu, this_cpu;
173 	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
174 
175 	/*
176 	 * Disable local interrupts. This will prevent panic_smp_self_stop
177 	 * from deadlocking the first cpu that invokes the panic, since
178 	 * there is nothing to prevent an interrupt handler (that runs
179 	 * after setting panic_cpu) from invoking panic() again.
180 	 */
181 	local_irq_disable();
182 
183 	/*
184 	 * It's possible to come here directly from a panic-assertion and
185 	 * not have preempt disabled. Some functions called from here want
186 	 * preempt to be disabled. No point enabling it later though...
187 	 *
188 	 * Only one CPU is allowed to execute the panic code from here. For
189 	 * multiple parallel invocations of panic, all other CPUs either
190 	 * stop themself or will wait until they are stopped by the 1st CPU
191 	 * with smp_send_stop().
192 	 *
193 	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
194 	 * comes here, so go ahead.
195 	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
196 	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
197 	 */
198 	this_cpu = raw_smp_processor_id();
199 	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
200 
201 	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
202 		panic_smp_self_stop();
203 
204 	console_verbose();
205 	bust_spinlocks(1);
206 	va_start(args, fmt);
207 	len = vscnprintf(buf, sizeof(buf), fmt, args);
208 	va_end(args);
209 
210 	if (len && buf[len - 1] == '\n')
211 		buf[len - 1] = '\0';
212 
213 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
214 #ifdef CONFIG_DEBUG_BUGVERBOSE
215 	/*
216 	 * Avoid nested stack-dumping if a panic occurs during oops processing
217 	 */
218 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
219 		dump_stack();
220 #endif
221 
222 	/*
223 	 * If we have crashed and we have a crash kernel loaded let it handle
224 	 * everything else.
225 	 * If we want to run this after calling panic_notifiers, pass
226 	 * the "crash_kexec_post_notifiers" option to the kernel.
227 	 *
228 	 * Bypass the panic_cpu check and call __crash_kexec directly.
229 	 */
230 	if (!_crash_kexec_post_notifiers) {
231 		printk_safe_flush_on_panic();
232 		__crash_kexec(NULL);
233 
234 		/*
235 		 * Note smp_send_stop is the usual smp shutdown function, which
236 		 * unfortunately means it may not be hardened to work in a
237 		 * panic situation.
238 		 */
239 		smp_send_stop();
240 	} else {
241 		/*
242 		 * If we want to do crash dump after notifier calls and
243 		 * kmsg_dump, we will need architecture dependent extra
244 		 * works in addition to stopping other CPUs.
245 		 */
246 		crash_smp_send_stop();
247 	}
248 
249 	/*
250 	 * Run any panic handlers, including those that might need to
251 	 * add information to the kmsg dump output.
252 	 */
253 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
254 
255 	/* Call flush even twice. It tries harder with a single online CPU */
256 	printk_safe_flush_on_panic();
257 	kmsg_dump(KMSG_DUMP_PANIC);
258 
259 	/*
260 	 * If you doubt kdump always works fine in any situation,
261 	 * "crash_kexec_post_notifiers" offers you a chance to run
262 	 * panic_notifiers and dumping kmsg before kdump.
263 	 * Note: since some panic_notifiers can make crashed kernel
264 	 * more unstable, it can increase risks of the kdump failure too.
265 	 *
266 	 * Bypass the panic_cpu check and call __crash_kexec directly.
267 	 */
268 	if (_crash_kexec_post_notifiers)
269 		__crash_kexec(NULL);
270 
271 #ifdef CONFIG_VT
272 	unblank_screen();
273 #endif
274 	console_unblank();
275 
276 	/*
277 	 * We may have ended up stopping the CPU holding the lock (in
278 	 * smp_send_stop()) while still having some valuable data in the console
279 	 * buffer.  Try to acquire the lock then release it regardless of the
280 	 * result.  The release will also print the buffers out.  Locks debug
281 	 * should be disabled to avoid reporting bad unlock balance when
282 	 * panic() is not being callled from OOPS.
