1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/panic.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * This function is used through-out the kernel (including mm and fs) 10 * to indicate a major problem. 11 */ 12 #include <linux/debug_locks.h> 13 #include <linux/sched/debug.h> 14 #include <linux/interrupt.h> 15 #include <linux/kmsg_dump.h> 16 #include <linux/kallsyms.h> 17 #include <linux/notifier.h> 18 #include <linux/vt_kern.h> 19 #include <linux/module.h> 20 #include <linux/random.h> 21 #include <linux/ftrace.h> 22 #include <linux/reboot.h> 23 #include <linux/delay.h> 24 #include <linux/kexec.h> 25 #include <linux/sched.h> 26 #include <linux/sysrq.h> 27 #include <linux/init.h> 28 #include <linux/nmi.h> 29 #include <linux/console.h> 30 #include <linux/bug.h> 31 #include <linux/ratelimit.h> 32 #include <linux/debugfs.h> 33 #include <asm/sections.h> 34 35 #define PANIC_TIMER_STEP 100 36 #define PANIC_BLINK_SPD 18 37 38 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 39 static unsigned long tainted_mask = 40 IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0; 41 static int pause_on_oops; 42 static int pause_on_oops_flag; 43 static DEFINE_SPINLOCK(pause_on_oops_lock); 44 bool crash_kexec_post_notifiers; 45 int panic_on_warn __read_mostly; 46 47 int panic_timeout = CONFIG_PANIC_TIMEOUT; 48 EXPORT_SYMBOL_GPL(panic_timeout); 49 50 #define PANIC_PRINT_TASK_INFO 0x00000001 51 #define PANIC_PRINT_MEM_INFO 0x00000002 52 #define PANIC_PRINT_TIMER_INFO 0x00000004 53 #define PANIC_PRINT_LOCK_INFO 0x00000008 54 #define PANIC_PRINT_FTRACE_INFO 0x00000010 55 #define PANIC_PRINT_ALL_PRINTK_MSG 0x00000020 56 unsigned long panic_print; 57 58 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 59 60 EXPORT_SYMBOL(panic_notifier_list); 61 62 static long no_blink(int state) 63 { 64 return 0; 65 } 66 67 /* Returns how long it waited in ms */ 68 long (*panic_blink)(int state); 69 EXPORT_SYMBOL(panic_blink); 70 71 /* 72 * Stop ourself in panic -- architecture code may override this 73 */ 74 void __weak panic_smp_self_stop(void) 75 { 76 while (1) 77 cpu_relax(); 78 } 79 80 /* 81 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 82 * may override this to prepare for crash dumping, e.g. save regs info. 83 */ 84 void __weak nmi_panic_self_stop(struct pt_regs *regs) 85 { 86 panic_smp_self_stop(); 87 } 88 89 /* 90 * Stop other CPUs in panic. Architecture dependent code may override this 91 * with more suitable version. For example, if the architecture supports 92 * crash dump, it should save registers of each stopped CPU and disable 93 * per-CPU features such as virtualization extensions. 94 */ 95 void __weak crash_smp_send_stop(void) 96 { 97 static int cpus_stopped; 98 99 /* 100 * This function can be called twice in panic path, but obviously 101 * we execute this only once. 102 */ 103 if (cpus_stopped) 104 return; 105 106 /* 107 * Note smp_send_stop is the usual smp shutdown function, which 108 * unfortunately means it may not be hardened to work in a panic 109 * situation. 110 */ 111 smp_send_stop(); 112 cpus_stopped = 1; 113 } 114 115 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 116 117 /* 118 * A variant of panic() called from NMI context. We return if we've already 119 * panicked on this CPU. If another CPU already panicked, loop in 120 * nmi_panic_self_stop() which can provide architecture dependent code such 121 * as saving register state for crash dump. 122 */ 123 void nmi_panic(struct pt_regs *regs, const char *msg) 124 { 125 int old_cpu, cpu; 126 127 cpu = raw_smp_processor_id(); 128 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); 129 130 if (old_cpu == PANIC_CPU_INVALID) 131 panic("%s", msg); 132 else if (old_cpu != cpu) 133 nmi_panic_self_stop(regs); 134 } 135 EXPORT_SYMBOL(nmi_panic); 136 137 static void panic_print_sys_info(void) 138 { 139 if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG) 140 console_flush_on_panic(CONSOLE_REPLAY_ALL); 141 142 if (panic_print & PANIC_PRINT_TASK_INFO) 143 show_state(); 144 145 if (panic_print & PANIC_PRINT_MEM_INFO) 146 show_mem(0, NULL); 147 148 if (panic_print & PANIC_PRINT_TIMER_INFO) 149 sysrq_timer_list_show(); 150 151 if (panic_print & PANIC_PRINT_LOCK_INFO) 152 debug_show_all_locks(); 153 154 if (panic_print & PANIC_PRINT_FTRACE_INFO) 155 ftrace_dump(DUMP_ALL); 156 } 157 158 /** 159 * panic - halt the system 160 * @fmt: The text string to print 161 * 162 * Display a message, then perform cleanups. 