1 /* 2 * linux/kernel/panic.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * This function is used through-out the kernel (including mm and fs) 9 * to indicate a major problem. 10 */ 11 #include <linux/debug_locks.h> 12 #include <linux/sched/debug.h> 13 #include <linux/interrupt.h> 14 #include <linux/kmsg_dump.h> 15 #include <linux/kallsyms.h> 16 #include <linux/notifier.h> 17 #include <linux/module.h> 18 #include <linux/random.h> 19 #include <linux/ftrace.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/kexec.h> 23 #include <linux/sched.h> 24 #include <linux/sysrq.h> 25 #include <linux/init.h> 26 #include <linux/nmi.h> 27 #include <linux/console.h> 28 #include <linux/bug.h> 29 #include <linux/ratelimit.h> 30 #include <linux/debugfs.h> 31 #include <asm/sections.h> 32 33 #define PANIC_TIMER_STEP 100 34 #define PANIC_BLINK_SPD 18 35 36 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 37 static unsigned long tainted_mask = 38 IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0; 39 static int pause_on_oops; 40 static int pause_on_oops_flag; 41 static DEFINE_SPINLOCK(pause_on_oops_lock); 42 bool crash_kexec_post_notifiers; 43 int panic_on_warn __read_mostly; 44 45 int panic_timeout = CONFIG_PANIC_TIMEOUT; 46 EXPORT_SYMBOL_GPL(panic_timeout); 47 48 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 49 50 EXPORT_SYMBOL(panic_notifier_list); 51 52 static long no_blink(int state) 53 { 54 return 0; 55 } 56 57 /* Returns how long it waited in ms */ 58 long (*panic_blink)(int state); 59 EXPORT_SYMBOL(panic_blink); 60 61 /* 62 * Stop ourself in panic -- architecture code may override this 63 */ 64 void __weak panic_smp_self_stop(void) 65 { 66 while (1) 67 cpu_relax(); 68 } 69 70 /* 71 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 72 * may override this to prepare for crash dumping, e.g. save regs info. 73 */ 74 void __weak nmi_panic_self_stop(struct pt_regs *regs) 75 { 76 panic_smp_self_stop(); 77 } 78 79 /* 80 * Stop other CPUs in panic. Architecture dependent code may override this 81 * with more suitable version. For example, if the architecture supports 82 * crash dump, it should save registers of each stopped CPU and disable 83 * per-CPU features such as virtualization extensions. 84 */ 85 void __weak crash_smp_send_stop(void) 86 { 87 static int cpus_stopped; 88 89 /* 90 * This function can be called twice in panic path, but obviously 91 * we execute this only once. 92 */ 93 if (cpus_stopped) 94 return; 95 96 /* 97 * Note smp_send_stop is the usual smp shutdown function, which 98 * unfortunately means it may not be hardened to work in a panic 99 * situation. 100 */ 101 smp_send_stop(); 102 cpus_stopped = 1; 103 } 104 105 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 106 107 /* 108 * A variant of panic() called from NMI context. We return if we've already 109 * panicked on this CPU. If another CPU already panicked, loop in 110 * nmi_panic_self_stop() which can provide architecture dependent code such 111 * as saving register state for crash dump. 112 */ 113 void nmi_panic(struct pt_regs *regs, const char *msg) 114 { 115 int old_cpu, cpu; 116 117 cpu = raw_smp_processor_id(); 118 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); 119 120 if (old_cpu == PANIC_CPU_INVALID) 121 panic("%s", msg); 122 else if (old_cpu != cpu) 123 nmi_panic_self_stop(regs); 124 } 125 EXPORT_SYMBOL(nmi_panic); 126 127 /** 128 * panic - halt the system 129 * @fmt: The text string to print 130 * 131 * Display a message, then perform cleanups. 132 * 133 * This function never returns. 134 */ 135 void panic(const char *fmt, ...) 