xref: /openbmc/linux/kernel/module/main.c (revision bc33f5e5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  */
6 
7 #define INCLUDE_VERMAGIC
8 
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/buildid.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/elf.h>
23 #include <linux/seq_file.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/rcupdate.h>
27 #include <linux/capability.h>
28 #include <linux/cpu.h>
29 #include <linux/moduleparam.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/vermagic.h>
33 #include <linux/notifier.h>
34 #include <linux/sched.h>
35 #include <linux/device.h>
36 #include <linux/string.h>
37 #include <linux/mutex.h>
38 #include <linux/rculist.h>
39 #include <linux/uaccess.h>
40 #include <asm/cacheflush.h>
41 #include <linux/set_memory.h>
42 #include <asm/mmu_context.h>
43 #include <linux/license.h>
44 #include <asm/sections.h>
45 #include <linux/tracepoint.h>
46 #include <linux/ftrace.h>
47 #include <linux/livepatch.h>
48 #include <linux/async.h>
49 #include <linux/percpu.h>
50 #include <linux/kmemleak.h>
51 #include <linux/jump_label.h>
52 #include <linux/pfn.h>
53 #include <linux/bsearch.h>
54 #include <linux/dynamic_debug.h>
55 #include <linux/audit.h>
56 #include <linux/cfi.h>
57 #include <uapi/linux/module.h>
58 #include "internal.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/module.h>
62 
63 /*
64  * Mutex protects:
65  * 1) List of modules (also safely readable with preempt_disable),
66  * 2) module_use links,
67  * 3) mod_tree.addr_min/mod_tree.addr_max.
68  * (delete and add uses RCU list operations).
69  */
70 DEFINE_MUTEX(module_mutex);
71 LIST_HEAD(modules);
72 
73 /* Work queue for freeing init sections in success case */
74 static void do_free_init(struct work_struct *w);
75 static DECLARE_WORK(init_free_wq, do_free_init);
76 static LLIST_HEAD(init_free_list);
77 
78 struct mod_tree_root mod_tree __cacheline_aligned = {
79 	.addr_min = -1UL,
80 };
81 
82 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
83 struct mod_tree_root mod_data_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 #endif
87 
88 #define module_addr_min mod_tree.addr_min
89 #define module_addr_max mod_tree.addr_max
90 
91 struct symsearch {
92 	const struct kernel_symbol *start, *stop;
93 	const s32 *crcs;
94 	enum mod_license license;
95 };
96 
97 /*
98  * Bounds of module text, for speeding up __module_address.
99  * Protected by module_mutex.
100  */
101 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree)
102 {
103 	unsigned long min = (unsigned long)base;
104 	unsigned long max = min + size;
105 
106 	if (min < tree->addr_min)
107 		tree->addr_min = min;
108 	if (max > tree->addr_max)
109 		tree->addr_max = max;
110 }
111 
112 static void mod_update_bounds(struct module *mod)
113 {
114 	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree);
115 	if (mod->init_layout.size)
116 		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree);
117 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
118 	__mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree);
119 #endif
120 }
121 
122 /* Block module loading/unloading? */
123 int modules_disabled;
124 core_param(nomodule, modules_disabled, bint, 0);
125 
126 /* Waiting for a module to finish initializing? */
127 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
128 
129 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
130 
131 int register_module_notifier(struct notifier_block *nb)
132 {
133 	return blocking_notifier_chain_register(&module_notify_list, nb);
134 }
135 EXPORT_SYMBOL(register_module_notifier);
136 
137 int unregister_module_notifier(struct notifier_block *nb)
138 {
139 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(unregister_module_notifier);
142 
143 /*
144  * We require a truly strong try_module_get(): 0 means success.
145  * Otherwise an error is returned due to ongoing or failed
146  * initialization etc.
147  */
148 static inline int strong_try_module_get(struct module *mod)
149 {
150 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
151 	if (mod && mod->state == MODULE_STATE_COMING)
152 		return -EBUSY;
153 	if (try_module_get(mod))
154 		return 0;
155 	else
156 		return -ENOENT;
157 }
158 
159 static inline void add_taint_module(struct module *mod, unsigned flag,
160 				    enum lockdep_ok lockdep_ok)
161 {
162 	add_taint(flag, lockdep_ok);
163 	set_bit(flag, &mod->taints);
164 }
165 
166 /*
167  * A thread that wants to hold a reference to a module only while it
168  * is running can call this to safely exit.
169  */
170 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
171 {
172 	module_put(mod);
173 	kthread_exit(code);
174 }
175 EXPORT_SYMBOL(__module_put_and_kthread_exit);
176 
177 /* Find a module section: 0 means not found. */
178 static unsigned int find_sec(const struct load_info *info, const char *name)
179 {
180 	unsigned int i;
181 
182 	for (i = 1; i < info->hdr->e_shnum; i++) {
183 		Elf_Shdr *shdr = &info->sechdrs[i];
184 		/* Alloc bit cleared means "ignore it." */
185 		if ((shdr->sh_flags & SHF_ALLOC)
186 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
187 			return i;
188 	}
189 	return 0;
190 }
191 
192 /* Find a module section, or NULL. */
193 static void *section_addr(const struct load_info *info, const char *name)
194 {
195 	/* Section 0 has sh_addr 0. */
196 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
197 }
198 
199 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
200 static void *section_objs(const struct load_info *info,
201 			  const char *name,
202 			  size_t object_size,
203 			  unsigned int *num)
204 {
205 	unsigned int sec = find_sec(info, name);
206 
207 	/* Section 0 has sh_addr 0 and sh_size 0. */
208 	*num = info->sechdrs[sec].sh_size / object_size;
209 	return (void *)info->sechdrs[sec].sh_addr;
210 }
211 
212 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
213 static unsigned int find_any_sec(const struct load_info *info, const char *name)
214 {
215 	unsigned int i;
216 
217 	for (i = 1; i < info->hdr->e_shnum; i++) {
218 		Elf_Shdr *shdr = &info->sechdrs[i];
219 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
220 			return i;
221 	}
222 	return 0;
223 }
224 
225 /*
226  * Find a module section, or NULL. Fill in number of "objects" in section.
227  * Ignores SHF_ALLOC flag.
228  */
229 static __maybe_unused void *any_section_objs(const struct load_info *info,
230 					     const char *name,
231 					     size_t object_size,
232 					     unsigned int *num)
233 {
234 	unsigned int sec = find_any_sec(info, name);
235 
236 	/* Section 0 has sh_addr 0 and sh_size 0. */
237 	*num = info->sechdrs[sec].sh_size / object_size;
238 	return (void *)info->sechdrs[sec].sh_addr;
239 }
240 
241 #ifndef CONFIG_MODVERSIONS
242 #define symversion(base, idx) NULL
243 #else
244 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
245 #endif
246 
247 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
248 {
249 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
250 	return offset_to_ptr(&sym->name_offset);
251 #else
252 	return sym->name;
253 #endif
254 }
255 
256 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
257 {
258 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
259 	if (!sym->namespace_offset)
260 		return NULL;
261 	return offset_to_ptr(&sym->namespace_offset);
262 #else
263 	return sym->namespace;
264 #endif
265 }
266 
267 int cmp_name(const void *name, const void *sym)
268 {
269 	return strcmp(name, kernel_symbol_name(sym));
270 }
271 
272 static bool find_exported_symbol_in_section(const struct symsearch *syms,
273 					    struct module *owner,
274 					    struct find_symbol_arg *fsa)
275 {
276 	struct kernel_symbol *sym;
277 
278 	if (!fsa->gplok && syms->license == GPL_ONLY)
279 		return false;
280 
281 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
282 			sizeof(struct kernel_symbol), cmp_name);
283 	if (!sym)
284 		return false;
285 
286 	fsa->owner = owner;
287 	fsa->crc = symversion(syms->crcs, sym - syms->start);
288 	fsa->sym = sym;
289 	fsa->license = syms->license;
290 
291 	return true;
292 }
293 
294 /*
295  * Find an exported symbol and return it, along with, (optional) crc and
296  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
297  */
298 bool find_symbol(struct find_symbol_arg *fsa)
299 {
300 	static const struct symsearch arr[] = {
301 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
302 		  NOT_GPL_ONLY },
303 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
304 		  __start___kcrctab_gpl,
305 		  GPL_ONLY },
306 	};
307 	struct module *mod;
308 	unsigned int i;
309 
310 	module_assert_mutex_or_preempt();
311 
312 	for (i = 0; i < ARRAY_SIZE(arr); i++)
313 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
314 			return true;
315 
316 	list_for_each_entry_rcu(mod, &modules, list,
317 				lockdep_is_held(&module_mutex)) {
318 		struct symsearch arr[] = {
319 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
320 			  NOT_GPL_ONLY },
321 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
322 			  mod->gpl_crcs,
323 			  GPL_ONLY },
324 		};
325 
326 		if (mod->state == MODULE_STATE_UNFORMED)
327 			continue;
328 
329 		for (i = 0; i < ARRAY_SIZE(arr); i++)
330 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
331 				return true;
332 	}
333 
334 	pr_debug("Failed to find symbol %s\n", fsa->name);
335 	return false;
336 }
337 
338 /*
339  * Search for module by name: must hold module_mutex (or preempt disabled
340  * for read-only access).
341  */
342 struct module *find_module_all(const char *name, size_t len,
343 			       bool even_unformed)
344 {
345 	struct module *mod;
346 
347 	module_assert_mutex_or_preempt();
348 
349 	list_for_each_entry_rcu(mod, &modules, list,
350 				lockdep_is_held(&module_mutex)) {
351 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
352 			continue;
353 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
354 			return mod;
355 	}
356 	return NULL;
357 }
358 
359 struct module *find_module(const char *name)
360 {
361 	return find_module_all(name, strlen(name), false);
362 }
363 
364 #ifdef CONFIG_SMP
365 
366 static inline void __percpu *mod_percpu(struct module *mod)
367 {
368 	return mod->percpu;
369 }
370 
371 static int percpu_modalloc(struct module *mod, struct load_info *info)
372 {
373 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
374 	unsigned long align = pcpusec->sh_addralign;
375 
376 	if (!pcpusec->sh_size)
377 		return 0;
378 
379 	if (align > PAGE_SIZE) {
380 		pr_warn("%s: per-cpu alignment %li > %li\n",
381 			mod->name, align, PAGE_SIZE);
382 		align = PAGE_SIZE;
383 	}
384 
385 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
386 	if (!mod->percpu) {
387 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
388 			mod->name, (unsigned long)pcpusec->sh_size);
389 		return -ENOMEM;
390 	}
391 	mod->percpu_size = pcpusec->sh_size;
392 	return 0;
393 }
394 
395 static void percpu_modfree(struct module *mod)
396 {
397 	free_percpu(mod->percpu);
398 }
399 
400 static unsigned int find_pcpusec(struct load_info *info)
401 {
402 	return find_sec(info, ".data..percpu");
403 }
404 
405 static void percpu_modcopy(struct module *mod,
406 			   const void *from, unsigned long size)
407 {
408 	int cpu;
409 
410 	for_each_possible_cpu(cpu)
411 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
412 }
413 
414 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
415 {
416 	struct module *mod;
417 	unsigned int cpu;
418 
419 	preempt_disable();
420 
421 	list_for_each_entry_rcu(mod, &modules, list) {
422 		if (mod->state == MODULE_STATE_UNFORMED)
423 			continue;
424 		if (!mod->percpu_size)
425 			continue;
426 		for_each_possible_cpu(cpu) {
427 			void *start = per_cpu_ptr(mod->percpu, cpu);
428 			void *va = (void *)addr;
429 
430 			if (va >= start && va < start + mod->percpu_size) {
431 				if (can_addr) {
432 					*can_addr = (unsigned long) (va - start);
433 					*can_addr += (unsigned long)
434 						per_cpu_ptr(mod->percpu,
435 							    get_boot_cpu_id());
436 				}
437 				preempt_enable();
438 				return true;
439 			}
440 		}
441 	}
442 
443 	preempt_enable();
444 	return false;
445 }
446 
447 /**
448  * is_module_percpu_address() - test whether address is from module static percpu
449  * @addr: address to test
450  *
451  * Test whether @addr belongs to module static percpu area.
