1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 */ 6 7 #define INCLUDE_VERMAGIC 8 9 #include <linux/export.h> 10 #include <linux/extable.h> 11 #include <linux/moduleloader.h> 12 #include <linux/module_signature.h> 13 #include <linux/trace_events.h> 14 #include <linux/init.h> 15 #include <linux/kallsyms.h> 16 #include <linux/buildid.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/elf.h> 23 #include <linux/seq_file.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/rcupdate.h> 27 #include <linux/capability.h> 28 #include <linux/cpu.h> 29 #include <linux/moduleparam.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/vermagic.h> 33 #include <linux/notifier.h> 34 #include <linux/sched.h> 35 #include <linux/device.h> 36 #include <linux/string.h> 37 #include <linux/mutex.h> 38 #include <linux/rculist.h> 39 #include <linux/uaccess.h> 40 #include <asm/cacheflush.h> 41 #include <linux/set_memory.h> 42 #include <asm/mmu_context.h> 43 #include <linux/license.h> 44 #include <asm/sections.h> 45 #include <linux/tracepoint.h> 46 #include <linux/ftrace.h> 47 #include <linux/livepatch.h> 48 #include <linux/async.h> 49 #include <linux/percpu.h> 50 #include <linux/kmemleak.h> 51 #include <linux/jump_label.h> 52 #include <linux/pfn.h> 53 #include <linux/bsearch.h> 54 #include <linux/dynamic_debug.h> 55 #include <linux/audit.h> 56 #include <linux/cfi.h> 57 #include <uapi/linux/module.h> 58 #include "internal.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/module.h> 62 63 /* 64 * Mutex protects: 65 * 1) List of modules (also safely readable with preempt_disable), 66 * 2) module_use links, 67 * 3) mod_tree.addr_min/mod_tree.addr_max. 68 * (delete and add uses RCU list operations). 69 */ 70 DEFINE_MUTEX(module_mutex); 71 LIST_HEAD(modules); 72 73 /* Work queue for freeing init sections in success case */ 74 static void do_free_init(struct work_struct *w); 75 static DECLARE_WORK(init_free_wq, do_free_init); 76 static LLIST_HEAD(init_free_list); 77 78 struct mod_tree_root mod_tree __cacheline_aligned = { 79 .addr_min = -1UL, 80 }; 81 82 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 83 struct mod_tree_root mod_data_tree __cacheline_aligned = { 84 .addr_min = -1UL, 85 }; 86 #endif 87 88 #define module_addr_min mod_tree.addr_min 89 #define module_addr_max mod_tree.addr_max 90 91 struct symsearch { 92 const struct kernel_symbol *start, *stop; 93 const s32 *crcs; 94 enum mod_license license; 95 }; 96 97 /* 98 * Bounds of module text, for speeding up __module_address. 99 * Protected by module_mutex. 100 */ 101 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree) 102 { 103 unsigned long min = (unsigned long)base; 104 unsigned long max = min + size; 105 106 if (min < tree->addr_min) 107 tree->addr_min = min; 108 if (max > tree->addr_max) 109 tree->addr_max = max; 110 } 111 112 static void mod_update_bounds(struct module *mod) 113 { 114 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree); 115 if (mod->init_layout.size) 116 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree); 117 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 118 __mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree); 119 #endif 120 } 121 122 /* Block module loading/unloading? */ 123 int modules_disabled; 124 core_param(nomodule, modules_disabled, bint, 0); 125 126 /* Waiting for a module to finish initializing? */ 127 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 128 129 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 130 131 int register_module_notifier(struct notifier_block *nb) 132 { 133 return blocking_notifier_chain_register(&module_notify_list, nb); 134 } 135 EXPORT_SYMBOL(register_module_notifier); 136 137 int unregister_module_notifier(struct notifier_block *nb) 138 { 139 return blocking_notifier_chain_unregister(&module_notify_list, nb); 140 } 141 EXPORT_SYMBOL(unregister_module_notifier); 142 143 /* 144 * We require a truly strong try_module_get(): 0 means success. 145 * Otherwise an error is returned due to ongoing or failed 146 * initialization etc. 147 */ 148 static inline int strong_try_module_get(struct module *mod) 149 { 150 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 151 if (mod && mod->state == MODULE_STATE_COMING) 152 return -EBUSY; 153 if (try_module_get(mod)) 154 return 0; 155 else 156 return -ENOENT; 157 } 158 159 static inline void add_taint_module(struct module *mod, unsigned flag, 160 enum lockdep_ok lockdep_ok) 161 { 162 add_taint(flag, lockdep_ok); 163 set_bit(flag, &mod->taints); 164 } 165 166 /* 167 * A thread that wants to hold a reference to a module only while it 168 * is running can call this to safely exit. 169 */ 170 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 171 { 172 module_put(mod); 173 kthread_exit(code); 174 } 175 EXPORT_SYMBOL(__module_put_and_kthread_exit); 176 177 /* Find a module section: 0 means not found. */ 178 static unsigned int find_sec(const struct load_info *info, const char *name) 179 { 180 unsigned int i; 181 182 for (i = 1; i < info->hdr->e_shnum; i++) { 183 Elf_Shdr *shdr = &info->sechdrs[i]; 184 /* Alloc bit cleared means "ignore it." */ 185 if ((shdr->sh_flags & SHF_ALLOC) 186 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 187 return i; 188 } 189 return 0; 190 } 191 192 /* Find a module section, or NULL. */ 193 static void *section_addr(const struct load_info *info, const char *name) 194 { 195 /* Section 0 has sh_addr 0. */ 196 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 197 } 198 199 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 200 static void *section_objs(const struct load_info *info, 201 const char *name, 202 size_t object_size, 203 unsigned int *num) 204 { 205 unsigned int sec = find_sec(info, name); 206 207 /* Section 0 has sh_addr 0 and sh_size 0. */ 208 *num = info->sechdrs[sec].sh_size / object_size; 209 return (void *)info->sechdrs[sec].sh_addr; 210 } 211 212 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 213 static unsigned int find_any_sec(const struct load_info *info, const char *name) 214 { 215 unsigned int i; 216 217 for (i = 1; i < info->hdr->e_shnum; i++) { 218 Elf_Shdr *shdr = &info->sechdrs[i]; 219 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 220 return i; 221 } 222 return 0; 223 } 224 225 /* 226 * Find a module section, or NULL. Fill in number of "objects" in section. 227 * Ignores SHF_ALLOC flag. 228 */ 229 static __maybe_unused void *any_section_objs(const struct load_info *info, 230 const char *name, 231 size_t object_size, 232 unsigned int *num) 233 { 234 unsigned int sec = find_any_sec(info, name); 235 236 /* Section 0 has sh_addr 0 and sh_size 0. */ 237 *num = info->sechdrs[sec].sh_size / object_size; 238 return (void *)info->sechdrs[sec].sh_addr; 239 } 240 241 #ifndef CONFIG_MODVERSIONS 242 #define symversion(base, idx) NULL 243 #else 244 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 245 #endif 246 247 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 248 { 249 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 250 return offset_to_ptr(&sym->name_offset); 251 #else 252 return sym->name; 253 #endif 254 } 255 256 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 257 { 258 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 259 if (!sym->namespace_offset) 260 return NULL; 261 return offset_to_ptr(&sym->namespace_offset); 262 #else 263 return sym->namespace; 264 #endif 265 } 266 267 int cmp_name(const void *name, const void *sym) 268 { 269 return strcmp(name, kernel_symbol_name(sym)); 270 } 271 272 static bool find_exported_symbol_in_section(const struct symsearch *syms, 273 struct module *owner, 274 struct find_symbol_arg *fsa) 275 { 276 struct kernel_symbol *sym; 277 278 if (!fsa->gplok && syms->license == GPL_ONLY) 279 return false; 280 281 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 282 sizeof(struct kernel_symbol), cmp_name); 283 if (!sym) 284 return false; 285 286 fsa->owner = owner; 287 fsa->crc = symversion(syms->crcs, sym - syms->start); 288 fsa->sym = sym; 289 fsa->license = syms->license; 290 291 return true; 292 } 293 294 /* 295 * Find an exported symbol and return it, along with, (optional) crc and 296 * (optional) module which owns it. Needs preempt disabled or module_mutex. 297 */ 298 bool find_symbol(struct find_symbol_arg *fsa) 299 { 300 static const struct symsearch arr[] = { 301 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 302 NOT_GPL_ONLY }, 303 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 304 __start___kcrctab_gpl, 305 GPL_ONLY }, 306 }; 307 struct module *mod; 308 unsigned int i; 309 310 module_assert_mutex_or_preempt(); 311 312 for (i = 0; i < ARRAY_SIZE(arr); i++) 313 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 314 return true; 315 316 list_for_each_entry_rcu(mod, &modules, list, 317 lockdep_is_held(&module_mutex)) { 318 struct symsearch arr[] = { 319 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 320 NOT_GPL_ONLY }, 321 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 322 mod->gpl_crcs, 323 GPL_ONLY }, 324 }; 325 326 if (mod->state == MODULE_STATE_UNFORMED) 327 continue; 328 329 for (i = 0; i < ARRAY_SIZE(arr); i++) 330 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 331 return true; 332 } 333 334 pr_debug("Failed to find symbol %s\n", fsa->name); 335 return false; 336 } 337 338 /* 339 * Search for module by name: must hold module_mutex (or preempt disabled 340 * for read-only access). 