xref: /openbmc/linux/kernel/panic.c (revision 56d06fa2)
1 /*
2  *  linux/kernel/panic.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * This function is used through-out the kernel (including mm and fs)
9  * to indicate a major problem.
10  */
11 #include <linux/debug_locks.h>
12 #include <linux/interrupt.h>
13 #include <linux/kmsg_dump.h>
14 #include <linux/kallsyms.h>
15 #include <linux/notifier.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/ftrace.h>
19 #include <linux/reboot.h>
20 #include <linux/delay.h>
21 #include <linux/kexec.h>
22 #include <linux/sched.h>
23 #include <linux/sysrq.h>
24 #include <linux/init.h>
25 #include <linux/nmi.h>
26 #include <linux/console.h>
27 #include <linux/bug.h>
28 
29 #define PANIC_TIMER_STEP 100
30 #define PANIC_BLINK_SPD 18
31 
32 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
33 static unsigned long tainted_mask;
34 static int pause_on_oops;
35 static int pause_on_oops_flag;
36 static DEFINE_SPINLOCK(pause_on_oops_lock);
37 bool crash_kexec_post_notifiers;
38 int panic_on_warn __read_mostly;
39 
40 int panic_timeout = CONFIG_PANIC_TIMEOUT;
41 EXPORT_SYMBOL_GPL(panic_timeout);
42 
43 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
44 
45 EXPORT_SYMBOL(panic_notifier_list);
46 
47 static long no_blink(int state)
48 {
49 	return 0;
50 }
51 
52 /* Returns how long it waited in ms */
53 long (*panic_blink)(int state);
54 EXPORT_SYMBOL(panic_blink);
55 
56 /*
57  * Stop ourself in panic -- architecture code may override this
58  */
59 void __weak panic_smp_self_stop(void)
60 {
61 	while (1)
62 		cpu_relax();
63 }
64 
65 /*
66  * Stop ourselves in NMI context if another CPU has already panicked. Arch code
67  * may override this to prepare for crash dumping, e.g. save regs info.
68  */
69 void __weak nmi_panic_self_stop(struct pt_regs *regs)
70 {
71 	panic_smp_self_stop();
72 }
73 
74 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
75 
76 /*
77  * A variant of panic() called from NMI context. We return if we've already
78  * panicked on this CPU. If another CPU already panicked, loop in
79  * nmi_panic_self_stop() which can provide architecture dependent code such
80  * as saving register state for crash dump.
81  */
82 void nmi_panic(struct pt_regs *regs, const char *msg)
83 {
84 	int old_cpu, cpu;
85 
86 	cpu = raw_smp_processor_id();
87 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
88 
89 	if (old_cpu == PANIC_CPU_INVALID)
90 		panic("%s", msg);
91 	else if (old_cpu != cpu)
92 		nmi_panic_self_stop(regs);
93 }
94 EXPORT_SYMBOL(nmi_panic);
95 
96 /**
97  *	panic - halt the system
98  *	@fmt: The text string to print
99  *
100  *	Display a message, then perform cleanups.
101  *
102  *	This function never returns.
103  */
104 void panic(const char *fmt, ...)
105 {
106 	static char buf[1024];
107 	va_list args;
108 	long i, i_next = 0;
109 	int state = 0;
110 	int old_cpu, this_cpu;
111 
112 	/*
113 	 * Disable local interrupts. This will prevent panic_smp_self_stop
114 	 * from deadlocking the first cpu that invokes the panic, since
115 	 * there is nothing to prevent an interrupt handler (that runs
116 	 * after setting panic_cpu) from invoking panic() again.
117 	 */
118 	local_irq_disable();
119 
120 	/*
121 	 * It's possible to come here directly from a panic-assertion and
122 	 * not have preempt disabled. Some functions called from here want
123 	 * preempt to be disabled. No point enabling it later though...
124 	 *
125 	 * Only one CPU is allowed to execute the panic code from here. For
126 	 * multiple parallel invocations of panic, all other CPUs either
127 	 * stop themself or will wait until they are stopped by the 1st CPU
128 	 * with smp_send_stop().
129 	 *
130 	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
131 	 * comes here, so go ahead.
132 	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
133 	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
134 	 */
135 	this_cpu = raw_smp_processor_id();
136 	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
137 
138 	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
139 		panic_smp_self_stop();
140 
141 	console_verbose();
142 	bust_spinlocks(1);
143 	va_start(args, fmt);
144 	vsnprintf(buf, sizeof(buf), fmt, args);
145 	va_end(args);
146 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
147 #ifdef CONFIG_DEBUG_BUGVERBOSE
148 	/*
149 	 * Avoid nested stack-dumping if a panic occurs during oops processing
150 	 */
151 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
152 		dump_stack();
153 #endif
154 
155 	/*
156 	 * If we have crashed and we have a crash kernel loaded let it handle
157 	 * everything else.