163 * 164 * This function never returns. 165 */ 166 void panic(const char *fmt, ...) 167 { 168 static char buf[1024]; 169 va_list args; 170 long i, i_next = 0, len; 171 int state = 0; 172 int old_cpu, this_cpu; 173 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 174 175 /* 176 * Disable local interrupts. This will prevent panic_smp_self_stop 177 * from deadlocking the first cpu that invokes the panic, since 178 * there is nothing to prevent an interrupt handler (that runs 179 * after setting panic_cpu) from invoking panic() again. 180 */ 181 local_irq_disable(); 182 183 /* 184 * It's possible to come here directly from a panic-assertion and 185 * not have preempt disabled. Some functions called from here want 186 * preempt to be disabled. No point enabling it later though... 187 * 188 * Only one CPU is allowed to execute the panic code from here. For 189 * multiple parallel invocations of panic, all other CPUs either 190 * stop themself or will wait until they are stopped by the 1st CPU 191 * with smp_send_stop(). 192 * 193 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 194 * comes here, so go ahead. 195 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 196 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 197 */ 198 this_cpu = raw_smp_processor_id(); 199 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 200 201 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 202 panic_smp_self_stop(); 203 204 console_verbose(); 205 bust_spinlocks(1); 206 va_start(args, fmt); 207 len = vscnprintf(buf, sizeof(buf), fmt, args); 208 va_end(args); 209 210 if (len && buf[len - 1] == '\n') 211 buf[len - 1] = '\0'; 212 213 pr_emerg("Kernel panic - not syncing: %s\n", buf); 214 #ifdef CONFIG_DEBUG_BUGVERBOSE 215 /* 216 * Avoid nested stack-dumping if a panic occurs during oops processing 217 */ 218 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 219 dump_stack(); 220 #endif 221 222 /* 223 * If we have crashed and we have a crash kernel loaded let it handle 224 * everything else. 225 * If we want to run this after calling panic_notifiers, pass 226 * the "crash_kexec_post_notifiers" option to the kernel. 227 * 228 * Bypass the panic_cpu check and call __crash_kexec directly. 229 */ 230 if (!_crash_kexec_post_notifiers) { 231 printk_safe_flush_on_panic(); 232 __crash_kexec(NULL); 233 234 /* 235 * Note smp_send_stop is the usual smp shutdown function, which 236 * unfortunately means it may not be hardened to work in a 237 * panic situation. 238 */ 239 smp_send_stop(); 240 } else { 241 /* 242 * If we want to do crash dump after notifier calls and 243 * kmsg_dump, we will need architecture dependent extra 244 * works in addition to stopping other CPUs. 245 */ 246 crash_smp_send_stop(); 247 } 248 249 /* 250 * Run any panic handlers, including those that might need to 251 * add information to the kmsg dump output. 252 */ 253 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 254 255 /* Call flush even twice. It tries harder with a single online CPU */ 256 printk_safe_flush_on_panic(); 257 kmsg_dump(KMSG_DUMP_PANIC); 258 259 /* 260 * If you doubt kdump always works fine in any situation, 261 * "crash_kexec_post_notifiers" offers you a chance to run 262 * panic_notifiers and dumping kmsg before kdump. 263 * Note: since some panic_notifiers can make crashed kernel 264 * more unstable, it can increase risks of the kdump failure too. 265 * 266 * Bypass the panic_cpu check and call __crash_kexec directly. 