452  *
453  * Return: %true if @addr is from module static percpu area
454  */
455 bool is_module_percpu_address(unsigned long addr)
456 {
457 	return __is_module_percpu_address(addr, NULL);
458 }
459 
460 #else /* ... !CONFIG_SMP */
461 
462 static inline void __percpu *mod_percpu(struct module *mod)
463 {
464 	return NULL;
465 }
466 static int percpu_modalloc(struct module *mod, struct load_info *info)
467 {
468 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
469 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
470 		return -ENOMEM;
471 	return 0;
472 }
473 static inline void percpu_modfree(struct module *mod)
474 {
475 }
476 static unsigned int find_pcpusec(struct load_info *info)
477 {
478 	return 0;
479 }
480 static inline void percpu_modcopy(struct module *mod,
481 				  const void *from, unsigned long size)
482 {
483 	/* pcpusec should be 0, and size of that section should be 0. */
484 	BUG_ON(size != 0);
485 }
486 bool is_module_percpu_address(unsigned long addr)
487 {
488 	return false;
489 }
490 
491 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
492 {
493 	return false;
494 }
495 
496 #endif /* CONFIG_SMP */
497 
498 #define MODINFO_ATTR(field)	\
499 static void setup_modinfo_##field(struct module *mod, const char *s)  \
500 {                                                                     \
501 	mod->field = kstrdup(s, GFP_KERNEL);                          \
502 }                                                                     \
503 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
504 			struct module_kobject *mk, char *buffer)      \
505 {                                                                     \
506 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
507 }                                                                     \
508 static int modinfo_##field##_exists(struct module *mod)               \
509 {                                                                     \
510 	return mod->field != NULL;                                    \
511 }                                                                     \
512 static void free_modinfo_##field(struct module *mod)                  \
513 {                                                                     \
514 	kfree(mod->field);                                            \
515 	mod->field = NULL;                                            \
516 }                                                                     \
517 static struct module_attribute modinfo_##field = {                    \
518 	.attr = { .name = __stringify(field), .mode = 0444 },         \
519 	.show = show_modinfo_##field,                                 \
520 	.setup = setup_modinfo_##field,                               \
521 	.test = modinfo_##field##_exists,                             \
522 	.free = free_modinfo_##field,                                 \
523 };
524 
525 MODINFO_ATTR(version);
526 MODINFO_ATTR(srcversion);
527 
528 static struct {
529 	char name[MODULE_NAME_LEN + 1];
530 	char taints[MODULE_FLAGS_BUF_SIZE];
531 } last_unloaded_module;
532 
533 #ifdef CONFIG_MODULE_UNLOAD
534 
535 EXPORT_TRACEPOINT_SYMBOL(module_get);
536 
537 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
538 #define MODULE_REF_BASE	1
539 
540 /* Init the unload section of the module. */
541 static int module_unload_init(struct module *mod)
542 {
543 	/*
544 	 * Initialize reference counter to MODULE_REF_BASE.
545 	 * refcnt == 0 means module is going.
546 	 */
547 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
548 
549 	INIT_LIST_HEAD(&mod->source_list);
550 	INIT_LIST_HEAD(&mod->target_list);
551 
552 	/* Hold reference count during initialization. */
553 	atomic_inc(&mod->refcnt);
554 
555 	return 0;
556 }
557 
558 /* Does a already use b? */
559 static int already_uses(struct module *a, struct module *b)
560 {
561 	struct module_use *use;
562 
563 	list_for_each_entry(use, &b->source_list, source_list) {
564 		if (use->source == a) {
565 			pr_debug("%s uses %s!\n", a->name, b->name);
566 			return 1;
567 		}
568 	}
569 	pr_debug("%s does not use %s!\n", a->name, b->name);
570 	return 0;
571 }
572 
573 /*
574  * Module a uses b
575  *  - we add 'a' as a "source", 'b' as a "target" of module use
576  *  - the module_use is added to the list of 'b' sources (so
577  *    'b' can walk the list to see who sourced them), and of 'a'
578  *    targets (so 'a' can see what modules it targets).
579  */
580 static int add_module_usage(struct module *a, struct module *b)
581 {
582 	struct module_use *use;
583 
584 	pr_debug("Allocating new usage for %s.\n", a->name);
585 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
586 	if (!use)
587 		return -ENOMEM;
588 
589 	use->source = a;
590 	use->target = b;
591 	list_add(&use->source_list, &b->source_list);
592 	list_add(&use->target_list, &a->target_list);
593 	return 0;
594 }
595 
596 /* Module a uses b: caller needs module_mutex() */
597 static int ref_module(struct module *a, struct module *b)
598 {
599 	int err;
600 
601 	if (b == NULL || already_uses(a, b))
602 		return 0;
603 
604 	/* If module isn't available, we fail. */
605 	err = strong_try_module_get(b);
606 	if (err)
607 		return err;
608 
609 	err = add_module_usage(a, b);
610 	if (err) {
611 		module_put(b);
612 		return err;
613 	}
614 	return 0;
615 }
616 
617 /* Clear the unload stuff of the module. */
618 static void module_unload_free(struct module *mod)
619 {
620 	struct module_use *use, *tmp;
621 
622 	mutex_lock(&module_mutex);
623 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
624 		struct module *i = use->target;
625 		pr_debug("%s unusing %s\n", mod->name, i->name);
626 		module_put(i);
627 		list_del(&use->source_list);
628 		list_del(&use->target_list);
629 		kfree(use);
630 	}
631 	mutex_unlock(&module_mutex);
632 }
633 
634 #ifdef CONFIG_MODULE_FORCE_UNLOAD
635 static inline int try_force_unload(unsigned int flags)
636 {
637 	int ret = (flags & O_TRUNC);
638 	if (ret)
639 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
640 	return ret;
641 }
642 #else
643 static inline int try_force_unload(unsigned int flags)
644 {
645 	return 0;
646 }
647 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
648 
649 /* Try to release refcount of module, 0 means success. */
650 static int try_release_module_ref(struct module *mod)
651 {
652 	int ret;
653 
654 	/* Try to decrement refcnt which we set at loading */
655 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
656 	BUG_ON(ret < 0);
657 	if (ret)
658 		/* Someone can put this right now, recover with checking */
659 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
660 
661 	return ret;
662 }
663 
664 static int try_stop_module(struct module *mod, int flags, int *forced)
665 {
666 	/* If it's not unused, quit unless we're forcing. */
667 	if (try_release_module_ref(mod) != 0) {
668 		*forced = try_force_unload(flags);
669 		if (!(*forced))
670 			return -EWOULDBLOCK;
671 	}
672 
673 	/* Mark it as dying. */
674 	mod->state = MODULE_STATE_GOING;
675 
676 	return 0;
677 }
678 
679 /**
680  * module_refcount() - return the refcount or -1 if unloading
681  * @mod:	the module we're checking
682  *
683  * Return:
684  *	-1 if the module is in the process of unloading
685  *	otherwise the number of references in the kernel to the module
686  */
687 int module_refcount(struct module *mod)
688 {
689 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
690 }
691 EXPORT_SYMBOL(module_refcount);
692 
693 /* This exists whether we can unload or not */
694 static void free_module(struct module *mod);
695 
696 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
697 		unsigned int, flags)
698 {
699 	struct module *mod;
700 	char name[MODULE_NAME_LEN];
701 	char buf[MODULE_FLAGS_BUF_SIZE];
702 	int ret, forced = 0;
703 
704 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
705 		return -EPERM;
706 
707 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
708 		return -EFAULT;
709 	name[MODULE_NAME_LEN-1] = '\0';
710 
711 	audit_log_kern_module(name);
712 
713 	if (mutex_lock_interruptible(&module_mutex) != 0)
714 		return -EINTR;
715 
716 	mod = find_module(name);
717 	if (!mod) {
718 		ret = -ENOENT;
719 		goto out;
720 	}
721 
722 	if (!list_empty(&mod->source_list)) {
723 		/* Other modules depend on us: get rid of them first. */
724 		ret = -EWOULDBLOCK;
725 		goto out;
726 	}
727 
728 	/* Doing init or already dying? */
729 	if (mod->state != MODULE_STATE_LIVE) {
730 		/* FIXME: if (force), slam module count damn the torpedoes */
731 		pr_debug("%s already dying\n", mod->name);
732 		ret = -EBUSY;
733 		goto out;
734 	}
735 
736 	/* If it has an init func, it must have an exit func to unload */
737 	if (mod->init && !mod->exit) {
738 		forced = try_force_unload(flags);
739 		if (!forced) {
740 			/* This module can't be removed */
741 			ret = -EBUSY;
742 			goto out;
743 		}
744 	}
745 
746 	ret = try_stop_module(mod, flags, &forced);
747 	if (ret != 0)
748 		goto out;
749 
750 	mutex_unlock(&module_mutex);
751 	/* Final destruction now no one is using it. */
752 	if (mod->exit != NULL)
753 		mod->exit();
754 	blocking_notifier_call_chain(&module_notify_list,
755 				     MODULE_STATE_GOING, mod);
756 	klp_module_going(mod);
757 	ftrace_release_mod(mod);
758 
759 	async_synchronize_full();
760 
761 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
762 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
763 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
764 
765 	free_module(mod);
766 	/* someone could wait for the module in add_unformed_module() */
767 	wake_up_all(&module_wq);
768 	return 0;
769 out:
770 	mutex_unlock(&module_mutex);
771 	return ret;
772 }
773 
774 void __symbol_put(const char *symbol)
775 {
776 	struct find_symbol_arg fsa = {
777 		.name	= symbol,
778 		.gplok	= true,
779 	};
780 
781 	preempt_disable();
782 	BUG_ON(!find_symbol(&fsa));
783 	module_put(fsa.owner);
784 	preempt_enable();
785 }
786 EXPORT_SYMBOL(__symbol_put);
787 
788 /* Note this assumes addr is a function, which it currently always is. */
789 void symbol_put_addr(void *addr)
790 {
791 	struct module *modaddr;
792 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
793 
794 	if (core_kernel_text(a))
795 		return;
796 
797 	/*
798 	 * Even though we hold a reference on the module; we still need to
799 	 * disable preemption in order to safely traverse the data structure.