136 { 137 static char buf[1024]; 138 va_list args; 139 long i, i_next = 0, len; 140 int state = 0; 141 int old_cpu, this_cpu; 142 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 143 144 /* 145 * Disable local interrupts. This will prevent panic_smp_self_stop 146 * from deadlocking the first cpu that invokes the panic, since 147 * there is nothing to prevent an interrupt handler (that runs 148 * after setting panic_cpu) from invoking panic() again. 149 */ 150 local_irq_disable(); 151 152 /* 153 * It's possible to come here directly from a panic-assertion and 154 * not have preempt disabled. Some functions called from here want 155 * preempt to be disabled. No point enabling it later though... 156 * 157 * Only one CPU is allowed to execute the panic code from here. For 158 * multiple parallel invocations of panic, all other CPUs either 159 * stop themself or will wait until they are stopped by the 1st CPU 160 * with smp_send_stop(). 161 * 162 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 163 * comes here, so go ahead. 164 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 165 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 166 */ 167 this_cpu = raw_smp_processor_id(); 168 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 169 170 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 171 panic_smp_self_stop(); 172 173 console_verbose(); 174 bust_spinlocks(1); 175 va_start(args, fmt); 176 len = vscnprintf(buf, sizeof(buf), fmt, args); 177 va_end(args); 178 179 if (len && buf[len - 1] == '\n') 180 buf[len - 1] = '\0'; 181 182 pr_emerg("Kernel panic - not syncing: %s\n", buf); 183 #ifdef CONFIG_DEBUG_BUGVERBOSE 184 /* 185 * Avoid nested stack-dumping if a panic occurs during oops processing 186 */ 187 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 188 dump_stack(); 189 #endif 190 191 /* 192 * If we have crashed and we have a crash kernel loaded let it handle 193 * everything else. 194 * If we want to run this after calling panic_notifiers, pass 195 * the "crash_kexec_post_notifiers" option to the kernel. 196 * 197 * Bypass the panic_cpu check and call __crash_kexec directly. 198 */ 199 if (!_crash_kexec_post_notifiers) { 200 printk_safe_flush_on_panic(); 201 __crash_kexec(NULL); 202 203 /* 204 * Note smp_send_stop is the usual smp shutdown function, which 205 * unfortunately means it may not be hardened to work in a 206 * panic situation. 207 */ 208 smp_send_stop(); 209 } else { 210 /* 211 * If we want to do crash dump after notifier calls and 212 * kmsg_dump, we will need architecture dependent extra 213 * works in addition to stopping other CPUs. 214 */ 215 crash_smp_send_stop(); 216 } 217 218 /* 219 * Run any panic handlers, including those that might need to 220 * add information to the kmsg dump output. 221 */ 222 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 223 224 /* Call flush even twice. It tries harder with a single online CPU */ 225 printk_safe_flush_on_panic(); 226 kmsg_dump(KMSG_DUMP_PANIC); 227 228 /* 229 * If you doubt kdump always works fine in any situation, 230 * "crash_kexec_post_notifiers" offers you a chance to run 231 * panic_notifiers and dumping kmsg before kdump. 232 * Note: since some panic_notifiers can make crashed kernel 233 * more unstable, it can increase risks of the kdump failure too. 234 * 235 * Bypass the panic_cpu check and call __crash_kexec directly. 236 */ 237 if (_crash_kexec_post_notifiers) 238 __crash_kexec(NULL); 239 240 bust_spinlocks(0); 241 242 /* 243 * We may have ended up stopping the CPU holding the lock (in 244 * smp_send_stop()) while still having some valuable data in the console 245 * buffer. Try to acquire the lock then release it regardless of the 246 * result. The release will also print the buffers out. Locks debug 247 * should be disabled to avoid reporting bad unlock balance when 248 * panic() is not being callled from OOPS. 249 */ 250 debug_locks_off(); 251 console_flush_on_panic(); 252 253 if (!panic_blink) 254 panic_blink = no_blink; 255 256 if (panic_timeout > 0) { 257 /* 258 * Delay timeout seconds before rebooting the machine. 