267 */ 268 if (_crash_kexec_post_notifiers) 269 __crash_kexec(NULL); 270 271 #ifdef CONFIG_VT 272 unblank_screen(); 273 #endif 274 console_unblank(); 275 276 /* 277 * We may have ended up stopping the CPU holding the lock (in 278 * smp_send_stop()) while still having some valuable data in the console 279 * buffer. Try to acquire the lock then release it regardless of the 280 * result. The release will also print the buffers out. Locks debug 281 * should be disabled to avoid reporting bad unlock balance when 282 * panic() is not being callled from OOPS. 283 */ 284 debug_locks_off(); 285 console_flush_on_panic(CONSOLE_FLUSH_PENDING); 286 287 panic_print_sys_info(); 288 289 if (!panic_blink) 290 panic_blink = no_blink; 291 292 if (panic_timeout > 0) { 293 /* 294 * Delay timeout seconds before rebooting the machine. 295 * We can't use the "normal" timers since we just panicked. 296 */ 297 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 298 299 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 300 touch_nmi_watchdog(); 301 if (i >= i_next) { 302 i += panic_blink(state ^= 1); 303 i_next = i + 3600 / PANIC_BLINK_SPD; 304 } 305 mdelay(PANIC_TIMER_STEP); 306 } 307 } 308 if (panic_timeout != 0) { 309 /* 310 * This will not be a clean reboot, with everything 311 * shutting down. But if there is a chance of 312 * rebooting the system it will be rebooted. 313 */ 314 if (panic_reboot_mode != REBOOT_UNDEFINED) 315 reboot_mode = panic_reboot_mode; 316 emergency_restart(); 317 } 318 #ifdef __sparc__ 319 { 320 extern int stop_a_enabled; 321 /* Make sure the user can actually press Stop-A (L1-A) */ 322 stop_a_enabled = 1; 323 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 324 "twice on console to return to the boot prom\n"); 325 } 326 #endif 327 #if defined(CONFIG_S390) 328 disabled_wait(); 329 #endif 330 pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf); 331 332 /* Do not scroll important messages printed above */ 333 suppress_printk = 1; 334 local_irq_enable(); 335 for (i = 0; ; i += PANIC_TIMER_STEP) { 336 touch_softlockup_watchdog(); 337 if (i >= i_next) { 338 i += panic_blink(state ^= 1); 339 i_next = i + 3600 / PANIC_BLINK_SPD; 340 } 341 mdelay(PANIC_TIMER_STEP); 342 } 343 } 344 345 EXPORT_SYMBOL(panic); 346 347 /* 348 * TAINT_FORCED_RMMOD could be a per-module flag but the module 349 * is being removed anyway. 350 */ 351 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 352 [ TAINT_PROPRIETARY_MODULE ] = { 'P', 'G', true }, 353 [ TAINT_FORCED_MODULE ] = { 'F', ' ', true }, 354 [ TAINT_CPU_OUT_OF_SPEC ] = { 'S', ' ', false }, 355 [ TAINT_FORCED_RMMOD ] = { 'R', ' ', false }, 356 [ TAINT_MACHINE_CHECK ] = { 'M', ' ', false }, 357 [ TAINT_BAD_PAGE ] = { 'B', ' ', false }, 358 [ TAINT_USER ] = { 'U', ' ', false }, 359 [ TAINT_DIE ] = { 'D', ' ', false }, 360 [ TAINT_OVERRIDDEN_ACPI_TABLE ] = { 'A', ' ', false }, 361 [ TAINT_WARN ] = { 'W', ' ', false }, 362 [ TAINT_CRAP ] = { 'C', ' ', true }, 363 [ TAINT_FIRMWARE_WORKAROUND ] = { 'I', ' ', false }, 364 [ TAINT_OOT_MODULE ] = { 'O', ' ', true }, 365 [ TAINT_UNSIGNED_MODULE ] = { 'E', ' ', true }, 366 [ TAINT_SOFTLOCKUP ] = { 'L', ' ', false }, 367 [ TAINT_LIVEPATCH ] = { 'K', ' ', true }, 368 [ TAINT_AUX ] = { 'X', ' ', true }, 369 [ TAINT_RANDSTRUCT ] = { 'T', ' ', true }, 370 }; 371 372 /** 373 * print_tainted - return a string to represent the kernel taint state. 374 * 375 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst 376 * 377 * The string is overwritten by the next call to print_tainted(), 378 * but is always NULL terminated. 379 */ 380 const char *print_tainted(void) 381 { 382 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; 383 384 BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT); 385 386 if (tainted_mask) { 387 char *s; 388 int i; 389 390 s = buf + sprintf(buf, "Tainted: "); 391 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 392 const struct taint_flag *t = &taint_flags[i]; 393 *s++ = test_bit(i, &tainted_mask) ? 