283 	 */
284 	debug_locks_off();
285 	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
286 
287 	panic_print_sys_info();
288 
289 	if (!panic_blink)
290 		panic_blink = no_blink;
291 
292 	if (panic_timeout > 0) {
293 		/*
294 		 * Delay timeout seconds before rebooting the machine.
295 		 * We can't use the "normal" timers since we just panicked.
296 		 */
297 		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
298 
299 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
300 			touch_nmi_watchdog();
301 			if (i >= i_next) {
302 				i += panic_blink(state ^= 1);
303 				i_next = i + 3600 / PANIC_BLINK_SPD;
304 			}
305 			mdelay(PANIC_TIMER_STEP);
306 		}
307 	}
308 	if (panic_timeout != 0) {
309 		/*
310 		 * This will not be a clean reboot, with everything
311 		 * shutting down.  But if there is a chance of
312 		 * rebooting the system it will be rebooted.
313 		 */
314 		if (panic_reboot_mode != REBOOT_UNDEFINED)
315 			reboot_mode = panic_reboot_mode;
316 		emergency_restart();
317 	}
318 #ifdef __sparc__
319 	{
320 		extern int stop_a_enabled;
321 		/* Make sure the user can actually press Stop-A (L1-A) */
322 		stop_a_enabled = 1;
323 		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
324 			 "twice on console to return to the boot prom\n");
325 	}
326 #endif
327 #if defined(CONFIG_S390)
328 	disabled_wait();
329 #endif
330 	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
331 
332 	/* Do not scroll important messages printed above */
333 	suppress_printk = 1;
334 	local_irq_enable();
335 	for (i = 0; ; i += PANIC_TIMER_STEP) {
336 		touch_softlockup_watchdog();
337 		if (i >= i_next) {
338 			i += panic_blink(state ^= 1);
339 			i_next = i + 3600 / PANIC_BLINK_SPD;
340 		}
341 		mdelay(PANIC_TIMER_STEP);
342 	}
343 }
344 
345 EXPORT_SYMBOL(panic);
346 
347 /*
348  * TAINT_FORCED_RMMOD could be a per-module flag but the module
349  * is being removed anyway.
350  */
351 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
352 	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
353 	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
354 	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
355 	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
356 	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
357 	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
358 	[ TAINT_USER ]			= { 'U', ' ', false },
359 	[ TAINT_DIE ]			= { 'D', ' ', false },
360 	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
361 	[ TAINT_WARN ]			= { 'W', ' ', false },
362 	[ TAINT_CRAP ]			= { 'C', ' ', true },
363 	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
364 	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
365 	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
366 	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
367 	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
368 	[ TAINT_AUX ]			= { 'X', ' ', true },
369 	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
370 };
371 
372 /**
373  * print_tainted - return a string to represent the kernel taint state.
374  *
375  * For individual taint flag meanings, see Documentation/sysctl/kernel.txt
376  *
377  * The string is overwritten by the next call to print_tainted(),
378  * but is always NULL terminated.
379  */
380 const char *print_tainted(void)
381 {
382 	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
383 
384 	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
385 
386 	if (tainted_mask) {
387 		char *s;
388 		int i;
389 
390 		s = buf + sprintf(buf, "Tainted: ");
391 		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
392 			const struct taint_flag *t = &taint_flags[i];
393 			*s++ = test_bit(i, &tainted_mask) ?
394 					t->c_true : t->c_false;
395 		}
396 		*s = 0;
397 	} else
398 		snprintf(buf, sizeof(buf), "Not tainted");
399 
400 	return buf;
401 }
402 
403 int test_taint(unsigned flag)
404 {
405 	return test_bit(flag, &tainted_mask);
406 }
407 EXPORT_SYMBOL(test_taint);
408 
409 unsigned long get_taint(void)
410 {
411 	return tainted_mask;
412 }
413 
414 /**
415  * add_taint: add a taint flag if not already set.
416  * @flag: one of the TAINT_* constants.
417  * @lockdep_ok: whether lock debugging is still OK.
418  *
419  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
420  * some notewortht-but-not-corrupting cases, it can be set to true.