259 * We can't use the "normal" timers since we just panicked. 260 */ 261 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 262 263 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 264 touch_nmi_watchdog(); 265 if (i >= i_next) { 266 i += panic_blink(state ^= 1); 267 i_next = i + 3600 / PANIC_BLINK_SPD; 268 } 269 mdelay(PANIC_TIMER_STEP); 270 } 271 } 272 if (panic_timeout != 0) { 273 /* 274 * This will not be a clean reboot, with everything 275 * shutting down. But if there is a chance of 276 * rebooting the system it will be rebooted. 277 */ 278 emergency_restart(); 279 } 280 #ifdef __sparc__ 281 { 282 extern int stop_a_enabled; 283 /* Make sure the user can actually press Stop-A (L1-A) */ 284 stop_a_enabled = 1; 285 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 286 "twice on console to return to the boot prom\n"); 287 } 288 #endif 289 #if defined(CONFIG_S390) 290 { 291 unsigned long caller; 292 293 caller = (unsigned long)__builtin_return_address(0); 294 disabled_wait(caller); 295 } 296 #endif 297 pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf); 298 local_irq_enable(); 299 for (i = 0; ; i += PANIC_TIMER_STEP) { 300 touch_softlockup_watchdog(); 301 if (i >= i_next) { 302 i += panic_blink(state ^= 1); 303 i_next = i + 3600 / PANIC_BLINK_SPD; 304 } 305 mdelay(PANIC_TIMER_STEP); 306 } 307 } 308 309 EXPORT_SYMBOL(panic); 310 311 /* 312 * TAINT_FORCED_RMMOD could be a per-module flag but the module 313 * is being removed anyway. 314 */ 315 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 316 [ TAINT_PROPRIETARY_MODULE ] = { 'P', 'G', true }, 317 [ TAINT_FORCED_MODULE ] = { 'F', ' ', true }, 318 [ TAINT_CPU_OUT_OF_SPEC ] = { 'S', ' ', false }, 319 [ TAINT_FORCED_RMMOD ] = { 'R', ' ', false }, 320 [ TAINT_MACHINE_CHECK ] = { 'M', ' ', false }, 321 [ TAINT_BAD_PAGE ] = { 'B', ' ', false }, 322 [ TAINT_USER ] = { 'U', ' ', false }, 323 [ TAINT_DIE ] = { 'D', ' ', false }, 324 [ TAINT_OVERRIDDEN_ACPI_TABLE ] = { 'A', ' ', false }, 325 [ TAINT_WARN ] = { 'W', ' ', false }, 326 [ TAINT_CRAP ] = { 'C', ' ', true }, 327 [ TAINT_FIRMWARE_WORKAROUND ] = { 'I', ' ', false }, 328 [ TAINT_OOT_MODULE ] = { 'O', ' ', true }, 329 [ TAINT_UNSIGNED_MODULE ] = { 'E', ' ', true }, 330 [ TAINT_SOFTLOCKUP ] = { 'L', ' ', false }, 331 [ TAINT_LIVEPATCH ] = { 'K', ' ', true }, 332 [ TAINT_AUX ] = { 'X', ' ', true }, 333 [ TAINT_RANDSTRUCT ] = { 'T', ' ', true }, 334 }; 335 336 /** 337 * print_tainted - return a string to represent the kernel taint state. 338 * 339 * For individual taint flag meanings, see Documentation/sysctl/kernel.txt 340 * 341 * The string is overwritten by the next call to print_tainted(), 342 * but is always NULL terminated. 343 */ 344 const char *print_tainted(void) 345 { 346 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; 347 348 BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT); 349 350 if (tainted_mask) { 351 char *s; 352 int i; 353 354 s = buf + sprintf(buf, "Tainted: "); 355 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 356 const struct taint_flag *t = &taint_flags[i]; 357 *s++ = test_bit(i, &tainted_mask) ? 358 t->c_true : t->c_false; 359 } 360 *s = 0; 361 } else 362 snprintf(buf, sizeof(buf), "Not tainted"); 363 364 return buf; 365 } 366 367 int test_taint(unsigned flag) 368 { 369 return test_bit(flag, &tainted_mask); 370 } 371 EXPORT_SYMBOL(test_taint); 372 373 unsigned long get_taint(void) 374 { 375 return tainted_mask; 376 } 377 378 /** 379 * add_taint: add a taint flag if not already set. 380 * @flag: one of the TAINT_* constants. 