1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 */ 6 7 #define INCLUDE_VERMAGIC 8 9 #include <linux/export.h> 10 #include <linux/extable.h> 11 #include <linux/moduleloader.h> 12 #include <linux/module_signature.h> 13 #include <linux/trace_events.h> 14 #include <linux/init.h> 15 #include <linux/kallsyms.h> 16 #include <linux/buildid.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/elf.h> 23 #include <linux/seq_file.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/rcupdate.h> 27 #include <linux/capability.h> 28 #include <linux/cpu.h> 29 #include <linux/moduleparam.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/vermagic.h> 33 #include <linux/notifier.h> 34 #include <linux/sched.h> 35 #include <linux/device.h> 36 #include <linux/string.h> 37 #include <linux/mutex.h> 38 #include <linux/rculist.h> 39 #include <linux/uaccess.h> 40 #include <asm/cacheflush.h> 41 #include <linux/set_memory.h> 42 #include <asm/mmu_context.h> 43 #include <linux/license.h> 44 #include <asm/sections.h> 45 #include <linux/tracepoint.h> 46 #include <linux/ftrace.h> 47 #include <linux/livepatch.h> 48 #include <linux/async.h> 49 #include <linux/percpu.h> 50 #include <linux/kmemleak.h> 51 #include <linux/jump_label.h> 52 #include <linux/pfn.h> 53 #include <linux/bsearch.h> 54 #include <linux/dynamic_debug.h> 55 #include <linux/audit.h> 56 #include <uapi/linux/module.h> 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/module.h> 61 62 /* 63 * Mutex protects: 64 * 1) List of modules (also safely readable with preempt_disable), 65 * 2) module_use links, 66 * 3) mod_tree.addr_min/mod_tree.addr_max. 67 * (delete and add uses RCU list operations). 68 */ 69 DEFINE_MUTEX(module_mutex); 70 LIST_HEAD(modules); 71 72 /* Work queue for freeing init sections in success case */ 73 static void do_free_init(struct work_struct *w); 74 static DECLARE_WORK(init_free_wq, do_free_init); 75 static LLIST_HEAD(init_free_list); 76 77 struct mod_tree_root mod_tree __cacheline_aligned = { 78 .addr_min = -1UL, 79 }; 80 81 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 82 struct mod_tree_root mod_data_tree __cacheline_aligned = { 83 .addr_min = -1UL, 84 }; 85 #endif 86 87 #define module_addr_min mod_tree.addr_min 88 #define module_addr_max mod_tree.addr_max 89 90 struct symsearch { 91 const struct kernel_symbol *start, *stop; 92 const s32 *crcs; 93 enum mod_license license; 94 }; 95 96 /* 97 * Bounds of module text, for speeding up __module_address. 98 * Protected by module_mutex. 99 */ 100 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree) 101 { 102 unsigned long min = (unsigned long)base; 103 unsigned long max = min + size; 104 105 if (min < tree->addr_min) 106 tree->addr_min = min; 107 if (max > tree->addr_max) 108 tree->addr_max = max; 109 } 110 111 static void mod_update_bounds(struct module *mod) 112 { 113 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree); 114 if (mod->init_layout.size) 115 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree); 116 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 117 __mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree); 118 #endif 119 } 120 121 /* Block module loading/unloading? */ 122 int modules_disabled = 0; 123 core_param(nomodule, modules_disabled, bint, 0); 124 125 /* Waiting for a module to finish initializing? */ 126 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 127 128 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 129 130 int register_module_notifier(struct notifier_block *nb) 131 { 132 return blocking_notifier_chain_register(&module_notify_list, nb); 133 } 134 EXPORT_SYMBOL(register_module_notifier); 135 136 int unregister_module_notifier(struct notifier_block *nb) 137 { 138 return blocking_notifier_chain_unregister(&module_notify_list, nb); 139 } 140 EXPORT_SYMBOL(unregister_module_notifier); 141 142 /* 143 * We require a truly strong try_module_get(): 0 means success. 