421  */
422 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
423 {
424 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
425 		pr_warn("Disabling lock debugging due to kernel taint\n");
426 
427 	set_bit(flag, &tainted_mask);
428 }
429 EXPORT_SYMBOL(add_taint);
430 
431 static void spin_msec(int msecs)
432 {
433 	int i;
434 
435 	for (i = 0; i < msecs; i++) {
436 		touch_nmi_watchdog();
437 		mdelay(1);
438 	}
439 }
440 
441 /*
442  * It just happens that oops_enter() and oops_exit() are identically
443  * implemented...
444  */
445 static void do_oops_enter_exit(void)
446 {
447 	unsigned long flags;
448 	static int spin_counter;
449 
450 	if (!pause_on_oops)
451 		return;
452 
453 	spin_lock_irqsave(&pause_on_oops_lock, flags);
454 	if (pause_on_oops_flag == 0) {
455 		/* This CPU may now print the oops message */
456 		pause_on_oops_flag = 1;
457 	} else {
458 		/* We need to stall this CPU */
459 		if (!spin_counter) {
460 			/* This CPU gets to do the counting */
461 			spin_counter = pause_on_oops;
462 			do {
463 				spin_unlock(&pause_on_oops_lock);
464 				spin_msec(MSEC_PER_SEC);
465 				spin_lock(&pause_on_oops_lock);
466 			} while (--spin_counter);
467 			pause_on_oops_flag = 0;
468 		} else {
469 			/* This CPU waits for a different one */
470 			while (spin_counter) {
471 				spin_unlock(&pause_on_oops_lock);
472 				spin_msec(1);
473 				spin_lock(&pause_on_oops_lock);
474 			}
475 		}
476 	}
477 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
478 }
479 
480 /*
481  * Return true if the calling CPU is allowed to print oops-related info.
482  * This is a bit racy..
483  */
484 int oops_may_print(void)
485 {
486 	return pause_on_oops_flag == 0;
487 }
488 
489 /*
490  * Called when the architecture enters its oops handler, before it prints
491  * anything.  If this is the first CPU to oops, and it's oopsing the first
492  * time then let it proceed.
493  *
494  * This is all enabled by the pause_on_oops kernel boot option.  We do all
495  * this to ensure that oopses don't scroll off the screen.  It has the
496  * side-effect of preventing later-oopsing CPUs from mucking up the display,
497  * too.
498  *
499  * It turns out that the CPU which is allowed to print ends up pausing for
500  * the right duration, whereas all the other CPUs pause for twice as long:
501  * once in oops_enter(), once in oops_exit().
502  */
503 void oops_enter(void)
504 {
505 	tracing_off();
506 	/* can't trust the integrity of the kernel anymore: */
507 	debug_locks_off();
508 	do_oops_enter_exit();
509 }
510 
511 /*
512  * 64-bit random ID for oopses:
513  */
514 static u64 oops_id;
515 
516 static int init_oops_id(void)
517 {
518 	if (!oops_id)
519 		get_random_bytes(&oops_id, sizeof(oops_id));
520 	else
521 		oops_id++;
522 
523 	return 0;
524 }
525 late_initcall(init_oops_id);
526 
527 void print_oops_end_marker(void)
528 {
529 	init_oops_id();
530 	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
531 }
532 
533 /*
534  * Called when the architecture exits its oops handler, after printing
535  * everything.
536  */
537 void oops_exit(void)
538 {
539 	do_oops_enter_exit();
540 	print_oops_end_marker();
541 	kmsg_dump(KMSG_DUMP_OOPS);
542 }
543 
544 struct warn_args {
545 	const char *fmt;
546 	va_list args;
547 };
548 
549 void __warn(const char *file, int line, void *caller, unsigned taint,
550 	    struct pt_regs *regs, struct warn_args *args)
551 {
552 	disable_trace_on_warning();
553 
554 	if (args)
555 		pr_warn(CUT_HERE);
556 
557 	if (file)
558 		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
559 			raw_smp_processor_id(), current->pid, file, line,
560 			caller);
561 	else
562 		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
563 			raw_smp_processor_id(), current->pid, caller);
564 
565 	if (args)
566 		vprintk(args->fmt, args->args);
567 
568 	if (panic_on_warn) {
569 		/*
570 		 * This thread may hit another WARN() in the panic path.