341 */ 342 struct module *find_module_all(const char *name, size_t len, 343 bool even_unformed) 344 { 345 struct module *mod; 346 347 module_assert_mutex_or_preempt(); 348 349 list_for_each_entry_rcu(mod, &modules, list, 350 lockdep_is_held(&module_mutex)) { 351 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 352 continue; 353 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 354 return mod; 355 } 356 return NULL; 357 } 358 359 struct module *find_module(const char *name) 360 { 361 return find_module_all(name, strlen(name), false); 362 } 363 364 #ifdef CONFIG_SMP 365 366 static inline void __percpu *mod_percpu(struct module *mod) 367 { 368 return mod->percpu; 369 } 370 371 static int percpu_modalloc(struct module *mod, struct load_info *info) 372 { 373 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 374 unsigned long align = pcpusec->sh_addralign; 375 376 if (!pcpusec->sh_size) 377 return 0; 378 379 if (align > PAGE_SIZE) { 380 pr_warn("%s: per-cpu alignment %li > %li\n", 381 mod->name, align, PAGE_SIZE); 382 align = PAGE_SIZE; 383 } 384 385 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 386 if (!mod->percpu) { 387 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 388 mod->name, (unsigned long)pcpusec->sh_size); 389 return -ENOMEM; 390 } 391 mod->percpu_size = pcpusec->sh_size; 392 return 0; 393 } 394 395 static void percpu_modfree(struct module *mod) 396 { 397 free_percpu(mod->percpu); 398 } 399 400 static unsigned int find_pcpusec(struct load_info *info) 401 { 402 return find_sec(info, ".data..percpu"); 403 } 404 405 static void percpu_modcopy(struct module *mod, 406 const void *from, unsigned long size) 407 { 408 int cpu; 409 410 for_each_possible_cpu(cpu) 411 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 412 } 413 414 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 415 { 416 struct module *mod; 417 unsigned int cpu; 418 419 preempt_disable(); 420 421 list_for_each_entry_rcu(mod, &modules, list) { 422 if (mod->state == MODULE_STATE_UNFORMED) 423 continue; 424 if (!mod->percpu_size) 425 continue; 426 for_each_possible_cpu(cpu) { 427 void *start = per_cpu_ptr(mod->percpu, cpu); 428 void *va = (void *)addr; 429 430 if (va >= start && va < start + mod->percpu_size) { 431 if (can_addr) { 432 *can_addr = (unsigned long) (va - start); 433 *can_addr += (unsigned long) 434 per_cpu_ptr(mod->percpu, 435 get_boot_cpu_id()); 436 } 437 preempt_enable(); 438 return true; 439 } 440 } 441 } 442 443 preempt_enable(); 444 return false; 445 } 446 447 /** 448 * is_module_percpu_address() - test whether address is from module static percpu 449 * @addr: address to test 450 * 451 * Test whether @addr belongs to module static percpu area. 452 * 453 * Return: %true if @addr is from module static percpu area 454 */ 455 bool is_module_percpu_address(unsigned long addr) 456 { 457 return __is_module_percpu_address(addr, NULL); 458 } 459 460 #else /* ... !CONFIG_SMP */ 461 462 static inline void __percpu *mod_percpu(struct module *mod) 463 { 464 return NULL; 465 } 466 static int percpu_modalloc(struct module *mod, struct load_info *info) 467 { 468 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 469 if (info->sechdrs[info->index.pcpu].sh_size != 0) 470 return -ENOMEM; 471 return 0; 472 } 473 static inline void percpu_modfree(struct module *mod) 474 { 475 } 476 static unsigned int find_pcpusec(struct load_info *info) 477 { 478 return 0; 479 } 480 static inline void percpu_modcopy(struct module *mod, 481 const void *from, unsigned long size) 482 { 483 /* pcpusec should be 0, and size of that section should be 0. */ 484 BUG_ON(size != 0); 485 } 486 bool is_module_percpu_address(unsigned long addr) 487 { 488 return false; 489 } 490 491 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 492 { 493 return false; 494 } 495 496 #endif /* CONFIG_SMP */ 497 498 #define MODINFO_ATTR(field) \ 499 static void setup_modinfo_##field(struct module *mod, const char *s) \ 500 { \ 501 mod->field = kstrdup(s, GFP_KERNEL); \ 502 } \ 503 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \ 504 struct module_kobject *mk, char *buffer) \ 505 { \ 506 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 507 } \ 508 static int modinfo_##field##_exists(struct module *mod) \ 509 { \ 510 return mod->field != NULL; \ 511 } \ 512 static void free_modinfo_##field(struct module *mod) \ 513 { \ 514 kfree(mod->field); \ 515 mod->field = NULL; \ 516 } \ 517 static struct module_attribute modinfo_##field = { \ 518 .attr = { .name = __stringify(field), .mode = 0444 }, \ 519 .show = show_modinfo_##field, \ 520 .setup = setup_modinfo_##field, \ 521 .test = modinfo_##field##_exists, \ 522 .free = free_modinfo_##field, \ 523 }; 524 525 MODINFO_ATTR(version); 526 MODINFO_ATTR(srcversion); 527 528 static struct { 529 char name[MODULE_NAME_LEN + 1]; 530 char taints[MODULE_FLAGS_BUF_SIZE]; 531 } last_unloaded_module; 532 533 #ifdef CONFIG_MODULE_UNLOAD 534 535 EXPORT_TRACEPOINT_SYMBOL(module_get); 536 537 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 538 #define MODULE_REF_BASE 1 539 540 /* Init the unload section of the module. */ 541 static int module_unload_init(struct module *mod) 542 { 543 /* 544 * Initialize reference counter to MODULE_REF_BASE. 545 * refcnt == 0 means module is going. 546 */ 547 atomic_set(&mod->refcnt, MODULE_REF_BASE); 548 549 INIT_LIST_HEAD(&mod->source_list); 550 INIT_LIST_HEAD(&mod->target_list); 551 552 /* Hold reference count during initialization. */ 553 atomic_inc(&mod->refcnt); 554 555 return 0; 556 } 557 558 /* Does a already use b? */ 559 static int already_uses(struct module *a, struct module *b) 560 { 561 struct module_use *use; 562 563 list_for_each_entry(use, &b->source_list, source_list) { 564 if (use->source == a) { 565 pr_debug("%s uses %s!\n", a->name, b->name); 566 return 1; 567 } 568 } 569 pr_debug("%s does not use %s!\n", a->name, b->name); 570 return 0; 571 } 572 573 /* 574 * Module a uses b 575 * - we add 'a' as a "source", 'b' as a "target" of module use 576 * - the module_use is added to the list of 'b' sources (so 577 * 'b' can walk the list to see who sourced them), and of 'a' 578 * targets (so 'a' can see what modules it targets). 579 */ 580 static int add_module_usage(struct module *a, struct module *b) 581 { 582 struct module_use *use; 583 584 pr_debug("Allocating new usage for %s.\n", a->name); 585 use = kmalloc(sizeof(*use), GFP_ATOMIC); 586 if (!use) 587 return -ENOMEM; 588 589 use->source = a; 590 use->target = b; 591 list_add(&use->source_list, &b->source_list); 592 list_add(&use->target_list, &a->target_list); 593 return 0; 594 } 595 596 /* Module a uses b: caller needs module_mutex() */ 597 static int ref_module(struct module *a, struct module *b) 598 { 599 int err; 600 601 if (b == NULL || already_uses(a, b)) 602 return 0; 603 604 /* If module isn't available, we fail. */ 605 err = strong_try_module_get(b); 606 if (err) 607 return err; 608 609 err = add_module_usage(a, b); 610 if (err) { 611 module_put(b); 612 return err; 613 } 614 return 0; 615 } 616 617 /* Clear the unload stuff of the module. */ 618 static void module_unload_free(struct module *mod) 619 { 620 struct module_use *use, *tmp; 621 622 mutex_lock(&module_mutex); 623 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 624 struct module *i = use->target; 625 pr_debug("%s unusing %s\n", mod->name, i->name); 626 module_put(i); 627 list_del(&use->source_list); 628 list_del(&use->target_list); 629 kfree(use); 630 } 631 mutex_unlock(&module_mutex); 632 } 633 634 #ifdef CONFIG_MODULE_FORCE_UNLOAD 635 static inline int try_force_unload(unsigned int flags) 636 { 637 int ret = (flags & O_TRUNC); 638 if (ret) 639 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 640 return ret; 641 } 642 #else 643 static inline int try_force_unload(unsigned int flags) 644 { 645 return 0; 646 } 647 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 648 649 /* Try to release refcount of module, 0 means success. */ 650 static int try_release_module_ref(struct module *mod) 651 { 652 int ret; 653 654 /* Try to decrement refcnt which we set at loading */ 655 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 656 BUG_ON(ret < 0); 657 if (ret) 658 /* Someone can put this right now, recover with checking */ 659 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 660 661 return ret; 662 } 663 664 static int try_stop_module(struct module *mod, int flags, int *forced) 665 { 666 /* If it's not unused, quit unless we're forcing. */ 667 if (try_release_module_ref(mod) != 0) { 668 *forced = try_force_unload(flags); 669 if (!(*forced)) 670 return -EWOULDBLOCK; 671 } 672 673 /* Mark it as dying. */ 674 mod->state = MODULE_STATE_GOING; 675 676 return 0; 677 } 678 679 /** 680 * module_refcount() - return the refcount or -1 if unloading 681 * @mod: the module we're checking 682 * 683 * Return: 684 * -1 if the module is in the process of unloading 685 * otherwise the number of references in the kernel to the module 686 */ 687 int module_refcount(struct module *mod) 688 { 689 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 690 } 691 EXPORT_SYMBOL(module_refcount); 692 693 /* This exists whether we can unload or not */ 694 static void free_module(struct module *mod); 695 696 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 697 unsigned int, flags) 698 { 699 struct module *mod; 700 char name[MODULE_NAME_LEN]; 701 char buf[MODULE_FLAGS_BUF_SIZE]; 702 int ret, forced = 0; 703 704 if (!capable(CAP_SYS_MODULE) || modules_disabled) 705 return -EPERM; 706 707 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 708 return -EFAULT; 709 name[MODULE_NAME_LEN-1] = '\0'; 710 711 audit_log_kern_module(name); 712 713 if (mutex_lock_interruptible(&module_mutex) != 0) 714 return -EINTR; 715 716 mod = find_module(name); 717 if (!mod) { 718 ret = -ENOENT; 719 goto out; 720 } 721 722 if (!list_empty(&mod->source_list)) { 723 /* Other modules depend on us: get rid of them first. */ 724 ret = -EWOULDBLOCK; 725 goto out; 726 } 727 728 /* Doing init or already dying? */ 729 if (mod->state != MODULE_STATE_LIVE) { 730 /* FIXME: if (force), slam module count damn the torpedoes */ 731 pr_debug("%s already dying\n", mod->name); 732 ret = -EBUSY; 733 goto out; 734 } 735 736 /* If it has an init func, it must have an exit func to unload */ 737 if (mod->init && !mod->exit) { 738 forced = try_force_unload(flags); 739 if (!forced) { 740 /* This module can't be removed */ 741 ret = -EBUSY; 742 goto out; 743 } 744 } 745 746 ret = try_stop_module(mod, flags, &forced); 747 if (ret != 0) 748 goto out; 749 750 mutex_unlock(&module_mutex); 751 /* Final destruction now no one is using it. */ 752 if (mod->exit != NULL) 753 mod->exit(); 754 blocking_notifier_call_chain(&module_notify_list, 755 MODULE_STATE_GOING, mod); 756 klp_module_going(mod); 757 ftrace_release_mod(mod); 758 759 async_synchronize_full(); 760 761 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 762 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 763 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 764 765 free_module(mod); 766 /* someone could wait for the module in add_unformed_module() */ 767 wake_up_all(&module_wq); 768 return 0; 769 out: 770 mutex_unlock(&module_mutex); 771 return ret; 772 } 773 774 void __symbol_put(const char *symbol) 775 { 776 struct find_symbol_arg fsa = { 777 .name = symbol, 778 .gplok = true, 779 }; 780 781 preempt_disable(); 782 BUG_ON(!find_symbol(&fsa)); 783 module_put(fsa.owner); 784 preempt_enable(); 785 } 786 EXPORT_SYMBOL(__symbol_put); 787 788 /* Note this assumes addr is a function, which it currently always is. */ 789 void symbol_put_addr(void *addr) 790 { 791 struct module *modaddr; 792 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 793 794 if (core_kernel_text(a)) 795 return; 796 797 /* 798 * Even though we hold a reference on the module; we still need to 799 * disable preemption in order to safely traverse the data structure. 