800 	 */
801 	preempt_disable();
802 	modaddr = __module_text_address(a);
803 	BUG_ON(!modaddr);
804 	module_put(modaddr);
805 	preempt_enable();
806 }
807 EXPORT_SYMBOL_GPL(symbol_put_addr);
808 
809 static ssize_t show_refcnt(struct module_attribute *mattr,
810 			   struct module_kobject *mk, char *buffer)
811 {
812 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
813 }
814 
815 static struct module_attribute modinfo_refcnt =
816 	__ATTR(refcnt, 0444, show_refcnt, NULL);
817 
818 void __module_get(struct module *module)
819 {
820 	if (module) {
821 		preempt_disable();
822 		atomic_inc(&module->refcnt);
823 		trace_module_get(module, _RET_IP_);
824 		preempt_enable();
825 	}
826 }
827 EXPORT_SYMBOL(__module_get);
828 
829 bool try_module_get(struct module *module)
830 {
831 	bool ret = true;
832 
833 	if (module) {
834 		preempt_disable();
835 		/* Note: here, we can fail to get a reference */
836 		if (likely(module_is_live(module) &&
837 			   atomic_inc_not_zero(&module->refcnt) != 0))
838 			trace_module_get(module, _RET_IP_);
839 		else
840 			ret = false;
841 
842 		preempt_enable();
843 	}
844 	return ret;
845 }
846 EXPORT_SYMBOL(try_module_get);
847 
848 void module_put(struct module *module)
849 {
850 	int ret;
851 
852 	if (module) {
853 		preempt_disable();
854 		ret = atomic_dec_if_positive(&module->refcnt);
855 		WARN_ON(ret < 0);	/* Failed to put refcount */
856 		trace_module_put(module, _RET_IP_);
857 		preempt_enable();
858 	}
859 }
860 EXPORT_SYMBOL(module_put);
861 
862 #else /* !CONFIG_MODULE_UNLOAD */
863 static inline void module_unload_free(struct module *mod)
864 {
865 }
866 
867 static int ref_module(struct module *a, struct module *b)
868 {
869 	return strong_try_module_get(b);
870 }
871 
872 static inline int module_unload_init(struct module *mod)
873 {
874 	return 0;
875 }
876 #endif /* CONFIG_MODULE_UNLOAD */
877 
878 size_t module_flags_taint(unsigned long taints, char *buf)
879 {
880 	size_t l = 0;
881 	int i;
882 
883 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
884 		if (taint_flags[i].module && test_bit(i, &taints))
885 			buf[l++] = taint_flags[i].c_true;
886 	}
887 
888 	return l;
889 }
890 
891 static ssize_t show_initstate(struct module_attribute *mattr,
892 			      struct module_kobject *mk, char *buffer)
893 {
894 	const char *state = "unknown";
895 
896 	switch (mk->mod->state) {
897 	case MODULE_STATE_LIVE:
898 		state = "live";
899 		break;
900 	case MODULE_STATE_COMING:
901 		state = "coming";
902 		break;
903 	case MODULE_STATE_GOING:
904 		state = "going";
905 		break;
906 	default:
907 		BUG();
908 	}
909 	return sprintf(buffer, "%s\n", state);
910 }
911 
912 static struct module_attribute modinfo_initstate =
913 	__ATTR(initstate, 0444, show_initstate, NULL);
914 
915 static ssize_t store_uevent(struct module_attribute *mattr,
916 			    struct module_kobject *mk,
917 			    const char *buffer, size_t count)
918 {
919 	int rc;
920 
921 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
922 	return rc ? rc : count;
923 }
924 
925 struct module_attribute module_uevent =
926 	__ATTR(uevent, 0200, NULL, store_uevent);
927 
928 static ssize_t show_coresize(struct module_attribute *mattr,
929 			     struct module_kobject *mk, char *buffer)
930 {
931 	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
932 }
933 
934 static struct module_attribute modinfo_coresize =
935 	__ATTR(coresize, 0444, show_coresize, NULL);
936 
937 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
938 static ssize_t show_datasize(struct module_attribute *mattr,
939 			     struct module_kobject *mk, char *buffer)
940 {
941 	return sprintf(buffer, "%u\n", mk->mod->data_layout.size);
942 }
943 
944 static struct module_attribute modinfo_datasize =
945 	__ATTR(datasize, 0444, show_datasize, NULL);
946 #endif
947 
948 static ssize_t show_initsize(struct module_attribute *mattr,
949 			     struct module_kobject *mk, char *buffer)
950 {
951 	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
952 }
953 
954 static struct module_attribute modinfo_initsize =
955 	__ATTR(initsize, 0444, show_initsize, NULL);
956 
957 static ssize_t show_taint(struct module_attribute *mattr,
958 			  struct module_kobject *mk, char *buffer)
959 {
960 	size_t l;
961 
962 	l = module_flags_taint(mk->mod->taints, buffer);
963 	buffer[l++] = '\n';
964 	return l;
965 }
966 
967 static struct module_attribute modinfo_taint =
968 	__ATTR(taint, 0444, show_taint, NULL);
969 
970 struct module_attribute *modinfo_attrs[] = {
971 	&module_uevent,
972 	&modinfo_version,
973 	&modinfo_srcversion,
974 	&modinfo_initstate,
975 	&modinfo_coresize,
976 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
977 	&modinfo_datasize,
978 #endif
979 	&modinfo_initsize,
980 	&modinfo_taint,
981 #ifdef CONFIG_MODULE_UNLOAD
982 	&modinfo_refcnt,
983 #endif
984 	NULL,
985 };
986 
987 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
988 
989 static const char vermagic[] = VERMAGIC_STRING;
990 
991 int try_to_force_load(struct module *mod, const char *reason)
992 {
993 #ifdef CONFIG_MODULE_FORCE_LOAD
994 	if (!test_taint(TAINT_FORCED_MODULE))
995 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
996 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
997 	return 0;
998 #else
999 	return -ENOEXEC;
1000 #endif
1001 }
1002 
1003 static char *get_modinfo(const struct load_info *info, const char *tag);
1004 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1005 			      char *prev);
1006 
1007 static int verify_namespace_is_imported(const struct load_info *info,
1008 					const struct kernel_symbol *sym,
1009 					struct module *mod)
1010 {
1011 	const char *namespace;
1012 	char *imported_namespace;
1013 
1014 	namespace = kernel_symbol_namespace(sym);
1015 	if (namespace && namespace[0]) {
1016 		imported_namespace = get_modinfo(info, "import_ns");
1017 		while (imported_namespace) {
1018 			if (strcmp(namespace, imported_namespace) == 0)
1019 				return 0;
1020 			imported_namespace = get_next_modinfo(
1021 				info, "import_ns", imported_namespace);
1022 		}
1023 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1024 		pr_warn(
1025 #else
1026 		pr_err(
1027 #endif
1028 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1029 			mod->name, kernel_symbol_name(sym), namespace);
1030 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1031 		return -EINVAL;
1032 #endif
1033 	}
1034 	return 0;
1035 }
1036 
1037 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1038 {
1039 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1040 		return true;
1041 
1042 	if (mod->using_gplonly_symbols) {
1043 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1044 			mod->name, name, owner->name);
1045 		return false;
1046 	}
1047 
1048 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1049 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1050 			mod->name, name, owner->name);
1051 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1052 	}
1053 	return true;
1054 }
1055 
1056 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1057 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1058 						  const struct load_info *info,
1059 						  const char *name,
1060 						  char ownername[])
1061 {
1062 	struct find_symbol_arg fsa = {
1063 		.name	= name,
1064 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1065 		.warn	= true,
1066 	};
1067 	int err;
1068 
1069 	/*
1070 	 * The module_mutex should not be a heavily contended lock;
1071 	 * if we get the occasional sleep here, we'll go an extra iteration
1072 	 * in the wait_event_interruptible(), which is harmless.
1073 	 */
1074 	sched_annotate_sleep();
1075 	mutex_lock(&module_mutex);
1076 	if (!find_symbol(&fsa))
1077 		goto unlock;
1078 
1079 	if (fsa.license == GPL_ONLY)
1080 		mod->using_gplonly_symbols = true;
1081 
1082 	if (!inherit_taint(mod, fsa.owner, name)) {
1083 		fsa.sym = NULL;
1084 		goto getname;
1085 	}
1086 
1087 	if (!check_version(info, name, mod, fsa.crc)) {
1088 		fsa.sym = ERR_PTR(-EINVAL);
1089 		goto getname;
1090 	}
1091 
1092 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1093 	if (err) {
1094 		fsa.sym = ERR_PTR(err);
1095 		goto getname;
1096 	}
1097 
1098 	err = ref_module(mod, fsa.owner);
1099 	if (err) {
1100 		fsa.sym = ERR_PTR(err);
1101 		goto getname;
1102 	}
1103 
1104 getname:
1105 	/* We must make copy under the lock if we failed to get ref. */
1106 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1107 unlock:
1108 	mutex_unlock(&module_mutex);
1109 	return fsa.sym;
1110 }
1111 
1112 static const struct kernel_symbol *
1113 resolve_symbol_wait(struct module *mod,
1114 		    const struct load_info *info,
1115 		    const char *name)
1116 {
1117 	const struct kernel_symbol *ksym;
1118 	char owner[MODULE_NAME_LEN];
1119 
1120 	if (wait_event_interruptible_timeout(module_wq,
1121 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1122 			|| PTR_ERR(ksym) != -EBUSY,
1123 					     30 * HZ) <= 0) {
1124 		pr_warn("%s: gave up waiting for init of module %s.\n",
1125 			mod->name, owner);
1126 	}
1127 	return ksym;
1128 }
1129 
1130 void __weak module_memfree(void *module_region)
1131 {
1132 	/*
1133 	 * This memory may be RO, and freeing RO memory in an interrupt is not
1134 	 * supported by vmalloc.
1135 	 */
1136 	WARN_ON(in_interrupt());
1137 	vfree(module_region);
1138 }
1139 
1140 void __weak module_arch_cleanup(struct module *mod)
1141 {
1142 }
1143 
1144 void __weak module_arch_freeing_init(struct module *mod)
1145 {
1146 }
1147 
1148 /* Free a module, remove from lists, etc. */
1149 static void free_module(struct module *mod)
1150 {
1151 	trace_module_free(mod);
1152 
1153 	mod_sysfs_teardown(mod);
1154 
1155 	/*
1156 	 * We leave it in list to prevent duplicate loads, but make sure
1157 	 * that noone uses it while it's being deconstructed.
1158 	 */
1159 	mutex_lock(&module_mutex);
1160 	mod->state = MODULE_STATE_UNFORMED;
1161 	mutex_unlock(&module_mutex);
1162 
1163 	/* Remove dynamic debug info */
1164 	ddebug_remove_module(mod->name);
1165 
1166 	/* Arch-specific cleanup. */
1167 	module_arch_cleanup(mod);
1168 
1169 	/* Module unload stuff */
1170 	module_unload_free(mod);
1171 
1172 	/* Free any allocated parameters. */
1173 	destroy_params(mod->kp, mod->num_kp);
1174 
1175 	if (is_livepatch_module(mod))
1176 		free_module_elf(mod);
1177 
1178 	/* Now we can delete it from the lists */
1179 	mutex_lock(&module_mutex);
1180 	/* Unlink carefully: kallsyms could be walking list. */
1181 	list_del_rcu(&mod->list);
1182 	mod_tree_remove(mod);
1183 	/* Remove this module from bug list, this uses list_del_rcu */
1184 	module_bug_cleanup(mod);
1185 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1186 	synchronize_rcu();
1187 	if (try_add_tainted_module(mod))
1188 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1189 		       mod->name);
1190 	mutex_unlock(&module_mutex);
1191 
1192 	/* This may be empty, but that's OK */
1193 	module_arch_freeing_init(mod);
1194 	module_memfree(mod->init_layout.base);
1195 	kfree(mod->args);
1196 	percpu_modfree(mod);
1197 
1198 	/* Free lock-classes; relies on the preceding sync_rcu(). */
1199 	lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
1200 
1201 	/* Finally, free the core (containing the module structure) */
1202 	module_memfree(mod->core_layout.base);
1203 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1204 	vfree(mod->data_layout.base);
1205 #endif
1206 }
1207 
1208 void *__symbol_get(const char *symbol)
1209 {
1210 	struct find_symbol_arg fsa = {
1211 		.name	= symbol,
1212 		.gplok	= true,
1213 		.warn	= true,
1214 	};
1215 
1216 	preempt_disable();
1217 	if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
1218 		preempt_enable();
1219 		return NULL;
1220 	}
1221 	preempt_enable();
1222 	return (void *)kernel_symbol_value(fsa.sym);
1223 }
1224 EXPORT_SYMBOL_GPL(__symbol_get);
1225 
1226 /*
1227  * Ensure that an exported symbol [global namespace] does not already exist
1228  * in the kernel or in some other module's exported symbol table.
1229  *
1230  * You must hold the module_mutex.
1231  */
1232 static int verify_exported_symbols(struct module *mod)
1233 {
1234 	unsigned int i;
1235 	const struct kernel_symbol *s;
1236 	struct {
1237 		const struct kernel_symbol *sym;
1238 		unsigned int num;
1239 	} arr[] = {
1240 		{ mod->syms, mod->num_syms },
1241 		{ mod->gpl_syms, mod->num_gpl_syms },
1242 	};
1243 
1244 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1245 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1246 			struct find_symbol_arg fsa = {
1247 				.name	= kernel_symbol_name(s),
1248 				.gplok	= true,
1249 			};
1250 			if (find_symbol(&fsa)) {
1251 				pr_err("%s: exports duplicate symbol %s"
1252 				       " (owned by %s)\n",
1253 				       mod->name, kernel_symbol_name(s),
1254 				       module_name(fsa.owner));
1255 				return -ENOEXEC;
1256 			}
1257 		}
1258 	}
1259 	return 0;
1260 }
1261 
1262 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1263 {
1264 	/*
1265 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1266 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1267 	 * i386 has a similar problem but may not deserve a fix.