381 * @lockdep_ok: whether lock debugging is still OK. 382 * 383 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 384 * some notewortht-but-not-corrupting cases, it can be set to true. 385 */ 386 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 387 { 388 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 389 pr_warn("Disabling lock debugging due to kernel taint\n"); 390 391 set_bit(flag, &tainted_mask); 392 } 393 EXPORT_SYMBOL(add_taint); 394 395 static void spin_msec(int msecs) 396 { 397 int i; 398 399 for (i = 0; i < msecs; i++) { 400 touch_nmi_watchdog(); 401 mdelay(1); 402 } 403 } 404 405 /* 406 * It just happens that oops_enter() and oops_exit() are identically 407 * implemented... 408 */ 409 static void do_oops_enter_exit(void) 410 { 411 unsigned long flags; 412 static int spin_counter; 413 414 if (!pause_on_oops) 415 return; 416 417 spin_lock_irqsave(&pause_on_oops_lock, flags); 418 if (pause_on_oops_flag == 0) { 419 /* This CPU may now print the oops message */ 420 pause_on_oops_flag = 1; 421 } else { 422 /* We need to stall this CPU */ 423 if (!spin_counter) { 424 /* This CPU gets to do the counting */ 425 spin_counter = pause_on_oops; 426 do { 427 spin_unlock(&pause_on_oops_lock); 428 spin_msec(MSEC_PER_SEC); 429 spin_lock(&pause_on_oops_lock); 430 } while (--spin_counter); 431 pause_on_oops_flag = 0; 432 } else { 433 /* This CPU waits for a different one */ 434 while (spin_counter) { 435 spin_unlock(&pause_on_oops_lock); 436 spin_msec(1); 437 spin_lock(&pause_on_oops_lock); 438 } 439 } 440 } 441 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 442 } 443 444 /* 445 * Return true if the calling CPU is allowed to print oops-related info. 446 * This is a bit racy.. 447 */ 448 int oops_may_print(void) 449 { 450 return pause_on_oops_flag == 0; 451 } 452 453 /* 454 * Called when the architecture enters its oops handler, before it prints 455 * anything. If this is the first CPU to oops, and it's oopsing the first 456 * time then let it proceed. 457 * 458 * This is all enabled by the pause_on_oops kernel boot option. We do all 459 * this to ensure that oopses don't scroll off the screen. It has the 460 * side-effect of preventing later-oopsing CPUs from mucking up the display, 461 * too. 462 * 463 * It turns out that the CPU which is allowed to print ends up pausing for 464 * the right duration, whereas all the other CPUs pause for twice as long: 465 * once in oops_enter(), once in oops_exit(). 466 */ 467 void oops_enter(void) 468 { 469 tracing_off(); 470 /* can't trust the integrity of the kernel anymore: */ 471 debug_locks_off(); 472 do_oops_enter_exit(); 473 } 474 475 /* 476 * 64-bit random ID for oopses: 477 */ 478 static u64 oops_id; 479 480 static int init_oops_id(void) 481 { 482 if (!oops_id) 483 get_random_bytes(&oops_id, sizeof(oops_id)); 484 else 485 oops_id++; 486 487 return 0; 488 } 489 late_initcall(init_oops_id); 490 491 void print_oops_end_marker(void) 492 { 493 init_oops_id(); 494 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); 495 } 496 497 /* 498 * Called when the architecture exits its oops handler, after printing 499 * everything. 