800 */ 801 preempt_disable(); 802 modaddr = __module_text_address(a); 803 BUG_ON(!modaddr); 804 module_put(modaddr); 805 preempt_enable(); 806 } 807 EXPORT_SYMBOL_GPL(symbol_put_addr); 808 809 static ssize_t show_refcnt(struct module_attribute *mattr, 810 struct module_kobject *mk, char *buffer) 811 { 812 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 813 } 814 815 static struct module_attribute modinfo_refcnt = 816 __ATTR(refcnt, 0444, show_refcnt, NULL); 817 818 void __module_get(struct module *module) 819 { 820 if (module) { 821 preempt_disable(); 822 atomic_inc(&module->refcnt); 823 trace_module_get(module, _RET_IP_); 824 preempt_enable(); 825 } 826 } 827 EXPORT_SYMBOL(__module_get); 828 829 bool try_module_get(struct module *module) 830 { 831 bool ret = true; 832 833 if (module) { 834 preempt_disable(); 835 /* Note: here, we can fail to get a reference */ 836 if (likely(module_is_live(module) && 837 atomic_inc_not_zero(&module->refcnt) != 0)) 838 trace_module_get(module, _RET_IP_); 839 else 840 ret = false; 841 842 preempt_enable(); 843 } 844 return ret; 845 } 846 EXPORT_SYMBOL(try_module_get); 847 848 void module_put(struct module *module) 849 { 850 int ret; 851 852 if (module) { 853 preempt_disable(); 854 ret = atomic_dec_if_positive(&module->refcnt); 855 WARN_ON(ret < 0); /* Failed to put refcount */ 856 trace_module_put(module, _RET_IP_); 857 preempt_enable(); 858 } 859 } 860 EXPORT_SYMBOL(module_put); 861 862 #else /* !CONFIG_MODULE_UNLOAD */ 863 static inline void module_unload_free(struct module *mod) 864 { 865 } 866 867 static int ref_module(struct module *a, struct module *b) 868 { 869 return strong_try_module_get(b); 870 } 871 872 static inline int module_unload_init(struct module *mod) 873 { 874 return 0; 875 } 876 #endif /* CONFIG_MODULE_UNLOAD */ 877 878 size_t module_flags_taint(unsigned long taints, char *buf) 879 { 880 size_t l = 0; 881 int i; 882 883 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 884 if (taint_flags[i].module && test_bit(i, &taints)) 885 buf[l++] = taint_flags[i].c_true; 886 } 887 888 return l; 889 } 890 891 static ssize_t show_initstate(struct module_attribute *mattr, 892 struct module_kobject *mk, char *buffer) 893 { 894 const char *state = "unknown"; 895 896 switch (mk->mod->state) { 897 case MODULE_STATE_LIVE: 898 state = "live"; 899 break; 900 case MODULE_STATE_COMING: 901 state = "coming"; 902 break; 903 case MODULE_STATE_GOING: 904 state = "going"; 905 break; 906 default: 907 BUG(); 908 } 909 return sprintf(buffer, "%s\n", state); 910 } 911 912 static struct module_attribute modinfo_initstate = 913 __ATTR(initstate, 0444, show_initstate, NULL); 914 915 static ssize_t store_uevent(struct module_attribute *mattr, 916 struct module_kobject *mk, 917 const char *buffer, size_t count) 918 { 919 int rc; 920 921 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 922 return rc ? rc : count; 923 } 924 925 struct module_attribute module_uevent = 926 __ATTR(uevent, 0200, NULL, store_uevent); 927 928 static ssize_t show_coresize(struct module_attribute *mattr, 929 struct module_kobject *mk, char *buffer) 930 { 931 return sprintf(buffer, "%u\n", mk->mod->core_layout.size); 932 } 933 934 static struct module_attribute modinfo_coresize = 935 __ATTR(coresize, 0444, show_coresize, NULL); 936 937 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 938 static ssize_t show_datasize(struct module_attribute *mattr, 939 struct module_kobject *mk, char *buffer) 940 { 941 return sprintf(buffer, "%u\n", mk->mod->data_layout.size); 942 } 943 944 static struct module_attribute modinfo_datasize = 945 __ATTR(datasize, 0444, show_datasize, NULL); 946 #endif 947 948 static ssize_t show_initsize(struct module_attribute *mattr, 949 struct module_kobject *mk, char *buffer) 950 { 951 return sprintf(buffer, "%u\n", mk->mod->init_layout.size); 952 } 953 954 static struct module_attribute modinfo_initsize = 955 __ATTR(initsize, 0444, show_initsize, NULL); 956 957 static ssize_t show_taint(struct module_attribute *mattr, 958 struct module_kobject *mk, char *buffer) 959 { 960 size_t l; 961 962 l = module_flags_taint(mk->mod->taints, buffer); 963 buffer[l++] = '\n'; 964 return l; 965 } 966 967 static struct module_attribute modinfo_taint = 968 __ATTR(taint, 0444, show_taint, NULL); 969 970 struct module_attribute *modinfo_attrs[] = { 971 &module_uevent, 972 &modinfo_version, 973 &modinfo_srcversion, 974 &modinfo_initstate, 975 &modinfo_coresize, 976 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 977 &modinfo_datasize, 978 #endif 979 &modinfo_initsize, 980 &modinfo_taint, 981 #ifdef CONFIG_MODULE_UNLOAD 982 &modinfo_refcnt, 983 #endif 984 NULL, 985 }; 986 987 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 988 989 static const char vermagic[] = VERMAGIC_STRING; 990 991 int try_to_force_load(struct module *mod, const char *reason) 992 { 993 #ifdef CONFIG_MODULE_FORCE_LOAD 994 if (!test_taint(TAINT_FORCED_MODULE)) 995 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 996 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 997 return 0; 998 #else 999 return -ENOEXEC; 1000 #endif 1001 } 1002 1003 static char *get_modinfo(const struct load_info *info, const char *tag); 1004 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1005 char *prev); 1006 1007 static int verify_namespace_is_imported(const struct load_info *info, 1008 const struct kernel_symbol *sym, 1009 struct module *mod) 1010 { 1011 const char *namespace; 1012 char *imported_namespace; 1013 1014 namespace = kernel_symbol_namespace(sym); 1015 if (namespace && namespace[0]) { 1016 imported_namespace = get_modinfo(info, "import_ns"); 1017 while (imported_namespace) { 1018 if (strcmp(namespace, imported_namespace) == 0) 1019 return 0; 1020 imported_namespace = get_next_modinfo( 1021 info, "import_ns", imported_namespace); 1022 } 1023 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1024 pr_warn( 1025 #else 1026 pr_err( 1027 #endif 1028 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1029 mod->name, kernel_symbol_name(sym), namespace); 1030 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1031 return -EINVAL; 1032 #endif 1033 } 1034 return 0; 1035 } 1036 1037 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1038 { 1039 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1040 return true; 1041 1042 if (mod->using_gplonly_symbols) { 1043 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1044 mod->name, name, owner->name); 1045 return false; 1046 } 1047 1048 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1049 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1050 mod->name, name, owner->name); 1051 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1052 } 1053 return true; 1054 } 1055 1056 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1057 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1058 const struct load_info *info, 1059 const char *name, 1060 char ownername[]) 1061 { 1062 struct find_symbol_arg fsa = { 1063 .name = name, 1064 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1065 .warn = true, 1066 }; 1067 int err; 1068 1069 /* 1070 * The module_mutex should not be a heavily contended lock; 1071 * if we get the occasional sleep here, we'll go an extra iteration 1072 * in the wait_event_interruptible(), which is harmless. 1073 */ 1074 sched_annotate_sleep(); 1075 mutex_lock(&module_mutex); 1076 if (!find_symbol(&fsa)) 1077 goto unlock; 1078 1079 if (fsa.license == GPL_ONLY) 1080 mod->using_gplonly_symbols = true; 1081 1082 if (!inherit_taint(mod, fsa.owner, name)) { 1083 fsa.sym = NULL; 1084 goto getname; 1085 } 1086 1087 if (!check_version(info, name, mod, fsa.crc)) { 1088 fsa.sym = ERR_PTR(-EINVAL); 1089 goto getname; 1090 } 1091 1092 err = verify_namespace_is_imported(info, fsa.sym, mod); 1093 if (err) { 1094 fsa.sym = ERR_PTR(err); 1095 goto getname; 1096 } 1097 1098 err = ref_module(mod, fsa.owner); 1099 if (err) { 1100 fsa.sym = ERR_PTR(err); 1101 goto getname; 1102 } 1103 1104 getname: 1105 /* We must make copy under the lock if we failed to get ref. */ 1106 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1107 unlock: 1108 mutex_unlock(&module_mutex); 1109 return fsa.sym; 1110 } 1111 1112 static const struct kernel_symbol * 1113 resolve_symbol_wait(struct module *mod, 1114 const struct load_info *info, 1115 const char *name) 1116 { 1117 const struct kernel_symbol *ksym; 1118 char owner[MODULE_NAME_LEN]; 1119 1120 if (wait_event_interruptible_timeout(module_wq, 1121 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1122 || PTR_ERR(ksym) != -EBUSY, 1123 30 * HZ) <= 0) { 1124 pr_warn("%s: gave up waiting for init of module %s.\n", 1125 mod->name, owner); 1126 } 1127 return ksym; 1128 } 1129 1130 void __weak module_memfree(void *module_region) 1131 { 1132 /* 1133 * This memory may be RO, and freeing RO memory in an interrupt is not 1134 * supported by vmalloc. 1135 */ 1136 WARN_ON(in_interrupt()); 1137 vfree(module_region); 1138 } 1139 1140 void __weak module_arch_cleanup(struct module *mod) 1141 { 1142 } 1143 1144 void __weak module_arch_freeing_init(struct module *mod) 1145 { 1146 } 1147 1148 /* Free a module, remove from lists, etc. */ 1149 static void free_module(struct module *mod) 1150 { 1151 trace_module_free(mod); 1152 1153 mod_sysfs_teardown(mod); 1154 1155 /* 1156 * We leave it in list to prevent duplicate loads, but make sure 1157 * that noone uses it while it's being deconstructed. 1158 */ 1159 mutex_lock(&module_mutex); 1160 mod->state = MODULE_STATE_UNFORMED; 1161 mutex_unlock(&module_mutex); 1162 1163 /* Remove dynamic debug info */ 1164 ddebug_remove_module(mod->name); 1165 1166 /* Arch-specific cleanup. */ 1167 module_arch_cleanup(mod); 1168 1169 /* Module unload stuff */ 1170 module_unload_free(mod); 1171 1172 /* Free any allocated parameters. */ 1173 destroy_params(mod->kp, mod->num_kp); 1174 1175 if (is_livepatch_module(mod)) 1176 free_module_elf(mod); 1177 1178 /* Now we can delete it from the lists */ 1179 mutex_lock(&module_mutex); 1180 /* Unlink carefully: kallsyms could be walking list. */ 1181 list_del_rcu(&mod->list); 1182 mod_tree_remove(mod); 1183 /* Remove this module from bug list, this uses list_del_rcu */ 1184 module_bug_cleanup(mod); 1185 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1186 synchronize_rcu(); 1187 if (try_add_tainted_module(mod)) 1188 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1189 mod->name); 1190 mutex_unlock(&module_mutex); 1191 1192 /* This may be empty, but that's OK */ 1193 module_arch_freeing_init(mod); 1194 module_memfree(mod->init_layout.base); 1195 kfree(mod->args); 1196 percpu_modfree(mod); 1197 1198 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1199 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size); 1200 1201 /* Finally, free the core (containing the module structure) */ 1202 module_memfree(mod->core_layout.base); 1203 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1204 vfree(mod->data_layout.base); 1205 #endif 1206 } 1207 1208 void *__symbol_get(const char *symbol) 1209 { 1210 struct find_symbol_arg fsa = { 1211 .name = symbol, 1212 .gplok = true, 1213 .warn = true, 1214 }; 1215 1216 preempt_disable(); 1217 if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) { 1218 preempt_enable(); 1219 return NULL; 1220 } 1221 preempt_enable(); 1222 return (void *)kernel_symbol_value(fsa.sym); 1223 } 1224 EXPORT_SYMBOL_GPL(__symbol_get); 1225 1226 /* 1227 * Ensure that an exported symbol [global namespace] does not already exist 1228 * in the kernel or in some other module's exported symbol table. 1229 * 1230 * You must hold the module_mutex. 