571 		 * Resetting this prevents additional WARN() from panicking the
572 		 * system on this thread.  Other threads are blocked by the
573 		 * panic_mutex in panic().
574 		 */
575 		panic_on_warn = 0;
576 		panic("panic_on_warn set ...\n");
577 	}
578 
579 	print_modules();
580 
581 	if (regs)
582 		show_regs(regs);
583 	else
584 		dump_stack();
585 
586 	print_irqtrace_events(current);
587 
588 	print_oops_end_marker();
589 
590 	/* Just a warning, don't kill lockdep. */
591 	add_taint(taint, LOCKDEP_STILL_OK);
592 }
593 
594 #ifdef WANT_WARN_ON_SLOWPATH
595 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
596 {
597 	struct warn_args args;
598 
599 	args.fmt = fmt;
600 	va_start(args.args, fmt);
601 	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
602 	       &args);
603 	va_end(args.args);
604 }
605 EXPORT_SYMBOL(warn_slowpath_fmt);
606 
607 void warn_slowpath_fmt_taint(const char *file, int line,
608 			     unsigned taint, const char *fmt, ...)
609 {
610 	struct warn_args args;
611 
612 	args.fmt = fmt;
613 	va_start(args.args, fmt);
614 	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
615 	va_end(args.args);
616 }
617 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
618 
619 void warn_slowpath_null(const char *file, int line)
620 {
621 	pr_warn(CUT_HERE);
622 	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
623 }
624 EXPORT_SYMBOL(warn_slowpath_null);
625 #else
626 void __warn_printk(const char *fmt, ...)
627 {
628 	va_list args;
629 
630 	pr_warn(CUT_HERE);
631 
632 	va_start(args, fmt);
633 	vprintk(fmt, args);
634 	va_end(args);
635 }
636 EXPORT_SYMBOL(__warn_printk);
637 #endif
638 
639 #ifdef CONFIG_BUG
640 
641 /* Support resetting WARN*_ONCE state */
642 
643 static int clear_warn_once_set(void *data, u64 val)
644 {
645 	generic_bug_clear_once();
646 	memset(__start_once, 0, __end_once - __start_once);
647 	return 0;
648 }
649 
650 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
651 			 "%lld\n");
652 
653 static __init int register_warn_debugfs(void)
654 {
655 	/* Don't care about failure */
656 	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
657 				   &clear_warn_once_fops);
658 	return 0;
659 }
660 
661 device_initcall(register_warn_debugfs);
662 #endif
663 
664 #ifdef CONFIG_STACKPROTECTOR
665 
666 /*
667  * Called when gcc's -fstack-protector feature is used, and
668  * gcc detects corruption of the on-stack canary value
669  */
670 __visible void __stack_chk_fail(void)
671 {
672 	panic("stack-protector: Kernel stack is corrupted in: %pB",
673 		__builtin_return_address(0));
674 }
675 EXPORT_SYMBOL(__stack_chk_fail);
676 
677 #endif
678 
679 #ifdef CONFIG_ARCH_HAS_REFCOUNT
680 void refcount_error_report(struct pt_regs *regs, const char *err)
681 {
682 	WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n",
683 		err, (void *)instruction_pointer(regs),
684 		current->comm, task_pid_nr(current),
685 		from_kuid_munged(&init_user_ns, current_uid()),
686 		from_kuid_munged(&init_user_ns, current_euid()));
687 }
688 #endif
689 
690 core_param(panic, panic_timeout, int, 0644);
691 core_param(panic_print, panic_print, ulong, 0644);
692 core_param(pause_on_oops, pause_on_oops, int, 0644);
693 core_param(panic_on_warn, panic_on_warn, int, 0644);
694 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
695 
696 static int __init oops_setup(char *s)
697 {
698 	if (!s)
699 		return -EINVAL;
700 	if (!strcmp(s, "panic"))
701 		panic_on_oops = 1;
702 	return 0;
703 }
704 early_param("oops", oops_setup);
705