500 */ 501 void oops_exit(void) 502 { 503 do_oops_enter_exit(); 504 print_oops_end_marker(); 505 kmsg_dump(KMSG_DUMP_OOPS); 506 } 507 508 struct warn_args { 509 const char *fmt; 510 va_list args; 511 }; 512 513 void __warn(const char *file, int line, void *caller, unsigned taint, 514 struct pt_regs *regs, struct warn_args *args) 515 { 516 disable_trace_on_warning(); 517 518 if (args) 519 pr_warn(CUT_HERE); 520 521 if (file) 522 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 523 raw_smp_processor_id(), current->pid, file, line, 524 caller); 525 else 526 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 527 raw_smp_processor_id(), current->pid, caller); 528 529 if (args) 530 vprintk(args->fmt, args->args); 531 532 if (panic_on_warn) { 533 /* 534 * This thread may hit another WARN() in the panic path. 535 * Resetting this prevents additional WARN() from panicking the 536 * system on this thread. Other threads are blocked by the 537 * panic_mutex in panic(). 538 */ 539 panic_on_warn = 0; 540 panic("panic_on_warn set ...\n"); 541 } 542 543 print_modules(); 544 545 if (regs) 546 show_regs(regs); 547 else 548 dump_stack(); 549 550 print_irqtrace_events(current); 551 552 print_oops_end_marker(); 553 554 /* Just a warning, don't kill lockdep. */ 555 add_taint(taint, LOCKDEP_STILL_OK); 556 } 557 558 #ifdef WANT_WARN_ON_SLOWPATH 559 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...) 560 { 561 struct warn_args args; 562 563 args.fmt = fmt; 564 va_start(args.args, fmt); 565 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, 566 &args); 567 va_end(args.args); 568 } 569 EXPORT_SYMBOL(warn_slowpath_fmt); 570 571 void warn_slowpath_fmt_taint(const char *file, int line, 572 unsigned taint, const char *fmt, ...) 573 { 574 struct warn_args args; 575 576 args.fmt = fmt; 577 va_start(args.args, fmt); 578 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 579 va_end(args.args); 580 } 581 EXPORT_SYMBOL(warn_slowpath_fmt_taint); 582 583 void warn_slowpath_null(const char *file, int line) 584 { 585 pr_warn(CUT_HERE); 586 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL); 587 } 588 EXPORT_SYMBOL(warn_slowpath_null); 589 #else 590 void __warn_printk(const char *fmt, ...) 591 { 592 va_list args; 593 594 pr_warn(CUT_HERE); 595 596 va_start(args, fmt); 597 vprintk(fmt, args); 598 va_end(args); 599 } 600 EXPORT_SYMBOL(__warn_printk); 601 #endif 602 603 #ifdef CONFIG_BUG 604 605 /* Support resetting WARN*_ONCE state */ 606 607 static int clear_warn_once_set(void *data, u64 val) 608 { 609 generic_bug_clear_once(); 610 memset(__start_once, 0, __end_once - __start_once); 611 return 0; 612 } 613 614 DEFINE_SIMPLE_ATTRIBUTE(clear_warn_once_fops, 615 NULL, 616 clear_warn_once_set, 617 "%lld\n"); 618 619 static __init int register_warn_debugfs(void) 620 { 621 /* Don't care about failure */ 622 debugfs_create_file("clear_warn_once", 0200, NULL, 623 NULL, &clear_warn_once_fops); 624 return 0; 625 } 626 627 device_initcall(register_warn_debugfs); 628 #endif 629 630 #ifdef CONFIG_STACKPROTECTOR 631 632 /* 633 * Called when gcc's -fstack-protector feature is used, and 634 * gcc detects corruption of the on-stack canary value 635 */ 636 __visible void __stack_chk_fail(void) 637 { 638 panic("stack-protector: Kernel stack is corrupted in: %pB", 639 __builtin_return_address(0)); 640 } 641 EXPORT_SYMBOL(__stack_chk_fail); 642 643 #endif 644 645 #ifdef CONFIG_ARCH_HAS_REFCOUNT 646 void refcount_error_report(struct pt_regs *regs, const char *err) 647 { 648 WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n", 649 err, (void *)instruction_pointer(regs), 650 current->comm, task_pid_nr(current), 651 from_kuid_munged(&init_user_ns, current_uid()), 652 from_kuid_munged(&init_user_ns, current_euid())); 653 } 654 #endif 655 656 core_param(panic, panic_timeout, int, 0644); 657 core_param(pause_on_oops, pause_on_oops, int, 0644); 658 core_param(panic_on_warn, panic_on_warn, int, 0644); 659 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 660 661 static int __init oops_setup(char *s) 662 { 663 if (!s) 664 return -EINVAL; 665 if (!strcmp(s, "panic")) 666 panic_on_oops = 1; 667 return 0; 668 } 669 early_param("oops", oops_setup); 670