144 * Otherwise an error is returned due to ongoing or failed 145 * initialization etc. 146 */ 147 static inline int strong_try_module_get(struct module *mod) 148 { 149 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 150 if (mod && mod->state == MODULE_STATE_COMING) 151 return -EBUSY; 152 if (try_module_get(mod)) 153 return 0; 154 else 155 return -ENOENT; 156 } 157 158 static inline void add_taint_module(struct module *mod, unsigned flag, 159 enum lockdep_ok lockdep_ok) 160 { 161 add_taint(flag, lockdep_ok); 162 set_bit(flag, &mod->taints); 163 } 164 165 /* 166 * A thread that wants to hold a reference to a module only while it 167 * is running can call this to safely exit. 168 */ 169 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 170 { 171 module_put(mod); 172 kthread_exit(code); 173 } 174 EXPORT_SYMBOL(__module_put_and_kthread_exit); 175 176 /* Find a module section: 0 means not found. */ 177 static unsigned int find_sec(const struct load_info *info, const char *name) 178 { 179 unsigned int i; 180 181 for (i = 1; i < info->hdr->e_shnum; i++) { 182 Elf_Shdr *shdr = &info->sechdrs[i]; 183 /* Alloc bit cleared means "ignore it." */ 184 if ((shdr->sh_flags & SHF_ALLOC) 185 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 186 return i; 187 } 188 return 0; 189 } 190 191 /* Find a module section, or NULL. */ 192 static void *section_addr(const struct load_info *info, const char *name) 193 { 194 /* Section 0 has sh_addr 0. */ 195 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 196 } 197 198 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 199 static void *section_objs(const struct load_info *info, 200 const char *name, 201 size_t object_size, 202 unsigned int *num) 203 { 204 unsigned int sec = find_sec(info, name); 205 206 /* Section 0 has sh_addr 0 and sh_size 0. */ 207 *num = info->sechdrs[sec].sh_size / object_size; 208 return (void *)info->sechdrs[sec].sh_addr; 209 } 210 211 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 212 static unsigned int find_any_sec(const struct load_info *info, const char *name) 213 { 214 unsigned int i; 215 216 for (i = 1; i < info->hdr->e_shnum; i++) { 217 Elf_Shdr *shdr = &info->sechdrs[i]; 218 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 219 return i; 220 } 221 return 0; 222 } 223 224 /* 225 * Find a module section, or NULL. Fill in number of "objects" in section. 226 * Ignores SHF_ALLOC flag. 227 */ 228 static __maybe_unused void *any_section_objs(const struct load_info *info, 229 const char *name, 230 size_t object_size, 231 unsigned int *num) 232 { 233 unsigned int sec = find_any_sec(info, name); 234 235 /* Section 0 has sh_addr 0 and sh_size 0. */ 236 *num = info->sechdrs[sec].sh_size / object_size; 237 return (void *)info->sechdrs[sec].sh_addr; 238 } 239 240 #ifndef CONFIG_MODVERSIONS 241 #define symversion(base, idx) NULL 242 #else 243 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 244 #endif 245 246 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 247 { 248 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 249 return offset_to_ptr(&sym->name_offset); 250 #else 251 return sym->name; 252 #endif 253 } 254 255 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 256 { 257 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 258 if (!sym->namespace_offset) 259 return NULL; 260 return offset_to_ptr(&sym->namespace_offset); 261 #else 262 return sym->namespace; 263 #endif 264 } 265 266 int cmp_name(const void *name, const void *sym) 267 { 268 return strcmp(name, kernel_symbol_name(sym)); 269 } 270 271 static bool find_exported_symbol_in_section(const struct symsearch *syms, 272 struct module *owner, 273 struct find_symbol_arg *fsa) 274 { 275 struct kernel_symbol *sym; 276 277 if (!fsa->gplok && syms->license == GPL_ONLY) 278 return false; 279 280 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 281 sizeof(struct kernel_symbol), cmp_name); 282 if (!sym) 283 return false; 284 285 fsa->owner = owner; 286 fsa->crc = symversion(syms->crcs, sym - syms->start); 287 fsa->sym = sym; 288 fsa->license = syms->license; 289 290 return true; 291 } 292 293 /* 294 * Find an exported symbol and return it, along with, (optional) crc and 295 * (optional) module which owns it. Needs preempt disabled or module_mutex. 