158 	 * If we want to run this after calling panic_notifiers, pass
159 	 * the "crash_kexec_post_notifiers" option to the kernel.
160 	 *
161 	 * Bypass the panic_cpu check and call __crash_kexec directly.
162 	 */
163 	if (!crash_kexec_post_notifiers)
164 		__crash_kexec(NULL);
165 
166 	/*
167 	 * Note smp_send_stop is the usual smp shutdown function, which
168 	 * unfortunately means it may not be hardened to work in a panic
169 	 * situation.
170 	 */
171 	smp_send_stop();
172 
173 	/*
174 	 * Run any panic handlers, including those that might need to
175 	 * add information to the kmsg dump output.
176 	 */
177 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
178 
179 	kmsg_dump(KMSG_DUMP_PANIC);
180 
181 	/*
182 	 * If you doubt kdump always works fine in any situation,
183 	 * "crash_kexec_post_notifiers" offers you a chance to run
184 	 * panic_notifiers and dumping kmsg before kdump.
185 	 * Note: since some panic_notifiers can make crashed kernel
186 	 * more unstable, it can increase risks of the kdump failure too.
187 	 *
188 	 * Bypass the panic_cpu check and call __crash_kexec directly.
189 	 */
190 	if (crash_kexec_post_notifiers)
191 		__crash_kexec(NULL);
192 
193 	bust_spinlocks(0);
194 
195 	/*
196 	 * We may have ended up stopping the CPU holding the lock (in
197 	 * smp_send_stop()) while still having some valuable data in the console
198 	 * buffer.  Try to acquire the lock then release it regardless of the
199 	 * result.  The release will also print the buffers out.  Locks debug
200 	 * should be disabled to avoid reporting bad unlock balance when
201 	 * panic() is not being callled from OOPS.
202 	 */
203 	debug_locks_off();
204 	console_flush_on_panic();
205 
206 	if (!panic_blink)
207 		panic_blink = no_blink;
208 
209 	if (panic_timeout > 0) {
210 		/*
211 		 * Delay timeout seconds before rebooting the machine.
212 		 * We can't use the "normal" timers since we just panicked.
213 		 */
214 		pr_emerg("Rebooting in %d seconds..", panic_timeout);
215 
216 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
217 			touch_nmi_watchdog();
218 			if (i >= i_next) {
219 				i += panic_blink(state ^= 1);
220 				i_next = i + 3600 / PANIC_BLINK_SPD;
221 			}
222 			mdelay(PANIC_TIMER_STEP);
223 		}
224 	}
225 	if (panic_timeout != 0) {
226 		/*
227 		 * This will not be a clean reboot, with everything
228 		 * shutting down.  But if there is a chance of
229 		 * rebooting the system it will be rebooted.
230 		 */
231 		emergency_restart();
232 	}
233 #ifdef __sparc__
234 	{
235 		extern int stop_a_enabled;
236 		/* Make sure the user can actually press Stop-A (L1-A) */
237 		stop_a_enabled = 1;
238 		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
239 	}
240 #endif
241 #if defined(CONFIG_S390)
242 	{
243 		unsigned long caller;
244 
245 		caller = (unsigned long)__builtin_return_address(0);
246 		disabled_wait(caller);
247 	}
248 #endif
249 	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
250 	local_irq_enable();
251 	for (i = 0; ; i += PANIC_TIMER_STEP) {
252 		touch_softlockup_watchdog();
253 		if (i >= i_next) {
254 			i += panic_blink(state ^= 1);
255 			i_next = i + 3600 / PANIC_BLINK_SPD;
256 		}
257 		mdelay(PANIC_TIMER_STEP);
258 	}
259 }
260 
261 EXPORT_SYMBOL(panic);
262 
263 
264 struct tnt {
265 	u8	bit;
266 	char	true;
267 	char	false;
268 };
269 
270 static const struct tnt tnts[] = {
271 	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
272 	{ TAINT_FORCED_MODULE,		'F', ' ' },
273 	{ TAINT_CPU_OUT_OF_SPEC,	'S', ' ' },
274 	{ TAINT_FORCED_RMMOD,		'R', ' ' },
275 	{ TAINT_MACHINE_CHECK,		'M', ' ' },
276 	{ TAINT_BAD_PAGE,		'B', ' ' },
277 	{ TAINT_USER,			'U', ' ' },
278 	{ TAINT_DIE,			'D', ' ' },
279 	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
280 	{ TAINT_WARN,			'W', ' ' },
281 	{ TAINT_CRAP,			'C', ' ' },
282 	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
283 	{ TAINT_OOT_MODULE,		'O', ' ' },
284 	{ TAINT_UNSIGNED_MODULE,	'E', ' ' },
285 	{ TAINT_SOFTLOCKUP,		'L', ' ' },
286 	{ TAINT_LIVEPATCH,		'K', ' ' },
287 };
288 
289 /**
290  *	print_tainted - return a string to represent the kernel taint state.