1268 	 *
1269 	 * If we ever have to ignore many symbols, consider refactoring the code to
1270 	 * only warn if referenced by a relocation.
1271 	 */
1272 	if (emachine == EM_386 || emachine == EM_X86_64)
1273 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1274 	return false;
1275 }
1276 
1277 /* Change all symbols so that st_value encodes the pointer directly. */
1278 static int simplify_symbols(struct module *mod, const struct load_info *info)
1279 {
1280 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1281 	Elf_Sym *sym = (void *)symsec->sh_addr;
1282 	unsigned long secbase;
1283 	unsigned int i;
1284 	int ret = 0;
1285 	const struct kernel_symbol *ksym;
1286 
1287 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1288 		const char *name = info->strtab + sym[i].st_name;
1289 
1290 		switch (sym[i].st_shndx) {
1291 		case SHN_COMMON:
1292 			/* Ignore common symbols */
1293 			if (!strncmp(name, "__gnu_lto", 9))
1294 				break;
1295 
1296 			/*
1297 			 * We compiled with -fno-common.  These are not
1298 			 * supposed to happen.
1299 			 */
1300 			pr_debug("Common symbol: %s\n", name);
1301 			pr_warn("%s: please compile with -fno-common\n",
1302 			       mod->name);
1303 			ret = -ENOEXEC;
1304 			break;
1305 
1306 		case SHN_ABS:
1307 			/* Don't need to do anything */
1308 			pr_debug("Absolute symbol: 0x%08lx\n",
1309 			       (long)sym[i].st_value);
1310 			break;
1311 
1312 		case SHN_LIVEPATCH:
1313 			/* Livepatch symbols are resolved by livepatch */
1314 			break;
1315 
1316 		case SHN_UNDEF:
1317 			ksym = resolve_symbol_wait(mod, info, name);
1318 			/* Ok if resolved.  */
1319 			if (ksym && !IS_ERR(ksym)) {
1320 				sym[i].st_value = kernel_symbol_value(ksym);
1321 				break;
1322 			}
1323 
1324 			/* Ok if weak or ignored.  */
1325 			if (!ksym &&
1326 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1327 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1328 				break;
1329 
1330 			ret = PTR_ERR(ksym) ?: -ENOENT;
1331 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1332 				mod->name, name, ret);
1333 			break;
1334 
1335 		default:
1336 			/* Divert to percpu allocation if a percpu var. */
1337 			if (sym[i].st_shndx == info->index.pcpu)
1338 				secbase = (unsigned long)mod_percpu(mod);
1339 			else
1340 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1341 			sym[i].st_value += secbase;
1342 			break;
1343 		}
1344 	}
1345 
1346 	return ret;
1347 }
1348 
1349 static int apply_relocations(struct module *mod, const struct load_info *info)
1350 {
1351 	unsigned int i;
1352 	int err = 0;
1353 
1354 	/* Now do relocations. */
1355 	for (i = 1; i < info->hdr->e_shnum; i++) {
1356 		unsigned int infosec = info->sechdrs[i].sh_info;
1357 
1358 		/* Not a valid relocation section? */
1359 		if (infosec >= info->hdr->e_shnum)
1360 			continue;
1361 
1362 		/* Don't bother with non-allocated sections */
1363 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1364 			continue;
1365 
1366 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1367 			err = klp_apply_section_relocs(mod, info->sechdrs,
1368 						       info->secstrings,
1369 						       info->strtab,
1370 						       info->index.sym, i,
1371 						       NULL);
1372 		else if (info->sechdrs[i].sh_type == SHT_REL)
1373 			err = apply_relocate(info->sechdrs, info->strtab,
1374 					     info->index.sym, i, mod);
1375 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1376 			err = apply_relocate_add(info->sechdrs, info->strtab,
1377 						 info->index.sym, i, mod);
1378 		if (err < 0)
1379 			break;
1380 	}
1381 	return err;
1382 }
1383 
1384 /* Additional bytes needed by arch in front of individual sections */
1385 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1386 					     unsigned int section)
1387 {
1388 	/* default implementation just returns zero */
1389 	return 0;
1390 }
1391 
1392 /* Update size with this section: return offset. */
1393 long module_get_offset(struct module *mod, unsigned int *size,
1394 		       Elf_Shdr *sechdr, unsigned int section)
1395 {
1396 	long ret;
1397 
1398 	*size += arch_mod_section_prepend(mod, section);
1399 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1400 	*size = ret + sechdr->sh_size;
1401 	return ret;
1402 }
1403 
1404 static bool module_init_layout_section(const char *sname)
1405 {
1406 #ifndef CONFIG_MODULE_UNLOAD
1407 	if (module_exit_section(sname))
1408 		return true;
1409 #endif
1410 	return module_init_section(sname);
1411 }
1412 
1413 /*
1414  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1415  * might -- code, read-only data, read-write data, small data.  Tally
1416  * sizes, and place the offsets into sh_entsize fields: high bit means it
1417  * belongs in init.
1418  */
1419 static void layout_sections(struct module *mod, struct load_info *info)
1420 {
1421 	static unsigned long const masks[][2] = {
1422 		/*
1423 		 * NOTE: all executable code must be the first section
1424 		 * in this array; otherwise modify the text_size
1425 		 * finder in the two loops below
1426 		 */
1427 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1428 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1429 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1430 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1431 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1432 	};
1433 	unsigned int m, i;
1434 
1435 	for (i = 0; i < info->hdr->e_shnum; i++)
1436 		info->sechdrs[i].sh_entsize = ~0UL;
1437 
1438 	pr_debug("Core section allocation order:\n");
1439 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1440 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1441 			Elf_Shdr *s = &info->sechdrs[i];
1442 			const char *sname = info->secstrings + s->sh_name;
1443 			unsigned int *sizep;
1444 
1445 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1446 			    || (s->sh_flags & masks[m][1])
1447 			    || s->sh_entsize != ~0UL
1448 			    || module_init_layout_section(sname))
1449 				continue;
1450 			sizep = m ? &mod->data_layout.size : &mod->core_layout.size;
1451 			s->sh_entsize = module_get_offset(mod, sizep, s, i);
1452 			pr_debug("\t%s\n", sname);
1453 		}
1454 		switch (m) {
1455 		case 0: /* executable */
1456 			mod->core_layout.size = strict_align(mod->core_layout.size);
1457 			mod->core_layout.text_size = mod->core_layout.size;
1458 			break;
1459 		case 1: /* RO: text and ro-data */
1460 			mod->data_layout.size = strict_align(mod->data_layout.size);
1461 			mod->data_layout.ro_size = mod->data_layout.size;
1462 			break;
1463 		case 2: /* RO after init */
1464 			mod->data_layout.size = strict_align(mod->data_layout.size);
1465 			mod->data_layout.ro_after_init_size = mod->data_layout.size;
1466 			break;
1467 		case 4: /* whole core */
1468 			mod->data_layout.size = strict_align(mod->data_layout.size);
1469 			break;
1470 		}
1471 	}
1472 
1473 	pr_debug("Init section allocation order:\n");
1474 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1475 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1476 			Elf_Shdr *s = &info->sechdrs[i];
1477 			const char *sname = info->secstrings + s->sh_name;
1478 
1479 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1480 			    || (s->sh_flags & masks[m][1])
1481 			    || s->sh_entsize != ~0UL
1482 			    || !module_init_layout_section(sname))
1483 				continue;
1484 			s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i)
1485 					 | INIT_OFFSET_MASK);
1486 			pr_debug("\t%s\n", sname);
1487 		}
1488 		switch (m) {
1489 		case 0: /* executable */
1490 			mod->init_layout.size = strict_align(mod->init_layout.size);
1491 			mod->init_layout.text_size = mod->init_layout.size;
1492 			break;
1493 		case 1: /* RO: text and ro-data */
1494 			mod->init_layout.size = strict_align(mod->init_layout.size);
1495 			mod->init_layout.ro_size = mod->init_layout.size;
1496 			break;
1497 		case 2:
1498 			/*
1499 			 * RO after init doesn't apply to init_layout (only
1500 			 * core_layout), so it just takes the value of ro_size.
1501 			 */
1502 			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
1503 			break;
1504 		case 4: /* whole init */
1505 			mod->init_layout.size = strict_align(mod->init_layout.size);
1506 			break;
1507 		}
1508 	}
1509 }
1510 
1511 static void set_license(struct module *mod, const char *license)
1512 {
1513 	if (!license)
1514 		license = "unspecified";
1515 
1516 	if (!license_is_gpl_compatible(license)) {
1517 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1518 			pr_warn("%s: module license '%s' taints kernel.\n",
1519 				mod->name, license);
1520 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1521 				 LOCKDEP_NOW_UNRELIABLE);
1522 	}
1523 }
1524 
1525 /* Parse tag=value strings from .modinfo section */
1526 static char *next_string(char *string, unsigned long *secsize)
1527 {
1528 	/* Skip non-zero chars */
1529 	while (string[0]) {
1530 		string++;
1531 		if ((*secsize)-- <= 1)
1532 			return NULL;
1533 	}
1534 
1535 	/* Skip any zero padding. */
1536 	while (!string[0]) {
1537 		string++;
1538 		if ((*secsize)-- <= 1)
1539 			return NULL;
1540 	}
1541 	return string;
1542 }
1543 
1544 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1545 			      char *prev)
1546 {
1547 	char *p;
1548 	unsigned int taglen = strlen(tag);
1549 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1550 	unsigned long size = infosec->sh_size;
1551 
1552 	/*
1553 	 * get_modinfo() calls made before rewrite_section_headers()
1554 	 * must use sh_offset, as sh_addr isn't set!
1555 	 */
1556 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1557 
1558 	if (prev) {
1559 		size -= prev - modinfo;
1560 		modinfo = next_string(prev, &size);
1561 	}
1562 
1563 	for (p = modinfo; p; p = next_string(p, &size)) {
1564 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1565 			return p + taglen + 1;
1566 	}
1567 	return NULL;
1568 }
1569 
1570 static char *get_modinfo(const struct load_info *info, const char *tag)
1571 {
1572 	return get_next_modinfo(info, tag, NULL);
1573 }
1574 
1575 static void setup_modinfo(struct module *mod, struct load_info *info)
1576 {
1577 	struct module_attribute *attr;
1578 	int i;
1579 
1580 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1581 		if (attr->setup)
1582 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1583 	}
1584 }
1585 
1586 static void free_modinfo(struct module *mod)
1587 {
1588 	struct module_attribute *attr;
1589 	int i;
1590 
1591 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1592 		if (attr->free)
1593 			attr->free(mod);
1594 	}
1595 }
1596 
1597 static void dynamic_debug_setup(struct module *mod, struct _ddebug_info *dyndbg)
1598 {
1599 	if (!dyndbg->num_descs)
1600 		return;
1601 	ddebug_add_module(dyndbg, mod->name);
1602 }
1603 
1604 static void dynamic_debug_remove(struct module *mod, struct _ddebug_info *dyndbg)
1605 {
1606 	if (dyndbg->num_descs)
1607 		ddebug_remove_module(mod->name);
1608 }
1609 
1610 void * __weak module_alloc(unsigned long size)
1611 {
1612 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
1613 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
1614 			NUMA_NO_NODE, __builtin_return_address(0));
1615 }
1616 
1617 bool __weak module_init_section(const char *name)
1618 {
1619 	return strstarts(name, ".init");
1620 }
1621 
1622 bool __weak module_exit_section(const char *name)
1623 {
1624 	return strstarts(name, ".exit");
1625 }
1626 
1627 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1628 {
1629 #if defined(CONFIG_64BIT)
1630 	unsigned long long secend;
1631 #else
1632 	unsigned long secend;
1633 #endif
1634 
1635 	/*
1636 	 * Check for both overflow and offset/size being
1637 	 * too large.