1231 */ 1232 static int verify_exported_symbols(struct module *mod) 1233 { 1234 unsigned int i; 1235 const struct kernel_symbol *s; 1236 struct { 1237 const struct kernel_symbol *sym; 1238 unsigned int num; 1239 } arr[] = { 1240 { mod->syms, mod->num_syms }, 1241 { mod->gpl_syms, mod->num_gpl_syms }, 1242 }; 1243 1244 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1245 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1246 struct find_symbol_arg fsa = { 1247 .name = kernel_symbol_name(s), 1248 .gplok = true, 1249 }; 1250 if (find_symbol(&fsa)) { 1251 pr_err("%s: exports duplicate symbol %s" 1252 " (owned by %s)\n", 1253 mod->name, kernel_symbol_name(s), 1254 module_name(fsa.owner)); 1255 return -ENOEXEC; 1256 } 1257 } 1258 } 1259 return 0; 1260 } 1261 1262 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1263 { 1264 /* 1265 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1266 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1267 * i386 has a similar problem but may not deserve a fix. 1268 * 1269 * If we ever have to ignore many symbols, consider refactoring the code to 1270 * only warn if referenced by a relocation. 1271 */ 1272 if (emachine == EM_386 || emachine == EM_X86_64) 1273 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1274 return false; 1275 } 1276 1277 /* Change all symbols so that st_value encodes the pointer directly. */ 1278 static int simplify_symbols(struct module *mod, const struct load_info *info) 1279 { 1280 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1281 Elf_Sym *sym = (void *)symsec->sh_addr; 1282 unsigned long secbase; 1283 unsigned int i; 1284 int ret = 0; 1285 const struct kernel_symbol *ksym; 1286 1287 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1288 const char *name = info->strtab + sym[i].st_name; 1289 1290 switch (sym[i].st_shndx) { 1291 case SHN_COMMON: 1292 /* Ignore common symbols */ 1293 if (!strncmp(name, "__gnu_lto", 9)) 1294 break; 1295 1296 /* 1297 * We compiled with -fno-common. These are not 1298 * supposed to happen. 1299 */ 1300 pr_debug("Common symbol: %s\n", name); 1301 pr_warn("%s: please compile with -fno-common\n", 1302 mod->name); 1303 ret = -ENOEXEC; 1304 break; 1305 1306 case SHN_ABS: 1307 /* Don't need to do anything */ 1308 pr_debug("Absolute symbol: 0x%08lx\n", 1309 (long)sym[i].st_value); 1310 break; 1311 1312 case SHN_LIVEPATCH: 1313 /* Livepatch symbols are resolved by livepatch */ 1314 break; 1315 1316 case SHN_UNDEF: 1317 ksym = resolve_symbol_wait(mod, info, name); 1318 /* Ok if resolved. */ 1319 if (ksym && !IS_ERR(ksym)) { 1320 sym[i].st_value = kernel_symbol_value(ksym); 1321 break; 1322 } 1323 1324 /* Ok if weak or ignored. */ 1325 if (!ksym && 1326 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1327 ignore_undef_symbol(info->hdr->e_machine, name))) 1328 break; 1329 1330 ret = PTR_ERR(ksym) ?: -ENOENT; 1331 pr_warn("%s: Unknown symbol %s (err %d)\n", 1332 mod->name, name, ret); 1333 break; 1334 1335 default: 1336 /* Divert to percpu allocation if a percpu var. */ 1337 if (sym[i].st_shndx == info->index.pcpu) 1338 secbase = (unsigned long)mod_percpu(mod); 1339 else 1340 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1341 sym[i].st_value += secbase; 1342 break; 1343 } 1344 } 1345 1346 return ret; 1347 } 1348 1349 static int apply_relocations(struct module *mod, const struct load_info *info) 1350 { 1351 unsigned int i; 1352 int err = 0; 1353 1354 /* Now do relocations. */ 1355 for (i = 1; i < info->hdr->e_shnum; i++) { 1356 unsigned int infosec = info->sechdrs[i].sh_info; 1357 1358 /* Not a valid relocation section? */ 1359 if (infosec >= info->hdr->e_shnum) 1360 continue; 1361 1362 /* Don't bother with non-allocated sections */ 1363 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1364 continue; 1365 1366 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1367 err = klp_apply_section_relocs(mod, info->sechdrs, 1368 info->secstrings, 1369 info->strtab, 1370 info->index.sym, i, 1371 NULL); 1372 else if (info->sechdrs[i].sh_type == SHT_REL) 1373 err = apply_relocate(info->sechdrs, info->strtab, 1374 info->index.sym, i, mod); 1375 else if (info->sechdrs[i].sh_type == SHT_RELA) 1376 err = apply_relocate_add(info->sechdrs, info->strtab, 1377 info->index.sym, i, mod); 1378 if (err < 0) 1379 break; 1380 } 1381 return err; 1382 } 1383 1384 /* Additional bytes needed by arch in front of individual sections */ 1385 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1386 unsigned int section) 1387 { 1388 /* default implementation just returns zero */ 1389 return 0; 1390 } 1391 1392 /* Update size with this section: return offset. */ 1393 long module_get_offset(struct module *mod, unsigned int *size, 1394 Elf_Shdr *sechdr, unsigned int section) 1395 { 1396 long ret; 1397 1398 *size += arch_mod_section_prepend(mod, section); 1399 ret = ALIGN(*size, sechdr->sh_addralign ?: 1); 1400 *size = ret + sechdr->sh_size; 1401 return ret; 1402 } 1403 1404 static bool module_init_layout_section(const char *sname) 1405 { 1406 #ifndef CONFIG_MODULE_UNLOAD 1407 if (module_exit_section(sname)) 1408 return true; 1409 #endif 1410 return module_init_section(sname); 1411 } 1412 1413 /* 1414 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1415 * might -- code, read-only data, read-write data, small data. Tally 1416 * sizes, and place the offsets into sh_entsize fields: high bit means it 1417 * belongs in init. 1418 */ 1419 static void layout_sections(struct module *mod, struct load_info *info) 1420 { 1421 static unsigned long const masks[][2] = { 1422 /* 1423 * NOTE: all executable code must be the first section 1424 * in this array; otherwise modify the text_size 1425 * finder in the two loops below 1426 */ 1427 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1428 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1429 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1430 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1431 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1432 }; 1433 unsigned int m, i; 1434 1435 for (i = 0; i < info->hdr->e_shnum; i++) 1436 info->sechdrs[i].sh_entsize = ~0UL; 1437 1438 pr_debug("Core section allocation order:\n"); 1439 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1440 for (i = 0; i < info->hdr->e_shnum; ++i) { 1441 Elf_Shdr *s = &info->sechdrs[i]; 1442 const char *sname = info->secstrings + s->sh_name; 1443 unsigned int *sizep; 1444 1445 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1446 || (s->sh_flags & masks[m][1]) 1447 || s->sh_entsize != ~0UL 1448 || module_init_layout_section(sname)) 1449 continue; 1450 sizep = m ? &mod->data_layout.size : &mod->core_layout.size; 1451 s->sh_entsize = module_get_offset(mod, sizep, s, i); 1452 pr_debug("\t%s\n", sname); 1453 } 1454 switch (m) { 1455 case 0: /* executable */ 1456 mod->core_layout.size = strict_align(mod->core_layout.size); 1457 mod->core_layout.text_size = mod->core_layout.size; 1458 break; 1459 case 1: /* RO: text and ro-data */ 1460 mod->data_layout.size = strict_align(mod->data_layout.size); 1461 mod->data_layout.ro_size = mod->data_layout.size; 1462 break; 1463 case 2: /* RO after init */ 1464 mod->data_layout.size = strict_align(mod->data_layout.size); 1465 mod->data_layout.ro_after_init_size = mod->data_layout.size; 1466 break; 1467 case 4: /* whole core */ 1468 mod->data_layout.size = strict_align(mod->data_layout.size); 1469 break; 1470 } 1471 } 1472 1473 pr_debug("Init section allocation order:\n"); 1474 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1475 for (i = 0; i < info->hdr->e_shnum; ++i) { 1476 Elf_Shdr *s = &info->sechdrs[i]; 1477 const char *sname = info->secstrings + s->sh_name; 1478 1479 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1480 || (s->sh_flags & masks[m][1]) 1481 || s->sh_entsize != ~0UL 1482 || !module_init_layout_section(sname)) 1483 continue; 1484 s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i) 1485 | INIT_OFFSET_MASK); 1486 pr_debug("\t%s\n", sname); 1487 } 1488 switch (m) { 1489 case 0: /* executable */ 1490 mod->init_layout.size = strict_align(mod->init_layout.size); 1491 mod->init_layout.text_size = mod->init_layout.size; 1492 break; 1493 case 1: /* RO: text and ro-data */ 1494 mod->init_layout.size = strict_align(mod->init_layout.size); 1495 mod->init_layout.ro_size = mod->init_layout.size; 1496 break; 1497 case 2: 1498 /* 1499 * RO after init doesn't apply to init_layout (only 1500 * core_layout), so it just takes the value of ro_size. 1501 */ 1502 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size; 1503 break; 1504 case 4: /* whole init */ 1505 mod->init_layout.size = strict_align(mod->init_layout.size); 1506 break; 1507 } 1508 } 1509 } 1510 1511 static void set_license(struct module *mod, const char *license) 1512 { 1513 if (!license) 1514 license = "unspecified"; 1515 1516 if (!license_is_gpl_compatible(license)) { 1517 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1518 pr_warn("%s: module license '%s' taints kernel.\n", 1519 mod->name, license); 1520 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1521 LOCKDEP_NOW_UNRELIABLE); 1522 } 1523 } 1524 1525 /* Parse tag=value strings from .modinfo section */ 1526 static char *next_string(char *string, unsigned long *secsize) 1527 { 1528 /* Skip non-zero chars */ 1529 while (string[0]) { 1530 string++; 1531 if ((*secsize)-- <= 1) 1532 return NULL; 1533 } 1534 1535 /* Skip any zero padding. */ 1536 while (!string[0]) { 1537 string++; 1538 if ((*secsize)-- <= 1) 1539 return NULL; 1540 } 1541 return string; 1542 } 1543 1544 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1545 char *prev) 1546 { 1547 char *p; 1548 unsigned int taglen = strlen(tag); 1549 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1550 unsigned long size = infosec->sh_size; 1551 1552 /* 1553 * get_modinfo() calls made before rewrite_section_headers() 1554 * must use sh_offset, as sh_addr isn't set! 1555 */ 1556 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1557 1558 if (prev) { 1559 size -= prev - modinfo; 1560 modinfo = next_string(prev, &size); 1561 } 1562 1563 for (p = modinfo; p; p = next_string(p, &size)) { 1564 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1565 return p + taglen + 1; 1566 } 1567 return NULL; 1568 } 1569 1570 static char *get_modinfo(const struct load_info *info, const char *tag) 1571 { 1572 return get_next_modinfo(info, tag, NULL); 1573 } 1574 1575 static void setup_modinfo(struct module *mod, struct load_info *info) 1576 { 1577 struct module_attribute *attr; 1578 int i; 1579 1580 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1581 if (attr->setup) 1582 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1583 } 1584 } 1585 1586 static void free_modinfo(struct module *mod) 1587 { 1588 struct module_attribute *attr; 1589 int i; 1590 1591 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1592 if (attr->free) 1593 attr->free(mod); 1594 } 1595 } 1596 1597 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num) 1598 { 1599 if (!debug) 1600 return; 1601 ddebug_add_module(debug, num, mod->name); 1602 } 1603 1604 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug) 1605 { 1606 if (debug) 1607 ddebug_remove_module(mod->name); 1608 } 1609 1610 void * __weak module_alloc(unsigned long size) 1611 { 1612 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 1613 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 1614 NUMA_NO_NODE, __builtin_return_address(0)); 1615 } 1616 1617 bool __weak module_init_section(const char *name) 1618 { 1619 return strstarts(name, ".init"); 1620 } 1621 1622 bool __weak module_exit_section(const char *name) 1623 { 1624 return strstarts(name, ".exit"); 1625 } 1626 1627 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr) 1628 { 1629 #if defined(CONFIG_64BIT) 1630 unsigned long long secend; 1631 #else 1632 unsigned long secend; 1633 #endif 1634 1635 /* 1636 * Check for both overflow and offset/size being 1637 * too large. 