394 t->c_true : t->c_false; 395 } 396 *s = 0; 397 } else 398 snprintf(buf, sizeof(buf), "Not tainted"); 399 400 return buf; 401 } 402 403 int test_taint(unsigned flag) 404 { 405 return test_bit(flag, &tainted_mask); 406 } 407 EXPORT_SYMBOL(test_taint); 408 409 unsigned long get_taint(void) 410 { 411 return tainted_mask; 412 } 413 414 /** 415 * add_taint: add a taint flag if not already set. 416 * @flag: one of the TAINT_* constants. 417 * @lockdep_ok: whether lock debugging is still OK. 418 * 419 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 420 * some notewortht-but-not-corrupting cases, it can be set to true. 421 */ 422 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 423 { 424 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 425 pr_warn("Disabling lock debugging due to kernel taint\n"); 426 427 set_bit(flag, &tainted_mask); 428 } 429 EXPORT_SYMBOL(add_taint); 430 431 static void spin_msec(int msecs) 432 { 433 int i; 434 435 for (i = 0; i < msecs; i++) { 436 touch_nmi_watchdog(); 437 mdelay(1); 438 } 439 } 440 441 /* 442 * It just happens that oops_enter() and oops_exit() are identically 443 * implemented... 444 */ 445 static void do_oops_enter_exit(void) 446 { 447 unsigned long flags; 448 static int spin_counter; 449 450 if (!pause_on_oops) 451 return; 452 453 spin_lock_irqsave(&pause_on_oops_lock, flags); 454 if (pause_on_oops_flag == 0) { 455 /* This CPU may now print the oops message */ 456 pause_on_oops_flag = 1; 457 } else { 458 /* We need to stall this CPU */ 459 if (!spin_counter) { 460 /* This CPU gets to do the counting */ 461 spin_counter = pause_on_oops; 462 do { 463 spin_unlock(&pause_on_oops_lock); 464 spin_msec(MSEC_PER_SEC); 465 spin_lock(&pause_on_oops_lock); 466 } while (--spin_counter); 467 pause_on_oops_flag = 0; 468 } else { 469 /* This CPU waits for a different one */ 470 while (spin_counter) { 471 spin_unlock(&pause_on_oops_lock); 472 spin_msec(1); 473 spin_lock(&pause_on_oops_lock); 474 } 475 } 476 } 477 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 478 } 479 480 /* 481 * Return true if the calling CPU is allowed to print oops-related info. 482 * This is a bit racy.. 483 */ 484 int oops_may_print(void) 485 { 486 return pause_on_oops_flag == 0; 487 } 488 489 /* 490 * Called when the architecture enters its oops handler, before it prints 491 * anything. If this is the first CPU to oops, and it's oopsing the first 492 * time then let it proceed. 493 * 494 * This is all enabled by the pause_on_oops kernel boot option. We do all 495 * this to ensure that oopses don't scroll off the screen. It has the 496 * side-effect of preventing later-oopsing CPUs from mucking up the display, 497 * too. 498 * 499 * It turns out that the CPU which is allowed to print ends up pausing for 500 * the right duration, whereas all the other CPUs pause for twice as long: 501 * once in oops_enter(), once in oops_exit(). 502 */ 503 void oops_enter(void) 504 { 505 tracing_off(); 506 /* can't trust the integrity of the kernel anymore: */ 507 debug_locks_off(); 508 do_oops_enter_exit(); 509 } 510 511 /* 512 * 64-bit random ID for oopses: 513 */ 514 static u64 oops_id; 515 516 static int init_oops_id(void) 517 { 518 if (!oops_id) 519 get_random_bytes(&oops_id, sizeof(oops_id)); 520 else 521 oops_id++; 522 523 return 0; 524 } 525 late_initcall(init_oops_id); 526 527 void print_oops_end_marker(void) 528 { 529 init_oops_id(); 530 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); 531 } 532 533 /* 534 * Called when the architecture exits its oops handler, after printing 535 * everything. 