1638 	 */
1639 	secend = shdr->sh_offset + shdr->sh_size;
1640 	if (secend < shdr->sh_offset || secend > info->len)
1641 		return -ENOEXEC;
1642 
1643 	return 0;
1644 }
1645 
1646 /*
1647  * Sanity checks against invalid binaries, wrong arch, weird elf version.
1648  *
1649  * Also do basic validity checks against section offsets and sizes, the
1650  * section name string table, and the indices used for it (sh_name).
1651  */
1652 static int elf_validity_check(struct load_info *info)
1653 {
1654 	unsigned int i;
1655 	Elf_Shdr *shdr, *strhdr;
1656 	int err;
1657 
1658 	if (info->len < sizeof(*(info->hdr))) {
1659 		pr_err("Invalid ELF header len %lu\n", info->len);
1660 		goto no_exec;
1661 	}
1662 
1663 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1664 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1665 		goto no_exec;
1666 	}
1667 	if (info->hdr->e_type != ET_REL) {
1668 		pr_err("Invalid ELF header type: %u != %u\n",
1669 		       info->hdr->e_type, ET_REL);
1670 		goto no_exec;
1671 	}
1672 	if (!elf_check_arch(info->hdr)) {
1673 		pr_err("Invalid architecture in ELF header: %u\n",
1674 		       info->hdr->e_machine);
1675 		goto no_exec;
1676 	}
1677 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1678 		pr_err("Invalid ELF section header size\n");
1679 		goto no_exec;
1680 	}
1681 
1682 	/*
1683 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1684 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1685 	 * will not overflow unsigned long on any platform.
1686 	 */
1687 	if (info->hdr->e_shoff >= info->len
1688 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1689 		info->len - info->hdr->e_shoff)) {
1690 		pr_err("Invalid ELF section header overflow\n");
1691 		goto no_exec;
1692 	}
1693 
1694 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1695 
1696 	/*
1697 	 * Verify if the section name table index is valid.
1698 	 */
1699 	if (info->hdr->e_shstrndx == SHN_UNDEF
1700 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1701 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1702 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1703 		       info->hdr->e_shnum);
1704 		goto no_exec;
1705 	}
1706 
1707 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1708 	err = validate_section_offset(info, strhdr);
1709 	if (err < 0) {
1710 		pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1711 		return err;
1712 	}
1713 
1714 	/*
1715 	 * The section name table must be NUL-terminated, as required
1716 	 * by the spec. This makes strcmp and pr_* calls that access
1717 	 * strings in the section safe.
1718 	 */
1719 	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1720 	if (strhdr->sh_size == 0) {
1721 		pr_err("empty section name table\n");
1722 		goto no_exec;
1723 	}
1724 	if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1725 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1726 		goto no_exec;
1727 	}
1728 
1729 	/*
1730 	 * The code assumes that section 0 has a length of zero and
1731 	 * an addr of zero, so check for it.
1732 	 */
1733 	if (info->sechdrs[0].sh_type != SHT_NULL
1734 	    || info->sechdrs[0].sh_size != 0
1735 	    || info->sechdrs[0].sh_addr != 0) {
1736 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1737 		       info->sechdrs[0].sh_type);
1738 		goto no_exec;
1739 	}
1740 
1741 	for (i = 1; i < info->hdr->e_shnum; i++) {
1742 		shdr = &info->sechdrs[i];
1743 		switch (shdr->sh_type) {
1744 		case SHT_NULL:
1745 		case SHT_NOBITS:
1746 			continue;
1747 		case SHT_SYMTAB:
1748 			if (shdr->sh_link == SHN_UNDEF
1749 			    || shdr->sh_link >= info->hdr->e_shnum) {
1750 				pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1751 				       shdr->sh_link, shdr->sh_link,
1752 				       info->hdr->e_shnum);
1753 				goto no_exec;
1754 			}
1755 			fallthrough;
1756 		default:
1757 			err = validate_section_offset(info, shdr);
1758 			if (err < 0) {
1759 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1760 					i, shdr->sh_type);
1761 				return err;
1762 			}
1763 
1764 			if (shdr->sh_flags & SHF_ALLOC) {
1765 				if (shdr->sh_name >= strhdr->sh_size) {
1766 					pr_err("Invalid ELF section name in module (section %u type %u)\n",
1767 					       i, shdr->sh_type);
1768 					return -ENOEXEC;
1769 				}
1770 			}
1771 			break;
1772 		}
1773 	}
1774 
1775 	return 0;
1776 
1777 no_exec:
1778 	return -ENOEXEC;
1779 }
1780 
1781 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1782 
1783 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1784 {
1785 	do {
1786 		unsigned long n = min(len, COPY_CHUNK_SIZE);
1787 
1788 		if (copy_from_user(dst, usrc, n) != 0)
1789 			return -EFAULT;
1790 		cond_resched();
1791 		dst += n;
1792 		usrc += n;
1793 		len -= n;
1794 	} while (len);
1795 	return 0;
1796 }
1797 
1798 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1799 {
1800 	if (!get_modinfo(info, "livepatch"))
1801 		/* Nothing more to do */
1802 		return 0;
1803 
1804 	if (set_livepatch_module(mod)) {
1805 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
1806 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
1807 				mod->name);
1808 		return 0;
1809 	}
1810 
1811 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1812 	       mod->name);
1813 	return -ENOEXEC;
1814 }
1815 
1816 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1817 {
1818 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1819 		return;
1820 
1821 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1822 		mod->name);
1823 }
1824 
1825 /* Sets info->hdr and info->len. */
1826 static int copy_module_from_user(const void __user *umod, unsigned long len,
1827 				  struct load_info *info)
1828 {
1829 	int err;
1830 
1831 	info->len = len;
1832 	if (info->len < sizeof(*(info->hdr)))
1833 		return -ENOEXEC;
1834 
1835 	err = security_kernel_load_data(LOADING_MODULE, true);
1836 	if (err)
1837 		return err;
1838 
1839 	/* Suck in entire file: we'll want most of it. */
1840 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
1841 	if (!info->hdr)
1842 		return -ENOMEM;
1843 
1844 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
1845 		err = -EFAULT;
1846 		goto out;
1847 	}
1848 
1849 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
1850 					     LOADING_MODULE, "init_module");
1851 out:
1852 	if (err)
1853 		vfree(info->hdr);
1854 
1855 	return err;
1856 }
1857 
1858 static void free_copy(struct load_info *info, int flags)
1859 {
1860 	if (flags & MODULE_INIT_COMPRESSED_FILE)
1861 		module_decompress_cleanup(info);
1862 	else
1863 		vfree(info->hdr);
1864 }
1865 
1866 static int rewrite_section_headers(struct load_info *info, int flags)
1867 {
1868 	unsigned int i;
1869 
1870 	/* This should always be true, but let's be sure. */
1871 	info->sechdrs[0].sh_addr = 0;
1872 
1873 	for (i = 1; i < info->hdr->e_shnum; i++) {
1874 		Elf_Shdr *shdr = &info->sechdrs[i];
1875 
1876 		/*
1877 		 * Mark all sections sh_addr with their address in the
1878 		 * temporary image.
1879 		 */
1880 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
1881 
1882 	}
1883 
1884 	/* Track but don't keep modinfo and version sections. */
1885 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
1886 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
1887 
1888 	return 0;
1889 }
1890 
1891 /*
1892  * Set up our basic convenience variables (pointers to section headers,
1893  * search for module section index etc), and do some basic section
1894  * verification.
1895  *
1896  * Set info->mod to the temporary copy of the module in info->hdr. The final one
1897  * will be allocated in move_module().
1898  */
1899 static int setup_load_info(struct load_info *info, int flags)
1900 {
1901 	unsigned int i;
1902 
1903 	/* Try to find a name early so we can log errors with a module name */
1904 	info->index.info = find_sec(info, ".modinfo");
1905 	if (info->index.info)
1906 		info->name = get_modinfo(info, "name");
1907 
1908 	/* Find internal symbols and strings. */
1909 	for (i = 1; i < info->hdr->e_shnum; i++) {
1910 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
1911 			info->index.sym = i;
1912 			info->index.str = info->sechdrs[i].sh_link;
1913 			info->strtab = (char *)info->hdr
1914 				+ info->sechdrs[info->index.str].sh_offset;
1915 			break;
1916 		}
1917 	}
1918 
1919 	if (info->index.sym == 0) {
1920 		pr_warn("%s: module has no symbols (stripped?)\n",
1921 			info->name ?: "(missing .modinfo section or name field)");
1922 		return -ENOEXEC;
1923 	}
1924 
1925 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
1926 	if (!info->index.mod) {
1927 		pr_warn("%s: No module found in object\n",
1928 			info->name ?: "(missing .modinfo section or name field)");
1929 		return -ENOEXEC;
1930 	}
1931 	/* This is temporary: point mod into copy of data. */
1932 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
1933 
1934 	/*
1935 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
1936 	 * on-disk struct mod 'name' field.
1937 	 */
1938 	if (!info->name)
1939 		info->name = info->mod->name;
1940 
1941 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1942 		info->index.vers = 0; /* Pretend no __versions section! */
1943 	else
1944 		info->index.vers = find_sec(info, "__versions");
1945 
1946 	info->index.pcpu = find_pcpusec(info);
1947 
1948 	return 0;
1949 }
1950 
1951 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
1952 {
1953 	const char *modmagic = get_modinfo(info, "vermagic");
1954 	int err;
1955 
1956 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
1957 		modmagic = NULL;
1958 
1959 	/* This is allowed: modprobe --force will invalidate it. */
1960 	if (!modmagic) {
1961 		err = try_to_force_load(mod, "bad vermagic");
1962 		if (err)
1963 			return err;
1964 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
1965 		pr_err("%s: version magic '%s' should be '%s'\n",
1966 		       info->name, modmagic, vermagic);
1967 		return -ENOEXEC;
1968 	}
1969 
1970 	if (!get_modinfo(info, "intree")) {
1971 		if (!test_taint(TAINT_OOT_MODULE))
1972 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
1973 				mod->name);
1974 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
1975 	}
1976 
1977 	check_modinfo_retpoline(mod, info);
1978 
1979 	if (get_modinfo(info, "staging")) {
1980 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
1981 		pr_warn("%s: module is from the staging directory, the quality "
1982 			"is unknown, you have been warned.\n", mod->name);
1983 	}
1984 
1985 	err = check_modinfo_livepatch(mod, info);
1986 	if (err)
1987 		return err;
1988 
1989 	/* Set up license info based on the info section */
1990 	set_license(mod, get_modinfo(info, "license"));
1991 
1992 	if (get_modinfo(info, "test")) {
1993 		if (!test_taint(TAINT_TEST))
1994 			pr_warn("%s: loading test module taints kernel.\n",
1995 				mod->name);
1996 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
1997 	}
1998 
1999 	return 0;
2000 }
2001 
2002 static int find_module_sections(struct module *mod, struct load_info *info)
2003 {
2004 	mod->kp = section_objs(info, "__param",
2005 			       sizeof(*mod->kp), &mod->num_kp);
2006 	mod->syms = section_objs(info, "__ksymtab",
2007 				 sizeof(*mod->syms), &mod->num_syms);
2008 	mod->crcs = section_addr(info, "__kcrctab");
2009 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2010 				     sizeof(*mod->gpl_syms),
2011 				     &mod->num_gpl_syms);
2012 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2013 
2014 #ifdef CONFIG_CONSTRUCTORS
2015 	mod->ctors = section_objs(info, ".ctors",
2016 				  sizeof(*mod->ctors), &mod->num_ctors);
2017 	if (!mod->ctors)
2018 		mod->ctors = section_objs(info, ".init_array",
2019 				sizeof(*mod->ctors), &mod->num_ctors);
2020 	else if (find_sec(info, ".init_array")) {
2021 		/*
2022 		 * This shouldn't happen with same compiler and binutils
2023 		 * building all parts of the module.