291  *
292  *  'P' - Proprietary module has been loaded.
293  *  'F' - Module has been forcibly loaded.
294  *  'S' - SMP with CPUs not designed for SMP.
295  *  'R' - User forced a module unload.
296  *  'M' - System experienced a machine check exception.
297  *  'B' - System has hit bad_page.
298  *  'U' - Userspace-defined naughtiness.
299  *  'D' - Kernel has oopsed before
300  *  'A' - ACPI table overridden.
301  *  'W' - Taint on warning.
302  *  'C' - modules from drivers/staging are loaded.
303  *  'I' - Working around severe firmware bug.
304  *  'O' - Out-of-tree module has been loaded.
305  *  'E' - Unsigned module has been loaded.
306  *  'L' - A soft lockup has previously occurred.
307  *  'K' - Kernel has been live patched.
308  *
309  *	The string is overwritten by the next call to print_tainted().
310  */
311 const char *print_tainted(void)
312 {
313 	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
314 
315 	if (tainted_mask) {
316 		char *s;
317 		int i;
318 
319 		s = buf + sprintf(buf, "Tainted: ");
320 		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
321 			const struct tnt *t = &tnts[i];
322 			*s++ = test_bit(t->bit, &tainted_mask) ?
323 					t->true : t->false;
324 		}
325 		*s = 0;
326 	} else
327 		snprintf(buf, sizeof(buf), "Not tainted");
328 
329 	return buf;
330 }
331 
332 int test_taint(unsigned flag)
333 {
334 	return test_bit(flag, &tainted_mask);
335 }
336 EXPORT_SYMBOL(test_taint);
337 
338 unsigned long get_taint(void)
339 {
340 	return tainted_mask;
341 }
342 
343 /**
344  * add_taint: add a taint flag if not already set.
345  * @flag: one of the TAINT_* constants.
346  * @lockdep_ok: whether lock debugging is still OK.
347  *
348  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
349  * some notewortht-but-not-corrupting cases, it can be set to true.
350  */
351 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
352 {
353 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
354 		pr_warn("Disabling lock debugging due to kernel taint\n");
355 
356 	set_bit(flag, &tainted_mask);
357 }
358 EXPORT_SYMBOL(add_taint);
359 
360 static void spin_msec(int msecs)
361 {
362 	int i;
363 
364 	for (i = 0; i < msecs; i++) {
365 		touch_nmi_watchdog();
366 		mdelay(1);
367 	}
368 }
369 
370 /*
371  * It just happens that oops_enter() and oops_exit() are identically
372  * implemented...
373  */
374 static void do_oops_enter_exit(void)
375 {
376 	unsigned long flags;
377 	static int spin_counter;
378 
379 	if (!pause_on_oops)
380 		return;
381 
382 	spin_lock_irqsave(&pause_on_oops_lock, flags);
383 	if (pause_on_oops_flag == 0) {
384 		/* This CPU may now print the oops message */
385 		pause_on_oops_flag = 1;
386 	} else {
387 		/* We need to stall this CPU */
388 		if (!spin_counter) {
389 			/* This CPU gets to do the counting */
390 			spin_counter = pause_on_oops;
391 			do {
392 				spin_unlock(&pause_on_oops_lock);
393 				spin_msec(MSEC_PER_SEC);
394 				spin_lock(&pause_on_oops_lock);
395 			} while (--spin_counter);
396 			pause_on_oops_flag = 0;
397 		} else {
398 			/* This CPU waits for a different one */
399 			while (spin_counter) {
400 				spin_unlock(&pause_on_oops_lock);
401 				spin_msec(1);
402 				spin_lock(&pause_on_oops_lock);
403 			}
404 		}
405 	}
406 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
407 }
408 
409 /*
410  * Return true if the calling CPU is allowed to print oops-related info.
411  * This is a bit racy..
412  */
413 int oops_may_print(void)
414 {
415 	return pause_on_oops_flag == 0;
416 }
417 
418 /*
419  * Called when the architecture enters its oops handler, before it prints
420  * anything.  If this is the first CPU to oops, and it's oopsing the first
421  * time then let it proceed.