1638 */ 1639 secend = shdr->sh_offset + shdr->sh_size; 1640 if (secend < shdr->sh_offset || secend > info->len) 1641 return -ENOEXEC; 1642 1643 return 0; 1644 } 1645 1646 /* 1647 * Sanity checks against invalid binaries, wrong arch, weird elf version. 1648 * 1649 * Also do basic validity checks against section offsets and sizes, the 1650 * section name string table, and the indices used for it (sh_name). 1651 */ 1652 static int elf_validity_check(struct load_info *info) 1653 { 1654 unsigned int i; 1655 Elf_Shdr *shdr, *strhdr; 1656 int err; 1657 1658 if (info->len < sizeof(*(info->hdr))) { 1659 pr_err("Invalid ELF header len %lu\n", info->len); 1660 goto no_exec; 1661 } 1662 1663 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1664 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1665 goto no_exec; 1666 } 1667 if (info->hdr->e_type != ET_REL) { 1668 pr_err("Invalid ELF header type: %u != %u\n", 1669 info->hdr->e_type, ET_REL); 1670 goto no_exec; 1671 } 1672 if (!elf_check_arch(info->hdr)) { 1673 pr_err("Invalid architecture in ELF header: %u\n", 1674 info->hdr->e_machine); 1675 goto no_exec; 1676 } 1677 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1678 pr_err("Invalid ELF section header size\n"); 1679 goto no_exec; 1680 } 1681 1682 /* 1683 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1684 * known and small. So e_shnum * sizeof(Elf_Shdr) 1685 * will not overflow unsigned long on any platform. 1686 */ 1687 if (info->hdr->e_shoff >= info->len 1688 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1689 info->len - info->hdr->e_shoff)) { 1690 pr_err("Invalid ELF section header overflow\n"); 1691 goto no_exec; 1692 } 1693 1694 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1695 1696 /* 1697 * Verify if the section name table index is valid. 1698 */ 1699 if (info->hdr->e_shstrndx == SHN_UNDEF 1700 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1701 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1702 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1703 info->hdr->e_shnum); 1704 goto no_exec; 1705 } 1706 1707 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1708 err = validate_section_offset(info, strhdr); 1709 if (err < 0) { 1710 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type); 1711 return err; 1712 } 1713 1714 /* 1715 * The section name table must be NUL-terminated, as required 1716 * by the spec. This makes strcmp and pr_* calls that access 1717 * strings in the section safe. 1718 */ 1719 info->secstrings = (void *)info->hdr + strhdr->sh_offset; 1720 if (strhdr->sh_size == 0) { 1721 pr_err("empty section name table\n"); 1722 goto no_exec; 1723 } 1724 if (info->secstrings[strhdr->sh_size - 1] != '\0') { 1725 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1726 goto no_exec; 1727 } 1728 1729 /* 1730 * The code assumes that section 0 has a length of zero and 1731 * an addr of zero, so check for it. 1732 */ 1733 if (info->sechdrs[0].sh_type != SHT_NULL 1734 || info->sechdrs[0].sh_size != 0 1735 || info->sechdrs[0].sh_addr != 0) { 1736 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1737 info->sechdrs[0].sh_type); 1738 goto no_exec; 1739 } 1740 1741 for (i = 1; i < info->hdr->e_shnum; i++) { 1742 shdr = &info->sechdrs[i]; 1743 switch (shdr->sh_type) { 1744 case SHT_NULL: 1745 case SHT_NOBITS: 1746 continue; 1747 case SHT_SYMTAB: 1748 if (shdr->sh_link == SHN_UNDEF 1749 || shdr->sh_link >= info->hdr->e_shnum) { 1750 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 1751 shdr->sh_link, shdr->sh_link, 1752 info->hdr->e_shnum); 1753 goto no_exec; 1754 } 1755 fallthrough; 1756 default: 1757 err = validate_section_offset(info, shdr); 1758 if (err < 0) { 1759 pr_err("Invalid ELF section in module (section %u type %u)\n", 1760 i, shdr->sh_type); 1761 return err; 1762 } 1763 1764 if (shdr->sh_flags & SHF_ALLOC) { 1765 if (shdr->sh_name >= strhdr->sh_size) { 1766 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1767 i, shdr->sh_type); 1768 return -ENOEXEC; 1769 } 1770 } 1771 break; 1772 } 1773 } 1774 1775 return 0; 1776 1777 no_exec: 1778 return -ENOEXEC; 1779 } 1780 1781 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 1782 1783 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 1784 { 1785 do { 1786 unsigned long n = min(len, COPY_CHUNK_SIZE); 1787 1788 if (copy_from_user(dst, usrc, n) != 0) 1789 return -EFAULT; 1790 cond_resched(); 1791 dst += n; 1792 usrc += n; 1793 len -= n; 1794 } while (len); 1795 return 0; 1796 } 1797 1798 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 1799 { 1800 if (!get_modinfo(info, "livepatch")) 1801 /* Nothing more to do */ 1802 return 0; 1803 1804 if (set_livepatch_module(mod)) { 1805 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 1806 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 1807 mod->name); 1808 return 0; 1809 } 1810 1811 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 1812 mod->name); 1813 return -ENOEXEC; 1814 } 1815 1816 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 1817 { 1818 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 1819 return; 1820 1821 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 1822 mod->name); 1823 } 1824 1825 /* Sets info->hdr and info->len. */ 1826 static int copy_module_from_user(const void __user *umod, unsigned long len, 1827 struct load_info *info) 1828 { 1829 int err; 1830 1831 info->len = len; 1832 if (info->len < sizeof(*(info->hdr))) 1833 return -ENOEXEC; 1834 1835 err = security_kernel_load_data(LOADING_MODULE, true); 1836 if (err) 1837 return err; 1838 1839 /* Suck in entire file: we'll want most of it. */ 1840 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 1841 if (!info->hdr) 1842 return -ENOMEM; 1843 1844 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 1845 err = -EFAULT; 1846 goto out; 1847 } 1848 1849 err = security_kernel_post_load_data((char *)info->hdr, info->len, 1850 LOADING_MODULE, "init_module"); 1851 out: 1852 if (err) 1853 vfree(info->hdr); 1854 1855 return err; 1856 } 1857 1858 static void free_copy(struct load_info *info, int flags) 1859 { 1860 if (flags & MODULE_INIT_COMPRESSED_FILE) 1861 module_decompress_cleanup(info); 1862 else 1863 vfree(info->hdr); 1864 } 1865 1866 static int rewrite_section_headers(struct load_info *info, int flags) 1867 { 1868 unsigned int i; 1869 1870 /* This should always be true, but let's be sure. */ 1871 info->sechdrs[0].sh_addr = 0; 1872 1873 for (i = 1; i < info->hdr->e_shnum; i++) { 1874 Elf_Shdr *shdr = &info->sechdrs[i]; 1875 1876 /* 1877 * Mark all sections sh_addr with their address in the 1878 * temporary image. 1879 */ 1880 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 1881 1882 } 1883 1884 /* Track but don't keep modinfo and version sections. */ 1885 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 1886 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 1887 1888 return 0; 1889 } 1890 1891 /* 1892 * Set up our basic convenience variables (pointers to section headers, 1893 * search for module section index etc), and do some basic section 1894 * verification. 1895 * 1896 * Set info->mod to the temporary copy of the module in info->hdr. The final one 1897 * will be allocated in move_module(). 1898 */ 1899 static int setup_load_info(struct load_info *info, int flags) 1900 { 1901 unsigned int i; 1902 1903 /* Try to find a name early so we can log errors with a module name */ 1904 info->index.info = find_sec(info, ".modinfo"); 1905 if (info->index.info) 1906 info->name = get_modinfo(info, "name"); 1907 1908 /* Find internal symbols and strings. */ 1909 for (i = 1; i < info->hdr->e_shnum; i++) { 1910 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 1911 info->index.sym = i; 1912 info->index.str = info->sechdrs[i].sh_link; 1913 info->strtab = (char *)info->hdr 1914 + info->sechdrs[info->index.str].sh_offset; 1915 break; 1916 } 1917 } 1918 1919 if (info->index.sym == 0) { 1920 pr_warn("%s: module has no symbols (stripped?)\n", 1921 info->name ?: "(missing .modinfo section or name field)"); 1922 return -ENOEXEC; 1923 } 1924 1925 info->index.mod = find_sec(info, ".gnu.linkonce.this_module"); 1926 if (!info->index.mod) { 1927 pr_warn("%s: No module found in object\n", 1928 info->name ?: "(missing .modinfo section or name field)"); 1929 return -ENOEXEC; 1930 } 1931 /* This is temporary: point mod into copy of data. */ 1932 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 1933 1934 /* 1935 * If we didn't load the .modinfo 'name' field earlier, fall back to 1936 * on-disk struct mod 'name' field. 1937 */ 1938 if (!info->name) 1939 info->name = info->mod->name; 1940 1941 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) 1942 info->index.vers = 0; /* Pretend no __versions section! */ 1943 else 1944 info->index.vers = find_sec(info, "__versions"); 1945 1946 info->index.pcpu = find_pcpusec(info); 1947 1948 return 0; 1949 } 1950 1951 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 1952 { 1953 const char *modmagic = get_modinfo(info, "vermagic"); 1954 int err; 1955 1956 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 1957 modmagic = NULL; 1958 1959 /* This is allowed: modprobe --force will invalidate it. */ 1960 if (!modmagic) { 1961 err = try_to_force_load(mod, "bad vermagic"); 1962 if (err) 1963 return err; 1964 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 1965 pr_err("%s: version magic '%s' should be '%s'\n", 1966 info->name, modmagic, vermagic); 1967 return -ENOEXEC; 1968 } 1969 1970 if (!get_modinfo(info, "intree")) { 1971 if (!test_taint(TAINT_OOT_MODULE)) 1972 pr_warn("%s: loading out-of-tree module taints kernel.\n", 1973 mod->name); 1974 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 1975 } 1976 1977 check_modinfo_retpoline(mod, info); 1978 1979 if (get_modinfo(info, "staging")) { 1980 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 1981 pr_warn("%s: module is from the staging directory, the quality " 1982 "is unknown, you have been warned.\n", mod->name); 1983 } 1984 1985 err = check_modinfo_livepatch(mod, info); 1986 if (err) 1987 return err; 1988 1989 /* Set up license info based on the info section */ 1990 set_license(mod, get_modinfo(info, "license")); 1991 1992 if (get_modinfo(info, "test")) { 1993 if (!test_taint(TAINT_TEST)) 1994 pr_warn("%s: loading test module taints kernel.