2024 		 */
2025 		pr_warn("%s: has both .ctors and .init_array.\n",
2026 		       mod->name);
2027 		return -EINVAL;
2028 	}
2029 #endif
2030 
2031 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2032 						&mod->noinstr_text_size);
2033 
2034 #ifdef CONFIG_TRACEPOINTS
2035 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2036 					     sizeof(*mod->tracepoints_ptrs),
2037 					     &mod->num_tracepoints);
2038 #endif
2039 #ifdef CONFIG_TREE_SRCU
2040 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2041 					     sizeof(*mod->srcu_struct_ptrs),
2042 					     &mod->num_srcu_structs);
2043 #endif
2044 #ifdef CONFIG_BPF_EVENTS
2045 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2046 					   sizeof(*mod->bpf_raw_events),
2047 					   &mod->num_bpf_raw_events);
2048 #endif
2049 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2050 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2051 #endif
2052 #ifdef CONFIG_JUMP_LABEL
2053 	mod->jump_entries = section_objs(info, "__jump_table",
2054 					sizeof(*mod->jump_entries),
2055 					&mod->num_jump_entries);
2056 #endif
2057 #ifdef CONFIG_EVENT_TRACING
2058 	mod->trace_events = section_objs(info, "_ftrace_events",
2059 					 sizeof(*mod->trace_events),
2060 					 &mod->num_trace_events);
2061 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2062 					sizeof(*mod->trace_evals),
2063 					&mod->num_trace_evals);
2064 #endif
2065 #ifdef CONFIG_TRACING
2066 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2067 					 sizeof(*mod->trace_bprintk_fmt_start),
2068 					 &mod->num_trace_bprintk_fmt);
2069 #endif
2070 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2071 	/* sechdrs[0].sh_size is always zero */
2072 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2073 					     sizeof(*mod->ftrace_callsites),
2074 					     &mod->num_ftrace_callsites);
2075 #endif
2076 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2077 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2078 					    sizeof(*mod->ei_funcs),
2079 					    &mod->num_ei_funcs);
2080 #endif
2081 #ifdef CONFIG_KPROBES
2082 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2083 						&mod->kprobes_text_size);
2084 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2085 						sizeof(unsigned long),
2086 						&mod->num_kprobe_blacklist);
2087 #endif
2088 #ifdef CONFIG_PRINTK_INDEX
2089 	mod->printk_index_start = section_objs(info, ".printk_index",
2090 					       sizeof(*mod->printk_index_start),
2091 					       &mod->printk_index_size);
2092 #endif
2093 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2094 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2095 					      sizeof(*mod->static_call_sites),
2096 					      &mod->num_static_call_sites);
2097 #endif
2098 #if IS_ENABLED(CONFIG_KUNIT)
2099 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2100 					      sizeof(*mod->kunit_suites),
2101 					      &mod->num_kunit_suites);
2102 #endif
2103 
2104 	mod->extable = section_objs(info, "__ex_table",
2105 				    sizeof(*mod->extable), &mod->num_exentries);
2106 
2107 	if (section_addr(info, "__obsparm"))
2108 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2109 
2110 	info->dyndbg.descs = section_objs(info, "__dyndbg",
2111 					sizeof(*info->dyndbg.descs), &info->dyndbg.num_descs);
2112 	info->dyndbg.classes = section_objs(info, "__dyndbg_classes",
2113 					sizeof(*info->dyndbg.classes), &info->dyndbg.num_classes);
2114 
2115 	return 0;
2116 }
2117 
2118 static int move_module(struct module *mod, struct load_info *info)
2119 {
2120 	int i;
2121 	void *ptr;
2122 
2123 	/* Do the allocs. */
2124 	ptr = module_alloc(mod->core_layout.size);
2125 	/*
2126 	 * The pointer to this block is stored in the module structure
2127 	 * which is inside the block. Just mark it as not being a
2128 	 * leak.
2129 	 */
2130 	kmemleak_not_leak(ptr);
2131 	if (!ptr)
2132 		return -ENOMEM;
2133 
2134 	memset(ptr, 0, mod->core_layout.size);
2135 	mod->core_layout.base = ptr;
2136 
2137 	if (mod->init_layout.size) {
2138 		ptr = module_alloc(mod->init_layout.size);
2139 		/*
2140 		 * The pointer to this block is stored in the module structure
2141 		 * which is inside the block. This block doesn't need to be
2142 		 * scanned as it contains data and code that will be freed
2143 		 * after the module is initialized.
2144 		 */
2145 		kmemleak_ignore(ptr);
2146 		if (!ptr) {
2147 			module_memfree(mod->core_layout.base);
2148 			return -ENOMEM;
2149 		}
2150 		memset(ptr, 0, mod->init_layout.size);
2151 		mod->init_layout.base = ptr;
2152 	} else
2153 		mod->init_layout.base = NULL;
2154 
2155 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2156 	/* Do the allocs. */
2157 	ptr = vzalloc(mod->data_layout.size);
2158 	/*
2159 	 * The pointer to this block is stored in the module structure
2160 	 * which is inside the block. Just mark it as not being a
2161 	 * leak.
2162 	 */
2163 	kmemleak_not_leak(ptr);
2164 	if (!ptr) {
2165 		module_memfree(mod->core_layout.base);
2166 		module_memfree(mod->init_layout.base);
2167 		return -ENOMEM;
2168 	}
2169 
2170 	mod->data_layout.base = ptr;
2171 #endif
2172 	/* Transfer each section which specifies SHF_ALLOC */
2173 	pr_debug("final section addresses:\n");
2174 	for (i = 0; i < info->hdr->e_shnum; i++) {
2175 		void *dest;
2176 		Elf_Shdr *shdr = &info->sechdrs[i];
2177 
2178 		if (!(shdr->sh_flags & SHF_ALLOC))
2179 			continue;
2180 
2181 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2182 			dest = mod->init_layout.base
2183 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2184 		else if (!(shdr->sh_flags & SHF_EXECINSTR))
2185 			dest = mod->data_layout.base + shdr->sh_entsize;
2186 		else
2187 			dest = mod->core_layout.base + shdr->sh_entsize;
2188 
2189 		if (shdr->sh_type != SHT_NOBITS)
2190 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2191 		/* Update sh_addr to point to copy in image. */
2192 		shdr->sh_addr = (unsigned long)dest;
2193 		pr_debug("\t0x%lx %s\n",
2194 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 static int check_module_license_and_versions(struct module *mod)
2201 {
2202 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2203 
2204 	/*
2205 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2206 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2207 	 * using GPL-only symbols it needs.
2208 	 */
2209 	if (strcmp(mod->name, "ndiswrapper") == 0)
2210 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2211 
2212 	/* driverloader was caught wrongly pretending to be under GPL */
2213 	if (strcmp(mod->name, "driverloader") == 0)
2214 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2215 				 LOCKDEP_NOW_UNRELIABLE);
2216 
2217 	/* lve claims to be GPL but upstream won't provide source */
2218 	if (strcmp(mod->name, "lve") == 0)
2219 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2220 				 LOCKDEP_NOW_UNRELIABLE);
2221 
2222 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2223 		pr_warn("%s: module license taints kernel.\n", mod->name);
2224 
2225 #ifdef CONFIG_MODVERSIONS
2226 	if ((mod->num_syms && !mod->crcs) ||
2227 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2228 		return try_to_force_load(mod,
2229 					 "no versions for exported symbols");
2230 	}
2231 #endif
2232 	return 0;
2233 }
2234 
2235 static void flush_module_icache(const struct module *mod)
2236 {
2237 	/*
2238 	 * Flush the instruction cache, since we've played with text.
2239 	 * Do it before processing of module parameters, so the module
2240 	 * can provide parameter accessor functions of its own.
2241 	 */
2242 	if (mod->init_layout.base)
2243 		flush_icache_range((unsigned long)mod->init_layout.base,
2244 				   (unsigned long)mod->init_layout.base
2245 				   + mod->init_layout.size);
2246 	flush_icache_range((unsigned long)mod->core_layout.base,
2247 			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
2248 }
2249 
2250 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2251 				     Elf_Shdr *sechdrs,
2252 				     char *secstrings,
2253 				     struct module *mod)
2254 {
2255 	return 0;
2256 }
2257 
2258 /* module_blacklist is a comma-separated list of module names */
2259 static char *module_blacklist;
2260 static bool blacklisted(const char *module_name)
2261 {
2262 	const char *p;
2263 	size_t len;
2264 
2265 	if (!module_blacklist)
2266 		return false;
2267 
2268 	for (p = module_blacklist; *p; p += len) {
2269 		len = strcspn(p, ",");
2270 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2271 			return true;
2272 		if (p[len] == ',')
2273 			len++;
2274 	}
2275 	return false;
2276 }
2277 core_param(module_blacklist, module_blacklist, charp, 0400);
2278 
2279 static struct module *layout_and_allocate(struct load_info *info, int flags)
2280 {
2281 	struct module *mod;
2282 	unsigned int ndx;
2283 	int err;
2284 
2285 	err = check_modinfo(info->mod, info, flags);
2286 	if (err)
2287 		return ERR_PTR(err);
2288 
2289 	/* Allow arches to frob section contents and sizes.  */
2290 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2291 					info->secstrings, info->mod);
2292 	if (err < 0)
2293 		return ERR_PTR(err);
2294 
2295 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2296 					  info->secstrings, info->mod);
2297 	if (err < 0)
2298 		return ERR_PTR(err);
2299 
2300 	/* We will do a special allocation for per-cpu sections later. */
2301 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2302 
2303 	/*
2304 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2305 	 * layout_sections() can put it in the right place.
2306 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2307 	 */
2308 	ndx = find_sec(info, ".data..ro_after_init");
2309 	if (ndx)
2310 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2311 	/*
2312 	 * Mark the __jump_table section as ro_after_init as well: these data
2313 	 * structures are never modified, with the exception of entries that
2314 	 * refer to code in the __init section, which are annotated as such
2315 	 * at module load time.
2316 	 */
2317 	ndx = find_sec(info, "__jump_table");
2318 	if (ndx)
2319 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2320 
2321 	/*
2322 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2323 	 * this is done generically; there doesn't appear to be any
2324 	 * special cases for the architectures.
2325 	 */
2326 	layout_sections(info->mod, info);
2327 	layout_symtab(info->mod, info);
2328 
2329 	/* Allocate and move to the final place */
2330 	err = move_module(info->mod, info);
2331 	if (err)
2332 		return ERR_PTR(err);
2333 
2334 	/* Module has been copied to its final place now: return it. */
2335 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2336 	kmemleak_load_module(mod, info);
2337 	return mod;
2338 }
2339 
2340 /* mod is no longer valid after this! */
2341 static void module_deallocate(struct module *mod, struct load_info *info)
2342 {
2343 	percpu_modfree(mod);
2344 	module_arch_freeing_init(mod);
2345 	module_memfree(mod->init_layout.base);
2346 	module_memfree(mod->core_layout.base);
2347 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2348 	vfree(mod->data_layout.base);
2349 #endif
2350 }
2351 
2352 int __weak module_finalize(const Elf_Ehdr *hdr,
2353 			   const Elf_Shdr *sechdrs,
2354 			   struct module *me)
2355 {
2356 	return 0;
2357 }
2358 
2359 static int post_relocation(struct module *mod, const struct load_info *info)
2360 {
2361 	/* Sort exception table now relocations are done. */
2362 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2363 
2364 	/* Copy relocated percpu area over. */
2365 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2366 		       info->sechdrs[info->index.pcpu].sh_size);
2367 
2368 	/* Setup kallsyms-specific fields. */
2369 	add_kallsyms(mod, info);
2370 
2371 	/* Arch-specific module finalizing. */
2372 	return module_finalize(info->hdr, info->sechdrs, mod);
2373 }
2374 
2375 /* Is this module of this name done loading?  No locks held. */
2376 static bool finished_loading(const char *name)
2377 {
2378 	struct module *mod;
2379 	bool ret;
2380 
2381 	/*
2382 	 * The module_mutex should not be a heavily contended lock;
2383 	 * if we get the occasional sleep here, we'll go an extra iteration
2384 	 * in the wait_event_interruptible(), which is harmless.