422  *
423  * This is all enabled by the pause_on_oops kernel boot option.  We do all
424  * this to ensure that oopses don't scroll off the screen.  It has the
425  * side-effect of preventing later-oopsing CPUs from mucking up the display,
426  * too.
427  *
428  * It turns out that the CPU which is allowed to print ends up pausing for
429  * the right duration, whereas all the other CPUs pause for twice as long:
430  * once in oops_enter(), once in oops_exit().
431  */
432 void oops_enter(void)
433 {
434 	tracing_off();
435 	/* can't trust the integrity of the kernel anymore: */
436 	debug_locks_off();
437 	do_oops_enter_exit();
438 }
439 
440 /*
441  * 64-bit random ID for oopses:
442  */
443 static u64 oops_id;
444 
445 static int init_oops_id(void)
446 {
447 	if (!oops_id)
448 		get_random_bytes(&oops_id, sizeof(oops_id));
449 	else
450 		oops_id++;
451 
452 	return 0;
453 }
454 late_initcall(init_oops_id);
455 
456 void print_oops_end_marker(void)
457 {
458 	init_oops_id();
459 	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
460 }
461 
462 /*
463  * Called when the architecture exits its oops handler, after printing
464  * everything.
465  */
466 void oops_exit(void)
467 {
468 	do_oops_enter_exit();
469 	print_oops_end_marker();
470 	kmsg_dump(KMSG_DUMP_OOPS);
471 }
472 
473 struct warn_args {
474 	const char *fmt;
475 	va_list args;
476 };
477 
478 void __warn(const char *file, int line, void *caller, unsigned taint,
479 	    struct pt_regs *regs, struct warn_args *args)
480 {
481 	disable_trace_on_warning();
482 
483 	pr_warn("------------[ cut here ]------------\n");
484 
485 	if (file)
486 		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
487 			raw_smp_processor_id(), current->pid, file, line,
488 			caller);
489 	else
490 		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
491 			raw_smp_processor_id(), current->pid, caller);
492 
493 	if (args)
494 		vprintk(args->fmt, args->args);
495 
496 	if (panic_on_warn) {
497 		/*
498 		 * This thread may hit another WARN() in the panic path.
499 		 * Resetting this prevents additional WARN() from panicking the
500 		 * system on this thread.  Other threads are blocked by the
501 		 * panic_mutex in panic().
502 		 */
503 		panic_on_warn = 0;
504 		panic("panic_on_warn set ...\n");
505 	}
506 
507 	print_modules();
508 
509 	if (regs)
510 		show_regs(regs);
511 	else
512 		dump_stack();
513 
514 	print_oops_end_marker();
515 
516 	/* Just a warning, don't kill lockdep. */
517 	add_taint(taint, LOCKDEP_STILL_OK);
518 }
519 
520 #ifdef WANT_WARN_ON_SLOWPATH
521 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
522 {
523 	struct warn_args args;
524 
525 	args.fmt = fmt;
526 	va_start(args.args, fmt);
527 	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
528 	       &args);
529 	va_end(args.args);
530 }
531 EXPORT_SYMBOL(warn_slowpath_fmt);
532 
533 void warn_slowpath_fmt_taint(const char *file, int line,
534 			     unsigned taint, const char *fmt, ...)
535 {
536 	struct warn_args args;
537 
538 	args.fmt = fmt;
539 	va_start(args.args, fmt);
540 	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
541 	va_end(args.args);
542 }
543 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
544 
545 void warn_slowpath_null(const char *file, int line)
546 {
547 	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
548 }
549 EXPORT_SYMBOL(warn_slowpath_null);
550 #endif
551 
552 #ifdef CONFIG_CC_STACKPROTECTOR
553 
554 /*
555  * Called when gcc's -fstack-protector feature is used, and
556  * gcc detects corruption of the on-stack canary value
557  */
558 __visible void __stack_chk_fail(void)
559 {
560 	panic("stack-protector: Kernel stack is corrupted in: %p\n",
561 		__builtin_return_address(0));
562 }
563 EXPORT_SYMBOL(__stack_chk_fail);
564 
565 #endif
566 
567 core_param(panic, panic_timeout, int, 0644);
568 core_param(pause_on_oops, pause_on_oops, int, 0644);
569 core_param(panic_on_warn, panic_on_warn, int, 0644);
570 
571 static int __init setup_crash_kexec_post_notifiers(char *s)
572 {
573 	crash_kexec_post_notifiers = true;
574 	return 0;
575 }
576 early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers);
577 
578 static int __init oops_setup(char *s)
579 {
580 	if (!s)
581 		return -EINVAL;
582 	if (!strcmp(s, "panic"))
583 		panic_on_oops = 1;
584 	return 0;
585 }
586 early_param("oops", oops_setup);
587