\n", 1995 mod->name); 1996 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 1997 } 1998 1999 return 0; 2000 } 2001 2002 static int find_module_sections(struct module *mod, struct load_info *info) 2003 { 2004 mod->kp = section_objs(info, "__param", 2005 sizeof(*mod->kp), &mod->num_kp); 2006 mod->syms = section_objs(info, "__ksymtab", 2007 sizeof(*mod->syms), &mod->num_syms); 2008 mod->crcs = section_addr(info, "__kcrctab"); 2009 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2010 sizeof(*mod->gpl_syms), 2011 &mod->num_gpl_syms); 2012 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2013 2014 #ifdef CONFIG_CONSTRUCTORS 2015 mod->ctors = section_objs(info, ".ctors", 2016 sizeof(*mod->ctors), &mod->num_ctors); 2017 if (!mod->ctors) 2018 mod->ctors = section_objs(info, ".init_array", 2019 sizeof(*mod->ctors), &mod->num_ctors); 2020 else if (find_sec(info, ".init_array")) { 2021 /* 2022 * This shouldn't happen with same compiler and binutils 2023 * building all parts of the module. 2024 */ 2025 pr_warn("%s: has both .ctors and .init_array.\n", 2026 mod->name); 2027 return -EINVAL; 2028 } 2029 #endif 2030 2031 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2032 &mod->noinstr_text_size); 2033 2034 #ifdef CONFIG_TRACEPOINTS 2035 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2036 sizeof(*mod->tracepoints_ptrs), 2037 &mod->num_tracepoints); 2038 #endif 2039 #ifdef CONFIG_TREE_SRCU 2040 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2041 sizeof(*mod->srcu_struct_ptrs), 2042 &mod->num_srcu_structs); 2043 #endif 2044 #ifdef CONFIG_BPF_EVENTS 2045 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2046 sizeof(*mod->bpf_raw_events), 2047 &mod->num_bpf_raw_events); 2048 #endif 2049 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2050 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2051 #endif 2052 #ifdef CONFIG_JUMP_LABEL 2053 mod->jump_entries = section_objs(info, "__jump_table", 2054 sizeof(*mod->jump_entries), 2055 &mod->num_jump_entries); 2056 #endif 2057 #ifdef CONFIG_EVENT_TRACING 2058 mod->trace_events = section_objs(info, "_ftrace_events", 2059 sizeof(*mod->trace_events), 2060 &mod->num_trace_events); 2061 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2062 sizeof(*mod->trace_evals), 2063 &mod->num_trace_evals); 2064 #endif 2065 #ifdef CONFIG_TRACING 2066 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2067 sizeof(*mod->trace_bprintk_fmt_start), 2068 &mod->num_trace_bprintk_fmt); 2069 #endif 2070 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2071 /* sechdrs[0].sh_size is always zero */ 2072 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2073 sizeof(*mod->ftrace_callsites), 2074 &mod->num_ftrace_callsites); 2075 #endif 2076 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2077 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2078 sizeof(*mod->ei_funcs), 2079 &mod->num_ei_funcs); 2080 #endif 2081 #ifdef CONFIG_KPROBES 2082 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2083 &mod->kprobes_text_size); 2084 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2085 sizeof(unsigned long), 2086 &mod->num_kprobe_blacklist); 2087 #endif 2088 #ifdef CONFIG_PRINTK_INDEX 2089 mod->printk_index_start = section_objs(info, ".printk_index", 2090 sizeof(*mod->printk_index_start), 2091 &mod->printk_index_size); 2092 #endif 2093 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2094 mod->static_call_sites = section_objs(info, ".static_call_sites", 2095 sizeof(*mod->static_call_sites), 2096 &mod->num_static_call_sites); 2097 #endif 2098 #if IS_ENABLED(CONFIG_KUNIT) 2099 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2100 sizeof(*mod->kunit_suites), 2101 &mod->num_kunit_suites); 2102 #endif 2103 2104 mod->extable = section_objs(info, "__ex_table", 2105 sizeof(*mod->extable), &mod->num_exentries); 2106 2107 if (section_addr(info, "__obsparm")) 2108 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2109 2110 info->debug = section_objs(info, "__dyndbg", 2111 sizeof(*info->debug), &info->num_debug); 2112 2113 return 0; 2114 } 2115 2116 static int move_module(struct module *mod, struct load_info *info) 2117 { 2118 int i; 2119 void *ptr; 2120 2121 /* Do the allocs. */ 2122 ptr = module_alloc(mod->core_layout.size); 2123 /* 2124 * The pointer to this block is stored in the module structure 2125 * which is inside the block. Just mark it as not being a 2126 * leak. 2127 */ 2128 kmemleak_not_leak(ptr); 2129 if (!ptr) 2130 return -ENOMEM; 2131 2132 memset(ptr, 0, mod->core_layout.size); 2133 mod->core_layout.base = ptr; 2134 2135 if (mod->init_layout.size) { 2136 ptr = module_alloc(mod->init_layout.size); 2137 /* 2138 * The pointer to this block is stored in the module structure 2139 * which is inside the block. This block doesn't need to be 2140 * scanned as it contains data and code that will be freed 2141 * after the module is initialized. 2142 */ 2143 kmemleak_ignore(ptr); 2144 if (!ptr) { 2145 module_memfree(mod->core_layout.base); 2146 return -ENOMEM; 2147 } 2148 memset(ptr, 0, mod->init_layout.size); 2149 mod->init_layout.base = ptr; 2150 } else 2151 mod->init_layout.base = NULL; 2152 2153 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 2154 /* Do the allocs. */ 2155 ptr = vzalloc(mod->data_layout.size); 2156 /* 2157 * The pointer to this block is stored in the module structure 2158 * which is inside the block. Just mark it as not being a 2159 * leak. 2160 */ 2161 kmemleak_not_leak(ptr); 2162 if (!ptr) { 2163 module_memfree(mod->core_layout.base); 2164 module_memfree(mod->init_layout.base); 2165 return -ENOMEM; 2166 } 2167 2168 mod->data_layout.base = ptr; 2169 #endif 2170 /* Transfer each section which specifies SHF_ALLOC */ 2171 pr_debug("final section addresses:\n"); 2172 for (i = 0; i < info->hdr->e_shnum; i++) { 2173 void *dest; 2174 Elf_Shdr *shdr = &info->sechdrs[i]; 2175 2176 if (!(shdr->sh_flags & SHF_ALLOC)) 2177 continue; 2178 2179 if (shdr->sh_entsize & INIT_OFFSET_MASK) 2180 dest = mod->init_layout.base 2181 + (shdr->sh_entsize & ~INIT_OFFSET_MASK); 2182 else if (!(shdr->sh_flags & SHF_EXECINSTR)) 2183 dest = mod->data_layout.base + shdr->sh_entsize; 2184 else 2185 dest = mod->core_layout.base + shdr->sh_entsize; 2186 2187 if (shdr->sh_type != SHT_NOBITS) 2188 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2189 /* Update sh_addr to point to copy in image. */ 2190 shdr->sh_addr = (unsigned long)dest; 2191 pr_debug("\t0x%lx %s\n", 2192 (long)shdr->sh_addr, info->secstrings + shdr->sh_name); 2193 } 2194 2195 return 0; 2196 } 2197 2198 static int check_module_license_and_versions(struct module *mod) 2199 { 2200 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2201 2202 /* 2203 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2204 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2205 * using GPL-only symbols it needs. 2206 */ 2207 if (strcmp(mod->name, "ndiswrapper") == 0) 2208 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2209 2210 /* driverloader was caught wrongly pretending to be under GPL */ 2211 if (strcmp(mod->name, "driverloader") == 0) 2212 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2213 LOCKDEP_NOW_UNRELIABLE); 2214 2215 /* lve claims to be GPL but upstream won't provide source */ 2216 if (strcmp(mod->name, "lve") == 0) 2217 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2218 LOCKDEP_NOW_UNRELIABLE); 2219 2220 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2221 pr_warn("%s: module license taints kernel.\n", mod->name); 2222 2223 #ifdef CONFIG_MODVERSIONS 2224 if ((mod->num_syms && !mod->crcs) || 2225 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2226 return try_to_force_load(mod, 2227 "no versions for exported symbols"); 2228 } 2229 #endif 2230 return 0; 2231 } 2232 2233 static void flush_module_icache(const struct module *mod) 2234 { 2235 /* 2236 * Flush the instruction cache, since we've played with text. 2237 * Do it before processing of module parameters, so the module 2238 * can provide parameter accessor functions of its own. 2239 */ 2240 if (mod->init_layout.base) 2241 flush_icache_range((unsigned long)mod->init_layout.base, 2242 (unsigned long)mod->init_layout.base 2243 + mod->init_layout.size); 2244 flush_icache_range((unsigned long)mod->core_layout.base, 2245 (unsigned long)mod->core_layout.base + mod->core_layout.size); 2246 } 2247 2248 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2249 Elf_Shdr *sechdrs, 2250 char *secstrings, 2251 struct module *mod) 2252 { 2253 return 0; 2254 } 2255 2256 /* module_blacklist is a comma-separated list of module names */ 2257 static char *module_blacklist; 2258 static bool blacklisted(const char *module_name) 2259 { 2260 const char *p; 2261 size_t len; 2262 2263 if (!module_blacklist) 2264 return false; 2265 2266 for (p = module_blacklist; *p; p += len) { 2267 len = strcspn(p, ","); 2268 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2269 return true; 2270 if (p[len] == ',') 2271 len++; 2272 } 2273 return false; 2274 } 2275 core_param(module_blacklist, module_blacklist, charp, 0400); 2276 2277 static struct module *layout_and_allocate(struct load_info *info, int flags) 2278 { 2279 struct module *mod; 2280 unsigned int ndx; 2281 int err; 2282 2283 err = check_modinfo(info->mod, info, flags); 2284 if (err) 2285 return ERR_PTR(err); 2286 2287 /* Allow arches to frob section contents and sizes. */ 2288 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2289 info->secstrings, info->mod); 2290 if (err < 0) 2291 return ERR_PTR(err); 2292 2293 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2294 info->secstrings, info->mod); 2295 if (err < 0) 2296 return ERR_PTR(err); 2297 2298 /* We will do a special allocation for per-cpu sections later. */ 2299 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2300 2301 /* 2302 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2303 * layout_sections() can put it in the right place. 2304 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2305 */ 2306 ndx = find_sec(info, ".data..ro_after_init"); 2307 if (ndx) 2308 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2309 /* 2310 * Mark the __jump_table section as ro_after_init as well: these data 2311 * structures are never modified, with the exception of entries that 2312 * refer to code in the __init section, which are annotated as such 2313 * at module load time. 2314 */ 2315 ndx = find_sec(info, "__jump_table"); 2316 if (ndx) 2317 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2318 2319 /* 2320 * Determine total sizes, and put offsets in sh_entsize. For now 2321 * this is done generically; there doesn't appear to be any 2322 * special cases for the architectures. 