2385 	 */
2386 	sched_annotate_sleep();
2387 	mutex_lock(&module_mutex);
2388 	mod = find_module_all(name, strlen(name), true);
2389 	ret = !mod || mod->state == MODULE_STATE_LIVE;
2390 	mutex_unlock(&module_mutex);
2391 
2392 	return ret;
2393 }
2394 
2395 /* Call module constructors. */
2396 static void do_mod_ctors(struct module *mod)
2397 {
2398 #ifdef CONFIG_CONSTRUCTORS
2399 	unsigned long i;
2400 
2401 	for (i = 0; i < mod->num_ctors; i++)
2402 		mod->ctors[i]();
2403 #endif
2404 }
2405 
2406 /* For freeing module_init on success, in case kallsyms traversing */
2407 struct mod_initfree {
2408 	struct llist_node node;
2409 	void *module_init;
2410 };
2411 
2412 static void do_free_init(struct work_struct *w)
2413 {
2414 	struct llist_node *pos, *n, *list;
2415 	struct mod_initfree *initfree;
2416 
2417 	list = llist_del_all(&init_free_list);
2418 
2419 	synchronize_rcu();
2420 
2421 	llist_for_each_safe(pos, n, list) {
2422 		initfree = container_of(pos, struct mod_initfree, node);
2423 		module_memfree(initfree->module_init);
2424 		kfree(initfree);
2425 	}
2426 }
2427 
2428 #undef MODULE_PARAM_PREFIX
2429 #define MODULE_PARAM_PREFIX "module."
2430 /* Default value for module->async_probe_requested */
2431 static bool async_probe;
2432 module_param(async_probe, bool, 0644);
2433 
2434 /*
2435  * This is where the real work happens.
2436  *
2437  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2438  * helper command 'lx-symbols'.
2439  */
2440 static noinline int do_init_module(struct module *mod)
2441 {
2442 	int ret = 0;
2443 	struct mod_initfree *freeinit;
2444 
2445 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2446 	if (!freeinit) {
2447 		ret = -ENOMEM;
2448 		goto fail;
2449 	}
2450 	freeinit->module_init = mod->init_layout.base;
2451 
2452 	do_mod_ctors(mod);
2453 	/* Start the module */
2454 	if (mod->init != NULL)
2455 		ret = do_one_initcall(mod->init);
2456 	if (ret < 0) {
2457 		goto fail_free_freeinit;
2458 	}
2459 	if (ret > 0) {
2460 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2461 			"follow 0/-E convention\n"
2462 			"%s: loading module anyway...\n",
2463 			__func__, mod->name, ret, __func__);
2464 		dump_stack();
2465 	}
2466 
2467 	/* Now it's a first class citizen! */
2468 	mod->state = MODULE_STATE_LIVE;
2469 	blocking_notifier_call_chain(&module_notify_list,
2470 				     MODULE_STATE_LIVE, mod);
2471 
2472 	/* Delay uevent until module has finished its init routine */
2473 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2474 
2475 	/*
2476 	 * We need to finish all async code before the module init sequence
2477 	 * is done. This has potential to deadlock if synchronous module
2478 	 * loading is requested from async (which is not allowed!).
2479 	 *
2480 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2481 	 * request_module() from async workers") for more details.
2482 	 */
2483 	if (!mod->async_probe_requested)
2484 		async_synchronize_full();
2485 
2486 	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
2487 			mod->init_layout.size);
2488 	mutex_lock(&module_mutex);
2489 	/* Drop initial reference. */
2490 	module_put(mod);
2491 	trim_init_extable(mod);
2492 #ifdef CONFIG_KALLSYMS
2493 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
2494 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2495 #endif
2496 	module_enable_ro(mod, true);
2497 	mod_tree_remove_init(mod);
2498 	module_arch_freeing_init(mod);
2499 	mod->init_layout.base = NULL;
2500 	mod->init_layout.size = 0;
2501 	mod->init_layout.ro_size = 0;
2502 	mod->init_layout.ro_after_init_size = 0;
2503 	mod->init_layout.text_size = 0;
2504 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2505 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
2506 	mod->btf_data = NULL;
2507 #endif
2508 	/*
2509 	 * We want to free module_init, but be aware that kallsyms may be
2510 	 * walking this with preempt disabled.  In all the failure paths, we
2511 	 * call synchronize_rcu(), but we don't want to slow down the success
2512 	 * path. module_memfree() cannot be called in an interrupt, so do the
2513 	 * work and call synchronize_rcu() in a work queue.
2514 	 *
2515 	 * Note that module_alloc() on most architectures creates W+X page
2516 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
2517 	 * code such as mark_rodata_ro() which depends on those mappings to
2518 	 * be cleaned up needs to sync with the queued work - ie
2519 	 * rcu_barrier()
2520 	 */
2521 	if (llist_add(&freeinit->node, &init_free_list))
2522 		schedule_work(&init_free_wq);
2523 
2524 	mutex_unlock(&module_mutex);
2525 	wake_up_all(&module_wq);
2526 
2527 	return 0;
2528 
2529 fail_free_freeinit:
2530 	kfree(freeinit);
2531 fail:
2532 	/* Try to protect us from buggy refcounters. */
2533 	mod->state = MODULE_STATE_GOING;
2534 	synchronize_rcu();
2535 	module_put(mod);
2536 	blocking_notifier_call_chain(&module_notify_list,
2537 				     MODULE_STATE_GOING, mod);
2538 	klp_module_going(mod);
2539 	ftrace_release_mod(mod);
2540 	free_module(mod);
2541 	wake_up_all(&module_wq);
2542 	return ret;
2543 }
2544 
2545 static int may_init_module(void)
2546 {
2547 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
2548 		return -EPERM;
2549 
2550 	return 0;
2551 }
2552 
2553 /*
2554  * We try to place it in the list now to make sure it's unique before
2555  * we dedicate too many resources.  In particular, temporary percpu
2556  * memory exhaustion.
2557  */
2558 static int add_unformed_module(struct module *mod)
2559 {
2560 	int err;
2561 	struct module *old;
2562 
2563 	mod->state = MODULE_STATE_UNFORMED;
2564 
2565 again:
2566 	mutex_lock(&module_mutex);
2567 	old = find_module_all(mod->name, strlen(mod->name), true);
2568 	if (old != NULL) {
2569 		if (old->state != MODULE_STATE_LIVE) {
2570 			/* Wait in case it fails to load. */
2571 			mutex_unlock(&module_mutex);
2572 			err = wait_event_interruptible(module_wq,
2573 					       finished_loading(mod->name));
2574 			if (err)
2575 				goto out_unlocked;
2576 			goto again;
2577 		}
2578 		err = -EEXIST;
2579 		goto out;
2580 	}
2581 	mod_update_bounds(mod);
2582 	list_add_rcu(&mod->list, &modules);
2583 	mod_tree_insert(mod);
2584 	err = 0;
2585 
2586 out:
2587 	mutex_unlock(&module_mutex);
2588 out_unlocked:
2589 	return err;
2590 }
2591 
2592 static int complete_formation(struct module *mod, struct load_info *info)
2593 {
2594 	int err;
2595 
2596 	mutex_lock(&module_mutex);
2597 
2598 	/* Find duplicate symbols (must be called under lock). */
2599 	err = verify_exported_symbols(mod);
2600 	if (err < 0)
2601 		goto out;
2602 
2603 	/* These rely on module_mutex for list integrity. */
2604 	module_bug_finalize(info->hdr, info->sechdrs, mod);
2605 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
2606 
2607 	if (module_check_misalignment(mod))
2608 		goto out_misaligned;
2609 
2610 	module_enable_ro(mod, false);
2611 	module_enable_nx(mod);
2612 	module_enable_x(mod);
2613 
2614 	/*
2615 	 * Mark state as coming so strong_try_module_get() ignores us,
2616 	 * but kallsyms etc. can see us.
2617 	 */
2618 	mod->state = MODULE_STATE_COMING;
2619 	mutex_unlock(&module_mutex);
2620 
2621 	return 0;
2622 
2623 out_misaligned:
2624 	err = -EINVAL;
2625 out:
2626 	mutex_unlock(&module_mutex);
2627 	return err;
2628 }
2629 
2630 static int prepare_coming_module(struct module *mod)
2631 {
2632 	int err;
2633 
2634 	ftrace_module_enable(mod);
2635 	err = klp_module_coming(mod);
2636 	if (err)
2637 		return err;
2638 
2639 	err = blocking_notifier_call_chain_robust(&module_notify_list,
2640 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2641 	err = notifier_to_errno(err);
2642 	if (err)
2643 		klp_module_going(mod);
2644 
2645 	return err;
2646 }
2647 
2648 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2649 				   void *arg)
2650 {
2651 	struct module *mod = arg;
2652 	int ret;
2653 
2654 	if (strcmp(param, "async_probe") == 0) {
2655 		if (strtobool(val, &mod->async_probe_requested))
2656 			mod->async_probe_requested = true;
2657 		return 0;
2658 	}
2659 
2660 	/* Check for magic 'dyndbg' arg */
2661 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2662 	if (ret != 0)
2663 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2664 	return 0;
2665 }
2666 
2667 /*
2668  * Allocate and load the module: note that size of section 0 is always
2669  * zero, and we rely on this for optional sections.
2670  */
2671 static int load_module(struct load_info *info, const char __user *uargs,
2672 		       int flags)
2673 {
2674 	struct module *mod;
2675 	long err = 0;
2676 	char *after_dashes;
2677 
2678 	/*
2679 	 * Do the signature check (if any) first. All that
2680 	 * the signature check needs is info->len, it does
2681 	 * not need any of the section info. That can be
2682 	 * set up later. This will minimize the chances
2683 	 * of a corrupt module causing problems before
2684 	 * we even get to the signature check.
2685 	 *
2686 	 * The check will also adjust info->len by stripping
2687 	 * off the sig length at the end of the module, making
2688 	 * checks against info->len more correct.
2689 	 */
2690 	err = module_sig_check(info, flags);
2691 	if (err)
2692 		goto free_copy;
2693 
2694 	/*
2695 	 * Do basic sanity checks against the ELF header and
2696 	 * sections.
2697 	 */
2698 	err = elf_validity_check(info);
2699 	if (err)
2700 		goto free_copy;
2701 
2702 	/*
2703 	 * Everything checks out, so set up the section info
2704 	 * in the info structure.
2705 	 */
2706 	err = setup_load_info(info, flags);
2707 	if (err)
2708 		goto free_copy;
2709 
2710 	/*
2711 	 * Now that we know we have the correct module name, check
2712 	 * if it's blacklisted.
2713 	 */
2714 	if (blacklisted(info->name)) {
2715 		err = -EPERM;
2716 		pr_err("Module %s is blacklisted\n", info->name);
2717 		goto free_copy;
2718 	}
2719 
2720 	err = rewrite_section_headers(info, flags);
2721 	if (err)
2722 		goto free_copy;
2723 
2724 	/* Check module struct version now, before we try to use module. */
2725 	if (!check_modstruct_version(info, info->mod)) {
2726 		err = -ENOEXEC;
2727 		goto free_copy;
2728 	}
2729 
2730 	/* Figure out module layout, and allocate all the memory. */
2731 	mod = layout_and_allocate(info, flags);
2732 	if (IS_ERR(mod)) {
2733 		err = PTR_ERR(mod);
2734 		goto free_copy;
2735 	}
2736 
2737 	audit_log_kern_module(mod->name);
2738 
2739 	/* Reserve our place in the list. */
2740 	err = add_unformed_module(mod);
2741 	if (err)
2742 		goto free_module;
2743 
2744 #ifdef CONFIG_MODULE_SIG
2745 	mod->sig_ok = info->sig_ok;
2746 	if (!mod->sig_ok) {
2747 		pr_notice_once("%s: module verification failed: signature "
2748 			       "and/or required key missing - tainting "
2749 			       "kernel\n", mod->name);
2750 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2751 	}
2752 #endif
2753 
2754 	/* To avoid stressing percpu allocator, do this once we're unique. */
2755 	err = percpu_modalloc(mod, info);
2756 	if (err)
2757 		goto unlink_mod;
2758 
2759 	/* Now module is in final location, initialize linked lists, etc. */
2760 	err = module_unload_init(mod);
2761 	if (err)
2762 		goto unlink_mod;
2763 
2764 	init_param_lock(mod);
2765 
2766 	/*
2767 	 * Now we've got everything in the final locations, we can
2768 	 * find optional sections.