536 */ 537 void oops_exit(void) 538 { 539 do_oops_enter_exit(); 540 print_oops_end_marker(); 541 kmsg_dump(KMSG_DUMP_OOPS); 542 } 543 544 struct warn_args { 545 const char *fmt; 546 va_list args; 547 }; 548 549 void __warn(const char *file, int line, void *caller, unsigned taint, 550 struct pt_regs *regs, struct warn_args *args) 551 { 552 disable_trace_on_warning(); 553 554 if (args) 555 pr_warn(CUT_HERE); 556 557 if (file) 558 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 559 raw_smp_processor_id(), current->pid, file, line, 560 caller); 561 else 562 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 563 raw_smp_processor_id(), current->pid, caller); 564 565 if (args) 566 vprintk(args->fmt, args->args); 567 568 if (panic_on_warn) { 569 /* 570 * This thread may hit another WARN() in the panic path. 571 * Resetting this prevents additional WARN() from panicking the 572 * system on this thread. Other threads are blocked by the 573 * panic_mutex in panic(). 574 */ 575 panic_on_warn = 0; 576 panic("panic_on_warn set ...\n"); 577 } 578 579 print_modules(); 580 581 if (regs) 582 show_regs(regs); 583 else 584 dump_stack(); 585 586 print_irqtrace_events(current); 587 588 print_oops_end_marker(); 589 590 /* Just a warning, don't kill lockdep. */ 591 add_taint(taint, LOCKDEP_STILL_OK); 592 } 593 594 #ifdef WANT_WARN_ON_SLOWPATH 595 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...) 596 { 597 struct warn_args args; 598 599 args.fmt = fmt; 600 va_start(args.args, fmt); 601 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, 602 &args); 603 va_end(args.args); 604 } 605 EXPORT_SYMBOL(warn_slowpath_fmt); 606 607 void warn_slowpath_fmt_taint(const char *file, int line, 608 unsigned taint, const char *fmt, ...) 609 { 610 struct warn_args args; 611 612 args.fmt = fmt; 613 va_start(args.args, fmt); 614 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 615 va_end(args.args); 616 } 617 EXPORT_SYMBOL(warn_slowpath_fmt_taint); 618 619 void warn_slowpath_null(const char *file, int line) 620 { 621 pr_warn(CUT_HERE); 622 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL); 623 } 624 EXPORT_SYMBOL(warn_slowpath_null); 625 #else 626 void __warn_printk(const char *fmt, ...) 627 { 628 va_list args; 629 630 pr_warn(CUT_HERE); 631 632 va_start(args, fmt); 633 vprintk(fmt, args); 634 va_end(args); 635 } 636 EXPORT_SYMBOL(__warn_printk); 637 #endif 638 639 #ifdef CONFIG_BUG 640 641 /* Support resetting WARN*_ONCE state */ 642 643 static int clear_warn_once_set(void *data, u64 val) 644 { 645 generic_bug_clear_once(); 646 memset(__start_once, 0, __end_once - __start_once); 647 return 0; 648 } 649 650 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set, 651 "%lld\n"); 652 653 static __init int register_warn_debugfs(void) 654 { 655 /* Don't care about failure */ 656 debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL, 657 &clear_warn_once_fops); 658 return 0; 659 } 660 661 device_initcall(register_warn_debugfs); 662 #endif 663 664 #ifdef CONFIG_STACKPROTECTOR 665 666 /* 667 * Called when gcc's -fstack-protector feature is used, and 668 * gcc detects corruption of the on-stack canary value 669 */ 670 __visible void __stack_chk_fail(void) 671 { 672 panic("stack-protector: Kernel stack is corrupted in: %pB", 673 __builtin_return_address(0)); 674 } 675 EXPORT_SYMBOL(__stack_chk_fail); 676 677 #endif 678 679 #ifdef CONFIG_ARCH_HAS_REFCOUNT 680 void refcount_error_report(struct pt_regs *regs, const char *err) 681 { 682 WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n", 683 err, (void *)instruction_pointer(regs), 684 current->comm, task_pid_nr(current), 685 from_kuid_munged(&init_user_ns, current_uid()), 686 from_kuid_munged(&init_user_ns, current_euid())); 687 } 688 #endif 689 690 core_param(panic, panic_timeout, int, 0644); 691 core_param(panic_print, panic_print, ulong, 0644); 692 core_param(pause_on_oops, pause_on_oops, int, 0644); 693 core_param(panic_on_warn, panic_on_warn, int, 0644); 694 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 695 696 static int __init oops_setup(char *s) 697 { 698 if (!s) 699 return -EINVAL; 700 if (!strcmp(s, "panic")) 701 panic_on_oops = 1; 702 return 0; 703 } 704 early_param("oops", oops_setup); 705