2323 */ 2324 layout_sections(info->mod, info); 2325 layout_symtab(info->mod, info); 2326 2327 /* Allocate and move to the final place */ 2328 err = move_module(info->mod, info); 2329 if (err) 2330 return ERR_PTR(err); 2331 2332 /* Module has been copied to its final place now: return it. */ 2333 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2334 kmemleak_load_module(mod, info); 2335 return mod; 2336 } 2337 2338 /* mod is no longer valid after this! */ 2339 static void module_deallocate(struct module *mod, struct load_info *info) 2340 { 2341 percpu_modfree(mod); 2342 module_arch_freeing_init(mod); 2343 module_memfree(mod->init_layout.base); 2344 module_memfree(mod->core_layout.base); 2345 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 2346 vfree(mod->data_layout.base); 2347 #endif 2348 } 2349 2350 int __weak module_finalize(const Elf_Ehdr *hdr, 2351 const Elf_Shdr *sechdrs, 2352 struct module *me) 2353 { 2354 return 0; 2355 } 2356 2357 static int post_relocation(struct module *mod, const struct load_info *info) 2358 { 2359 /* Sort exception table now relocations are done. */ 2360 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2361 2362 /* Copy relocated percpu area over. */ 2363 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2364 info->sechdrs[info->index.pcpu].sh_size); 2365 2366 /* Setup kallsyms-specific fields. */ 2367 add_kallsyms(mod, info); 2368 2369 /* Arch-specific module finalizing. */ 2370 return module_finalize(info->hdr, info->sechdrs, mod); 2371 } 2372 2373 /* Is this module of this name done loading? No locks held. */ 2374 static bool finished_loading(const char *name) 2375 { 2376 struct module *mod; 2377 bool ret; 2378 2379 /* 2380 * The module_mutex should not be a heavily contended lock; 2381 * if we get the occasional sleep here, we'll go an extra iteration 2382 * in the wait_event_interruptible(), which is harmless. 2383 */ 2384 sched_annotate_sleep(); 2385 mutex_lock(&module_mutex); 2386 mod = find_module_all(name, strlen(name), true); 2387 ret = !mod || mod->state == MODULE_STATE_LIVE; 2388 mutex_unlock(&module_mutex); 2389 2390 return ret; 2391 } 2392 2393 /* Call module constructors. */ 2394 static void do_mod_ctors(struct module *mod) 2395 { 2396 #ifdef CONFIG_CONSTRUCTORS 2397 unsigned long i; 2398 2399 for (i = 0; i < mod->num_ctors; i++) 2400 mod->ctors[i](); 2401 #endif 2402 } 2403 2404 /* For freeing module_init on success, in case kallsyms traversing */ 2405 struct mod_initfree { 2406 struct llist_node node; 2407 void *module_init; 2408 }; 2409 2410 static void do_free_init(struct work_struct *w) 2411 { 2412 struct llist_node *pos, *n, *list; 2413 struct mod_initfree *initfree; 2414 2415 list = llist_del_all(&init_free_list); 2416 2417 synchronize_rcu(); 2418 2419 llist_for_each_safe(pos, n, list) { 2420 initfree = container_of(pos, struct mod_initfree, node); 2421 module_memfree(initfree->module_init); 2422 kfree(initfree); 2423 } 2424 } 2425 2426 #undef MODULE_PARAM_PREFIX 2427 #define MODULE_PARAM_PREFIX "module." 2428 /* Default value for module->async_probe_requested */ 2429 static bool async_probe; 2430 module_param(async_probe, bool, 0644); 2431 2432 /* 2433 * This is where the real work happens. 2434 * 2435 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2436 * helper command 'lx-symbols'. 2437 */ 2438 static noinline int do_init_module(struct module *mod) 2439 { 2440 int ret = 0; 2441 struct mod_initfree *freeinit; 2442 2443 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2444 if (!freeinit) { 2445 ret = -ENOMEM; 2446 goto fail; 2447 } 2448 freeinit->module_init = mod->init_layout.base; 2449 2450 do_mod_ctors(mod); 2451 /* Start the module */ 2452 if (mod->init != NULL) 2453 ret = do_one_initcall(mod->init); 2454 if (ret < 0) { 2455 goto fail_free_freeinit; 2456 } 2457 if (ret > 0) { 2458 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2459 "follow 0/-E convention\n" 2460 "%s: loading module anyway...\n", 2461 __func__, mod->name, ret, __func__); 2462 dump_stack(); 2463 } 2464 2465 /* Now it's a first class citizen! */ 2466 mod->state = MODULE_STATE_LIVE; 2467 blocking_notifier_call_chain(&module_notify_list, 2468 MODULE_STATE_LIVE, mod); 2469 2470 /* Delay uevent until module has finished its init routine */ 2471 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2472 2473 /* 2474 * We need to finish all async code before the module init sequence 2475 * is done. This has potential to deadlock if synchronous module 2476 * loading is requested from async (which is not allowed!). 2477 * 2478 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2479 * request_module() from async workers") for more details. 2480 */ 2481 if (!mod->async_probe_requested) 2482 async_synchronize_full(); 2483 2484 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base + 2485 mod->init_layout.size); 2486 mutex_lock(&module_mutex); 2487 /* Drop initial reference. */ 2488 module_put(mod); 2489 trim_init_extable(mod); 2490 #ifdef CONFIG_KALLSYMS 2491 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2492 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2493 #endif 2494 module_enable_ro(mod, true); 2495 mod_tree_remove_init(mod); 2496 module_arch_freeing_init(mod); 2497 mod->init_layout.base = NULL; 2498 mod->init_layout.size = 0; 2499 mod->init_layout.ro_size = 0; 2500 mod->init_layout.ro_after_init_size = 0; 2501 mod->init_layout.text_size = 0; 2502 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2503 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */ 2504 mod->btf_data = NULL; 2505 #endif 2506 /* 2507 * We want to free module_init, but be aware that kallsyms may be 2508 * walking this with preempt disabled. In all the failure paths, we 2509 * call synchronize_rcu(), but we don't want to slow down the success 2510 * path. module_memfree() cannot be called in an interrupt, so do the 2511 * work and call synchronize_rcu() in a work queue. 2512 * 2513 * Note that module_alloc() on most architectures creates W+X page 2514 * mappings which won't be cleaned up until do_free_init() runs. Any 2515 * code such as mark_rodata_ro() which depends on those mappings to 2516 * be cleaned up needs to sync with the queued work - ie 2517 * rcu_barrier() 2518 */ 2519 if (llist_add(&freeinit->node, &init_free_list)) 2520 schedule_work(&init_free_wq); 2521 2522 mutex_unlock(&module_mutex); 2523 wake_up_all(&module_wq); 2524 2525 return 0; 2526 2527 fail_free_freeinit: 2528 kfree(freeinit); 2529 fail: 2530 /* Try to protect us from buggy refcounters. */ 2531 mod->state = MODULE_STATE_GOING; 2532 synchronize_rcu(); 2533 module_put(mod); 2534 blocking_notifier_call_chain(&module_notify_list, 2535 MODULE_STATE_GOING, mod); 2536 klp_module_going(mod); 2537 ftrace_release_mod(mod); 2538 free_module(mod); 2539 wake_up_all(&module_wq); 2540 return ret; 2541 } 2542 2543 static int may_init_module(void) 2544 { 2545 if (!capable(CAP_SYS_MODULE) || modules_disabled) 2546 return -EPERM; 2547 2548 return 0; 2549 } 2550 2551 /* 2552 * We try to place it in the list now to make sure it's unique before 2553 * we dedicate too many resources. In particular, temporary percpu 2554 * memory exhaustion. 2555 */ 2556 static int add_unformed_module(struct module *mod) 2557 { 2558 int err; 2559 struct module *old; 2560 2561 mod->state = MODULE_STATE_UNFORMED; 2562 2563 again: 2564 mutex_lock(&module_mutex); 2565 old = find_module_all(mod->name, strlen(mod->name), true); 2566 if (old != NULL) { 2567 if (old->state != MODULE_STATE_LIVE) { 2568 /* Wait in case it fails to load. */ 2569 mutex_unlock(&module_mutex); 2570 err = wait_event_interruptible(module_wq, 2571 finished_loading(mod->name)); 2572 if (err) 2573 goto out_unlocked; 2574 goto again; 2575 } 2576 err = -EEXIST; 2577 goto out; 2578 } 2579 mod_update_bounds(mod); 2580 list_add_rcu(&mod->list, &modules); 2581 mod_tree_insert(mod); 2582 err = 0; 2583 2584 out: 2585 mutex_unlock(&module_mutex); 2586 out_unlocked: 2587 return err; 2588 } 2589 2590 static int complete_formation(struct module *mod, struct load_info *info) 2591 { 2592 int err; 2593 2594 mutex_lock(&module_mutex); 2595 2596 /* Find duplicate symbols (must be called under lock). */ 2597 err = verify_exported_symbols(mod); 2598 if (err < 0) 2599 goto out; 2600 2601 /* These rely on module_mutex for list integrity. */ 2602 module_bug_finalize(info->hdr, info->sechdrs, mod); 2603 module_cfi_finalize(info->hdr, info->sechdrs, mod); 2604 2605 if (module_check_misalignment(mod)) 2606 goto out_misaligned; 2607 2608 module_enable_ro(mod, false); 2609 module_enable_nx(mod); 2610 module_enable_x(mod); 2611 2612 /* 2613 * Mark state as coming so strong_try_module_get() ignores us, 2614 * but kallsyms etc. can see us. 2615 */ 2616 mod->state = MODULE_STATE_COMING; 2617 mutex_unlock(&module_mutex); 2618 2619 return 0; 2620 2621 out_misaligned: 2622 err = -EINVAL; 2623 out: 2624 mutex_unlock(&module_mutex); 2625 return err; 2626 } 2627 2628 static int prepare_coming_module(struct module *mod) 2629 { 2630 int err; 2631 2632 ftrace_module_enable(mod); 2633 err = klp_module_coming(mod); 2634 if (err) 2635 return err; 2636 2637 err = blocking_notifier_call_chain_robust(&module_notify_list, 2638 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 2639 err = notifier_to_errno(err); 2640 if (err) 2641 klp_module_going(mod); 2642 2643 return err; 2644 } 2645 2646 static int unknown_module_param_cb(char *param, char *val, const char *modname, 2647 void *arg) 2648 { 2649 struct module *mod = arg; 2650 int ret; 2651 2652 if (strcmp(param, "async_probe") == 0) { 2653 if (strtobool(val, &mod->async_probe_requested)) 2654 mod->async_probe_requested = true; 2655 return 0; 2656 } 2657 2658 /* Check for magic 'dyndbg' arg */ 2659 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 2660 if (ret != 0) 2661 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 2662 return 0; 2663 } 2664 2665 /* 2666 * Allocate and load the module: note that size of section 0 is always 2667 * zero, and we rely on this for optional sections. 2668 */ 2669 static int load_module(struct load_info *info, const char __user *uargs, 2670 int flags) 2671 { 2672 struct module *mod; 2673 long err = 0; 2674 char *after_dashes; 2675 2676 /* 2677 * Do the signature check (if any) first. All that 2678 * the signature check needs is info->len, it does 2679 * not need any of the section info. That can be 2680 * set up later. This will minimize the chances 2681 * of a corrupt module causing problems before 2682 * we even get to the signature check. 2683 * 2684 * The check will also adjust info->len by stripping 2685 * off the sig length at the end of the module, making 2686 * checks against info->len more correct. 2687 */ 2688 err = module_sig_check(info, flags); 2689 if (err) 2690 goto free_copy; 2691 2692 /* 2693 * Do basic sanity checks against the ELF header and 2694 * sections. 2695 */ 2696 err = elf_validity_check(info); 2697 if (err) 2698 goto free_copy; 2699 2700 /* 2701 * Everything checks out, so set up the section info 2702 * in the info structure. 2703 */ 2704 err = setup_load_info(info, flags); 2705 if (err) 2706 goto free_copy; 2707 2708 /* 2709 * Now that we know we have the correct module name, check 2710 * if it's blacklisted. 