2769 	 */
2770 	err = find_module_sections(mod, info);
2771 	if (err)
2772 		goto free_unload;
2773 
2774 	err = check_module_license_and_versions(mod);
2775 	if (err)
2776 		goto free_unload;
2777 
2778 	/* Set up MODINFO_ATTR fields */
2779 	setup_modinfo(mod, info);
2780 
2781 	/* Fix up syms, so that st_value is a pointer to location. */
2782 	err = simplify_symbols(mod, info);
2783 	if (err < 0)
2784 		goto free_modinfo;
2785 
2786 	err = apply_relocations(mod, info);
2787 	if (err < 0)
2788 		goto free_modinfo;
2789 
2790 	err = post_relocation(mod, info);
2791 	if (err < 0)
2792 		goto free_modinfo;
2793 
2794 	flush_module_icache(mod);
2795 
2796 	/* Now copy in args */
2797 	mod->args = strndup_user(uargs, ~0UL >> 1);
2798 	if (IS_ERR(mod->args)) {
2799 		err = PTR_ERR(mod->args);
2800 		goto free_arch_cleanup;
2801 	}
2802 
2803 	init_build_id(mod, info);
2804 	dynamic_debug_setup(mod, &info->dyndbg);
2805 
2806 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2807 	ftrace_module_init(mod);
2808 
2809 	/* Finally it's fully formed, ready to start executing. */
2810 	err = complete_formation(mod, info);
2811 	if (err)
2812 		goto ddebug_cleanup;
2813 
2814 	err = prepare_coming_module(mod);
2815 	if (err)
2816 		goto bug_cleanup;
2817 
2818 	mod->async_probe_requested = async_probe;
2819 
2820 	/* Module is ready to execute: parsing args may do that. */
2821 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2822 				  -32768, 32767, mod,
2823 				  unknown_module_param_cb);
2824 	if (IS_ERR(after_dashes)) {
2825 		err = PTR_ERR(after_dashes);
2826 		goto coming_cleanup;
2827 	} else if (after_dashes) {
2828 		pr_warn("%s: parameters '%s' after `--' ignored\n",
2829 		       mod->name, after_dashes);
2830 	}
2831 
2832 	/* Link in to sysfs. */
2833 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
2834 	if (err < 0)
2835 		goto coming_cleanup;
2836 
2837 	if (is_livepatch_module(mod)) {
2838 		err = copy_module_elf(mod, info);
2839 		if (err < 0)
2840 			goto sysfs_cleanup;
2841 	}
2842 
2843 	/* Get rid of temporary copy. */
2844 	free_copy(info, flags);
2845 
2846 	/* Done! */
2847 	trace_module_load(mod);
2848 
2849 	return do_init_module(mod);
2850 
2851  sysfs_cleanup:
2852 	mod_sysfs_teardown(mod);
2853  coming_cleanup:
2854 	mod->state = MODULE_STATE_GOING;
2855 	destroy_params(mod->kp, mod->num_kp);
2856 	blocking_notifier_call_chain(&module_notify_list,
2857 				     MODULE_STATE_GOING, mod);
2858 	klp_module_going(mod);
2859  bug_cleanup:
2860 	mod->state = MODULE_STATE_GOING;
2861 	/* module_bug_cleanup needs module_mutex protection */
2862 	mutex_lock(&module_mutex);
2863 	module_bug_cleanup(mod);
2864 	mutex_unlock(&module_mutex);
2865 
2866  ddebug_cleanup:
2867 	ftrace_release_mod(mod);
2868 	dynamic_debug_remove(mod, &info->dyndbg);
2869 	synchronize_rcu();
2870 	kfree(mod->args);
2871  free_arch_cleanup:
2872 	module_arch_cleanup(mod);
2873  free_modinfo:
2874 	free_modinfo(mod);
2875  free_unload:
2876 	module_unload_free(mod);
2877  unlink_mod:
2878 	mutex_lock(&module_mutex);
2879 	/* Unlink carefully: kallsyms could be walking list. */
2880 	list_del_rcu(&mod->list);
2881 	mod_tree_remove(mod);
2882 	wake_up_all(&module_wq);
2883 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
2884 	synchronize_rcu();
2885 	mutex_unlock(&module_mutex);
2886  free_module:
2887 	/* Free lock-classes; relies on the preceding sync_rcu() */
2888 	lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
2889 
2890 	module_deallocate(mod, info);
2891  free_copy:
2892 	free_copy(info, flags);
2893 	return err;
2894 }
2895 
2896 SYSCALL_DEFINE3(init_module, void __user *, umod,
2897 		unsigned long, len, const char __user *, uargs)
2898 {
2899 	int err;
2900 	struct load_info info = { };
2901 
2902 	err = may_init_module();
2903 	if (err)
2904 		return err;
2905 
2906 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
2907 	       umod, len, uargs);
2908 
2909 	err = copy_module_from_user(umod, len, &info);
2910 	if (err)
2911 		return err;
2912 
2913 	return load_module(&info, uargs, 0);
2914 }
2915 
2916 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
2917 {
2918 	struct load_info info = { };
2919 	void *buf = NULL;
2920 	int len;
2921 	int err;
2922 
2923 	err = may_init_module();
2924 	if (err)
2925 		return err;
2926 
2927 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
2928 
2929 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
2930 		      |MODULE_INIT_IGNORE_VERMAGIC
2931 		      |MODULE_INIT_COMPRESSED_FILE))
2932 		return -EINVAL;
2933 
2934 	len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL,
2935 				       READING_MODULE);
2936 	if (len < 0)
2937 		return len;
2938 
2939 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
2940 		err = module_decompress(&info, buf, len);
2941 		vfree(buf); /* compressed data is no longer needed */
2942 		if (err)
2943 			return err;
2944 	} else {
2945 		info.hdr = buf;
2946 		info.len = len;
2947 	}
2948 
2949 	return load_module(&info, uargs, flags);
2950 }
2951 
2952 static inline int within(unsigned long addr, void *start, unsigned long size)
2953 {
2954 	return ((void *)addr >= start && (void *)addr < start + size);
2955 }
2956 
2957 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
2958 char *module_flags(struct module *mod, char *buf, bool show_state)
2959 {
2960 	int bx = 0;
2961 
2962 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
2963 	if (!mod->taints && !show_state)
2964 		goto out;
2965 	if (mod->taints ||
2966 	    mod->state == MODULE_STATE_GOING ||
2967 	    mod->state == MODULE_STATE_COMING) {
2968 		buf[bx++] = '(';
2969 		bx += module_flags_taint(mod->taints, buf + bx);
2970 		/* Show a - for module-is-being-unloaded */
2971 		if (mod->state == MODULE_STATE_GOING && show_state)
2972 			buf[bx++] = '-';
2973 		/* Show a + for module-is-being-loaded */
2974 		if (mod->state == MODULE_STATE_COMING && show_state)
2975 			buf[bx++] = '+';
2976 		buf[bx++] = ')';
2977 	}
2978 out:
2979 	buf[bx] = '\0';
2980 
2981 	return buf;
2982 }
2983 
2984 /* Given an address, look for it in the module exception tables. */
2985 const struct exception_table_entry *search_module_extables(unsigned long addr)
2986 {
2987 	const struct exception_table_entry *e = NULL;
2988 	struct module *mod;
2989 
2990 	preempt_disable();
2991 	mod = __module_address(addr);
2992 	if (!mod)
2993 		goto out;
2994 
2995 	if (!mod->num_exentries)
2996 		goto out;
2997 
2998 	e = search_extable(mod->extable,
2999 			   mod->num_exentries,
3000 			   addr);
3001 out:
3002 	preempt_enable();
3003 
3004 	/*
3005 	 * Now, if we found one, we are running inside it now, hence
3006 	 * we cannot unload the module, hence no refcnt needed.
3007 	 */
3008 	return e;
3009 }
3010 
3011 /**
3012  * is_module_address() - is this address inside a module?
3013  * @addr: the address to check.
3014  *
3015  * See is_module_text_address() if you simply want to see if the address
3016  * is code (not data).
3017  */
3018 bool is_module_address(unsigned long addr)
3019 {
3020 	bool ret;
3021 
3022 	preempt_disable();
3023 	ret = __module_address(addr) != NULL;
3024 	preempt_enable();
3025 
3026 	return ret;
3027 }
3028 
3029 /**
3030  * __module_address() - get the module which contains an address.
3031  * @addr: the address.
3032  *
3033  * Must be called with preempt disabled or module mutex held so that
3034  * module doesn't get freed during this.
3035  */
3036 struct module *__module_address(unsigned long addr)
3037 {
3038 	struct module *mod;
3039 	struct mod_tree_root *tree;
3040 
3041 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3042 		tree = &mod_tree;
3043 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3044 	else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max)
3045 		tree = &mod_data_tree;
3046 #endif
3047 	else
3048 		return NULL;
3049 
3050 	module_assert_mutex_or_preempt();
3051 
3052 	mod = mod_find(addr, tree);
3053 	if (mod) {
3054 		BUG_ON(!within_module(addr, mod));
3055 		if (mod->state == MODULE_STATE_UNFORMED)
3056 			mod = NULL;
3057 	}
3058 	return mod;
3059 }
3060 
3061 /**
3062  * is_module_text_address() - is this address inside module code?
3063  * @addr: the address to check.
3064  *
3065  * See is_module_address() if you simply want to see if the address is
3066  * anywhere in a module.  See kernel_text_address() for testing if an
3067  * address corresponds to kernel or module code.
3068  */
3069 bool is_module_text_address(unsigned long addr)
3070 {
3071 	bool ret;
3072 
3073 	preempt_disable();
3074 	ret = __module_text_address(addr) != NULL;
3075 	preempt_enable();
3076 
3077 	return ret;
3078 }
3079 
3080 /**
3081  * __module_text_address() - get the module whose code contains an address.
3082  * @addr: the address.
3083  *
3084  * Must be called with preempt disabled or module mutex held so that
3085  * module doesn't get freed during this.
3086  */
3087 struct module *__module_text_address(unsigned long addr)
3088 {
3089 	struct module *mod = __module_address(addr);
3090 	if (mod) {
3091 		/* Make sure it's within the text section. */
3092 		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
3093 		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
3094 			mod = NULL;
3095 	}
3096 	return mod;
3097 }
3098 
3099 /* Don't grab lock, we're oopsing. */
3100 void print_modules(void)
3101 {
3102 	struct module *mod;
3103 	char buf[MODULE_FLAGS_BUF_SIZE];
3104 
3105 	printk(KERN_DEFAULT "Modules linked in:");
3106 	/* Most callers should already have preempt disabled, but make sure */
3107 	preempt_disable();
3108 	list_for_each_entry_rcu(mod, &modules, list) {
3109 		if (mod->state == MODULE_STATE_UNFORMED)
3110 			continue;
3111 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3112 	}
3113 
3114 	print_unloaded_tainted_modules();
3115 	preempt_enable();
3116 	if (last_unloaded_module.name[0])
3117 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3118 			last_unloaded_module.taints);
3119 	pr_cont("\n");
3120 }
3121