2711 */ 2712 if (blacklisted(info->name)) { 2713 err = -EPERM; 2714 pr_err("Module %s is blacklisted\n", info->name); 2715 goto free_copy; 2716 } 2717 2718 err = rewrite_section_headers(info, flags); 2719 if (err) 2720 goto free_copy; 2721 2722 /* Check module struct version now, before we try to use module. */ 2723 if (!check_modstruct_version(info, info->mod)) { 2724 err = -ENOEXEC; 2725 goto free_copy; 2726 } 2727 2728 /* Figure out module layout, and allocate all the memory. */ 2729 mod = layout_and_allocate(info, flags); 2730 if (IS_ERR(mod)) { 2731 err = PTR_ERR(mod); 2732 goto free_copy; 2733 } 2734 2735 audit_log_kern_module(mod->name); 2736 2737 /* Reserve our place in the list. */ 2738 err = add_unformed_module(mod); 2739 if (err) 2740 goto free_module; 2741 2742 #ifdef CONFIG_MODULE_SIG 2743 mod->sig_ok = info->sig_ok; 2744 if (!mod->sig_ok) { 2745 pr_notice_once("%s: module verification failed: signature " 2746 "and/or required key missing - tainting " 2747 "kernel\n", mod->name); 2748 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2749 } 2750 #endif 2751 2752 /* To avoid stressing percpu allocator, do this once we're unique. */ 2753 err = percpu_modalloc(mod, info); 2754 if (err) 2755 goto unlink_mod; 2756 2757 /* Now module is in final location, initialize linked lists, etc. */ 2758 err = module_unload_init(mod); 2759 if (err) 2760 goto unlink_mod; 2761 2762 init_param_lock(mod); 2763 2764 /* 2765 * Now we've got everything in the final locations, we can 2766 * find optional sections. 2767 */ 2768 err = find_module_sections(mod, info); 2769 if (err) 2770 goto free_unload; 2771 2772 err = check_module_license_and_versions(mod); 2773 if (err) 2774 goto free_unload; 2775 2776 /* Set up MODINFO_ATTR fields */ 2777 setup_modinfo(mod, info); 2778 2779 /* Fix up syms, so that st_value is a pointer to location. */ 2780 err = simplify_symbols(mod, info); 2781 if (err < 0) 2782 goto free_modinfo; 2783 2784 err = apply_relocations(mod, info); 2785 if (err < 0) 2786 goto free_modinfo; 2787 2788 err = post_relocation(mod, info); 2789 if (err < 0) 2790 goto free_modinfo; 2791 2792 flush_module_icache(mod); 2793 2794 /* Now copy in args */ 2795 mod->args = strndup_user(uargs, ~0UL >> 1); 2796 if (IS_ERR(mod->args)) { 2797 err = PTR_ERR(mod->args); 2798 goto free_arch_cleanup; 2799 } 2800 2801 init_build_id(mod, info); 2802 dynamic_debug_setup(mod, info->debug, info->num_debug); 2803 2804 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 2805 ftrace_module_init(mod); 2806 2807 /* Finally it's fully formed, ready to start executing. */ 2808 err = complete_formation(mod, info); 2809 if (err) 2810 goto ddebug_cleanup; 2811 2812 err = prepare_coming_module(mod); 2813 if (err) 2814 goto bug_cleanup; 2815 2816 mod->async_probe_requested = async_probe; 2817 2818 /* Module is ready to execute: parsing args may do that. */ 2819 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 2820 -32768, 32767, mod, 2821 unknown_module_param_cb); 2822 if (IS_ERR(after_dashes)) { 2823 err = PTR_ERR(after_dashes); 2824 goto coming_cleanup; 2825 } else if (after_dashes) { 2826 pr_warn("%s: parameters '%s' after `--' ignored\n", 2827 mod->name, after_dashes); 2828 } 2829 2830 /* Link in to sysfs. */ 2831 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 2832 if (err < 0) 2833 goto coming_cleanup; 2834 2835 if (is_livepatch_module(mod)) { 2836 err = copy_module_elf(mod, info); 2837 if (err < 0) 2838 goto sysfs_cleanup; 2839 } 2840 2841 /* Get rid of temporary copy. */ 2842 free_copy(info, flags); 2843 2844 /* Done! */ 2845 trace_module_load(mod); 2846 2847 return do_init_module(mod); 2848 2849 sysfs_cleanup: 2850 mod_sysfs_teardown(mod); 2851 coming_cleanup: 2852 mod->state = MODULE_STATE_GOING; 2853 destroy_params(mod->kp, mod->num_kp); 2854 blocking_notifier_call_chain(&module_notify_list, 2855 MODULE_STATE_GOING, mod); 2856 klp_module_going(mod); 2857 bug_cleanup: 2858 mod->state = MODULE_STATE_GOING; 2859 /* module_bug_cleanup needs module_mutex protection */ 2860 mutex_lock(&module_mutex); 2861 module_bug_cleanup(mod); 2862 mutex_unlock(&module_mutex); 2863 2864 ddebug_cleanup: 2865 ftrace_release_mod(mod); 2866 dynamic_debug_remove(mod, info->debug); 2867 synchronize_rcu(); 2868 kfree(mod->args); 2869 free_arch_cleanup: 2870 module_arch_cleanup(mod); 2871 free_modinfo: 2872 free_modinfo(mod); 2873 free_unload: 2874 module_unload_free(mod); 2875 unlink_mod: 2876 mutex_lock(&module_mutex); 2877 /* Unlink carefully: kallsyms could be walking list. */ 2878 list_del_rcu(&mod->list); 2879 mod_tree_remove(mod); 2880 wake_up_all(&module_wq); 2881 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 2882 synchronize_rcu(); 2883 mutex_unlock(&module_mutex); 2884 free_module: 2885 /* Free lock-classes; relies on the preceding sync_rcu() */ 2886 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size); 2887 2888 module_deallocate(mod, info); 2889 free_copy: 2890 free_copy(info, flags); 2891 return err; 2892 } 2893 2894 SYSCALL_DEFINE3(init_module, void __user *, umod, 2895 unsigned long, len, const char __user *, uargs) 2896 { 2897 int err; 2898 struct load_info info = { }; 2899 2900 err = may_init_module(); 2901 if (err) 2902 return err; 2903 2904 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 2905 umod, len, uargs); 2906 2907 err = copy_module_from_user(umod, len, &info); 2908 if (err) 2909 return err; 2910 2911 return load_module(&info, uargs, 0); 2912 } 2913 2914 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 2915 { 2916 struct load_info info = { }; 2917 void *buf = NULL; 2918 int len; 2919 int err; 2920 2921 err = may_init_module(); 2922 if (err) 2923 return err; 2924 2925 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 2926 2927 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 2928 |MODULE_INIT_IGNORE_VERMAGIC 2929 |MODULE_INIT_COMPRESSED_FILE)) 2930 return -EINVAL; 2931 2932 len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL, 2933 READING_MODULE); 2934 if (len < 0) 2935 return len; 2936 2937 if (flags & MODULE_INIT_COMPRESSED_FILE) { 2938 err = module_decompress(&info, buf, len); 2939 vfree(buf); /* compressed data is no longer needed */ 2940 if (err) 2941 return err; 2942 } else { 2943 info.hdr = buf; 2944 info.len = len; 2945 } 2946 2947 return load_module(&info, uargs, flags); 2948 } 2949 2950 static inline int within(unsigned long addr, void *start, unsigned long size) 2951 { 2952 return ((void *)addr >= start && (void *)addr < start + size); 2953 } 2954 2955 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 2956 char *module_flags(struct module *mod, char *buf, bool show_state) 2957 { 2958 int bx = 0; 2959 2960 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 2961 if (!mod->taints && !show_state) 2962 goto out; 2963 if (mod->taints || 2964 mod->state == MODULE_STATE_GOING || 2965 mod->state == MODULE_STATE_COMING) { 2966 buf[bx++] = '('; 2967 bx += module_flags_taint(mod->taints, buf + bx); 2968 /* Show a - for module-is-being-unloaded */ 2969 if (mod->state == MODULE_STATE_GOING && show_state) 2970 buf[bx++] = '-'; 2971 /* Show a + for module-is-being-loaded */ 2972 if (mod->state == MODULE_STATE_COMING && show_state) 2973 buf[bx++] = '+'; 2974 buf[bx++] = ')'; 2975 } 2976 out: 2977 buf[bx] = '\0'; 2978 2979 return buf; 2980 } 2981 2982 /* Given an address, look for it in the module exception tables. */ 2983 const struct exception_table_entry *search_module_extables(unsigned long addr) 2984 { 2985 const struct exception_table_entry *e = NULL; 2986 struct module *mod; 2987 2988 preempt_disable(); 2989 mod = __module_address(addr); 2990 if (!mod) 2991 goto out; 2992 2993 if (!mod->num_exentries) 2994 goto out; 2995 2996 e = search_extable(mod->extable, 2997 mod->num_exentries, 2998 addr); 2999 out: 3000 preempt_enable(); 3001 3002 /* 3003 * Now, if we found one, we are running inside it now, hence 3004 * we cannot unload the module, hence no refcnt needed. 3005 */ 3006 return e; 3007 } 3008 3009 /** 3010 * is_module_address() - is this address inside a module? 3011 * @addr: the address to check. 3012 * 3013 * See is_module_text_address() if you simply want to see if the address 3014 * is code (not data). 3015 */ 3016 bool is_module_address(unsigned long addr) 3017 { 3018 bool ret; 3019 3020 preempt_disable(); 3021 ret = __module_address(addr) != NULL; 3022 preempt_enable(); 3023 3024 return ret; 3025 } 3026 3027 /** 3028 * __module_address() - get the module which contains an address. 3029 * @addr: the address. 3030 * 3031 * Must be called with preempt disabled or module mutex held so that 3032 * module doesn't get freed during this. 3033 */ 3034 struct module *__module_address(unsigned long addr) 3035 { 3036 struct module *mod; 3037 struct mod_tree_root *tree; 3038 3039 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3040 tree = &mod_tree; 3041 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3042 else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max) 3043 tree = &mod_data_tree; 3044 #endif 3045 else 3046 return NULL; 3047 3048 module_assert_mutex_or_preempt(); 3049 3050 mod = mod_find(addr, tree); 3051 if (mod) { 3052 BUG_ON(!within_module(addr, mod)); 3053 if (mod->state == MODULE_STATE_UNFORMED) 3054 mod = NULL; 3055 } 3056 return mod; 3057 } 3058 3059 /** 3060 * is_module_text_address() - is this address inside module code? 3061 * @addr: the address to check. 3062 * 3063 * See is_module_address() if you simply want to see if the address is 3064 * anywhere in a module. See kernel_text_address() for testing if an 3065 * address corresponds to kernel or module code. 3066 */ 3067 bool is_module_text_address(unsigned long addr) 3068 { 3069 bool ret; 3070 3071 preempt_disable(); 3072 ret = __module_text_address(addr) != NULL; 3073 preempt_enable(); 3074 3075 return ret; 3076 } 3077 3078 /** 3079 * __module_text_address() - get the module whose code contains an address. 3080 * @addr: the address. 3081 * 3082 * Must be called with preempt disabled or module mutex held so that 3083 * module doesn't get freed during this. 3084 */ 3085 struct module *__module_text_address(unsigned long addr) 3086 { 3087 struct module *mod = __module_address(addr); 3088 if (mod) { 3089 /* Make sure it's within the text section. */ 3090 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size) 3091 && !within(addr, mod->core_layout.base, mod->core_layout.text_size)) 3092 mod = NULL; 3093 } 3094 return mod; 3095 } 3096 3097 /* Don't grab lock, we're oopsing. */ 3098 void print_modules(void) 3099 { 3100 struct module *mod; 3101 char buf[MODULE_FLAGS_BUF_SIZE]; 3102 3103 printk(KERN_DEFAULT "Modules linked in:"); 3104 /* Most callers should already have preempt disabled, but make sure */ 3105 preempt_disable(); 3106 list_for_each_entry_rcu(mod, &modules, list) { 3107 if (mod->state == MODULE_STATE_UNFORMED) 3108 continue; 3109 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3110 } 3111 3112 print_unloaded_tainted_modules(); 3113 preempt_enable(); 3114 if (last_unloaded_module.name[0]) 3115 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3116 last_unloaded_module.taints); 3117 pr_cont("\n"); 3118 } 3119