296 */ 297 bool find_symbol(struct find_symbol_arg *fsa) 298 { 299 static const struct symsearch arr[] = { 300 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 301 NOT_GPL_ONLY }, 302 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 303 __start___kcrctab_gpl, 304 GPL_ONLY }, 305 }; 306 struct module *mod; 307 unsigned int i; 308 309 module_assert_mutex_or_preempt(); 310 311 for (i = 0; i < ARRAY_SIZE(arr); i++) 312 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 313 return true; 314 315 list_for_each_entry_rcu(mod, &modules, list, 316 lockdep_is_held(&module_mutex)) { 317 struct symsearch arr[] = { 318 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 319 NOT_GPL_ONLY }, 320 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 321 mod->gpl_crcs, 322 GPL_ONLY }, 323 }; 324 325 if (mod->state == MODULE_STATE_UNFORMED) 326 continue; 327 328 for (i = 0; i < ARRAY_SIZE(arr); i++) 329 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 330 return true; 331 } 332 333 pr_debug("Failed to find symbol %s\n", fsa->name); 334 return false; 335 } 336 337 /* 338 * Search for module by name: must hold module_mutex (or preempt disabled 339 * for read-only access). 340 */ 341 struct module *find_module_all(const char *name, size_t len, 342 bool even_unformed) 343 { 344 struct module *mod; 345 346 module_assert_mutex_or_preempt(); 347 348 list_for_each_entry_rcu(mod, &modules, list, 349 lockdep_is_held(&module_mutex)) { 350 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 351 continue; 352 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 353 return mod; 354 } 355 return NULL; 356 } 357 358 struct module *find_module(const char *name) 359 { 360 return find_module_all(name, strlen(name), false); 361 } 362 363 #ifdef CONFIG_SMP 364 365 static inline void __percpu *mod_percpu(struct module *mod) 366 { 367 return mod->percpu; 368 } 369 370 static int percpu_modalloc(struct module *mod, struct load_info *info) 371 { 372 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 373 unsigned long align = pcpusec->sh_addralign; 374 375 if (!pcpusec->sh_size) 376 return 0; 377 378 if (align > PAGE_SIZE) { 379 pr_warn("%s: per-cpu alignment %li > %li\n", 380 mod->name, align, PAGE_SIZE); 381 align = PAGE_SIZE; 382 } 383 384 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 385 if (!mod->percpu) { 386 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 387 mod->name, (unsigned long)pcpusec->sh_size); 388 return -ENOMEM; 389 } 390 mod->percpu_size = pcpusec->sh_size; 391 return 0; 392 } 393 394 static void percpu_modfree(struct module *mod) 395 { 396 free_percpu(mod->percpu); 397 } 398 399 static unsigned int find_pcpusec(struct load_info *info) 400 { 401 return find_sec(info, ".data..percpu"); 402 } 403 404 static void percpu_modcopy(struct module *mod, 405 const void *from, unsigned long size) 406 { 407 int cpu; 408 409 for_each_possible_cpu(cpu) 410 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 411 } 412 413 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 414 { 415 struct module *mod; 416 unsigned int cpu; 417 418 preempt_disable(); 419 420 list_for_each_entry_rcu(mod, &modules, list) { 421 if (mod->state == MODULE_STATE_UNFORMED) 422 continue; 423 if (!mod->percpu_size) 424 continue; 425 for_each_possible_cpu(cpu) { 426 void *start = per_cpu_ptr(mod->percpu, cpu); 427 void *va = (void *)addr; 428 429 if (va >= start && va < start + mod->percpu_size) { 430 if (can_addr) { 431 *can_addr = (unsigned long) (va - start); 432 *can_addr += (unsigned long) 433 per_cpu_ptr(mod->percpu, 434 get_boot_cpu_id()); 435 } 436 preempt_enable(); 437 return true; 438 } 439 } 440 } 441 442 preempt_enable(); 443 return false; 444 } 445 446 /** 447 * is_module_percpu_address() - test whether address is from module static percpu 448 * @addr: address to test 449 * 450 * Test whether @addr belongs to module static percpu area. 451 * 452 * Return: %true if @addr is from module static percpu area 453 */ 454 bool is_module_percpu_address(unsigned long addr) 455 { 456 return __is_module_percpu_address(addr, NULL); 457 } 458 459 #else /* ... !CONFIG_SMP */ 460 461 static inline void __percpu *mod_percpu(struct module *mod) 462 { 463 return NULL; 464 } 465 static int percpu_modalloc(struct module *mod, struct load_info *info) 466 { 467 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 468 if (info->sechdrs[info->index.pcpu].sh_size != 0) 469 return -ENOMEM; 470 return 0; 471 } 472 static inline void percpu_modfree(struct module *mod) 473 { 474 } 475 static unsigned int find_pcpusec(struct load_info *info) 476 { 477 return 0; 478 } 479 static inline void percpu_modcopy(struct module *mod, 480 const void *from, unsigned long size) 481 { 482 /* pcpusec should be 0, and size of that section should be 0. */ 483 BUG_ON(size != 0); 484 } 485 bool is_module_percpu_address(unsigned long addr) 486 { 487 return false; 488 } 489 490 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 491 { 492 return false; 493 } 494 495 #endif /* CONFIG_SMP */ 496 497 #define MODINFO_ATTR(field) \ 498 static void setup_modinfo_##field(struct module *mod, const char *s) \ 499 { \ 500 mod->field = kstrdup(s, GFP_KERNEL); \ 501 } \ 502 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \ 503 struct module_kobject *mk, char *buffer) \ 504 { \ 505 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 506 } \ 507 static int modinfo_##field##_exists(struct module *mod) \ 508 { \ 509 return mod->field != NULL; \ 510 } \ 511 static void free_modinfo_##field(struct module *mod) \ 512 { \ 513 kfree(mod->field); \ 514 mod->field = NULL; \ 515 } \ 516 static struct module_attribute modinfo_##field = { \ 517 .attr = { .name = __stringify(field), .mode = 0444 }, \ 518 .show = show_modinfo_##field, \ 519 .setup = setup_modinfo_##field, \ 520 .test = modinfo_##field##_exists, \ 521 .free = free_modinfo_##field, \ 522 }; 523 524 MODINFO_ATTR(version); 525 MODINFO_ATTR(srcversion); 526 527 static char last_unloaded_module[MODULE_NAME_LEN+1]; 528 529 #ifdef CONFIG_MODULE_UNLOAD 530 531 EXPORT_TRACEPOINT_SYMBOL(module_get); 532 533 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 534 #define MODULE_REF_BASE 1 535 536 /* Init the unload section of the module. */ 537 static int module_unload_init(struct module *mod) 538 { 539 /* 540 * Initialize reference counter to MODULE_REF_BASE. 541 * refcnt == 0 means module is going. 542 */ 543 atomic_set(&mod->refcnt, MODULE_REF_BASE); 544 545 INIT_LIST_HEAD(&mod->source_list); 546 INIT_LIST_HEAD(&mod->target_list); 547 548 /* Hold reference count during initialization. */ 549 atomic_inc(&mod->refcnt); 550 551 return 0; 552 } 553 554 /* Does a already use b? */ 555 static int already_uses(struct module *a, struct module *b) 556 { 557 struct module_use *use; 558 559 list_for_each_entry(use, &b->source_list, source_list) { 560 if (use->source == a) { 561 pr_debug("%s uses %s!\n", a->name, b->name); 562 return 1; 563 } 564 } 565 pr_debug("%s does not use %s!\n", a->name, b->name); 566 return 0; 567 } 568 569 /* 570 * Module a uses b 571 * - we add 'a' as a "source", 'b' as a "target" of module use 572 * - the module_use is added to the list of 'b' sources (so 573 * 'b' can walk the list to see who sourced them), and of 'a' 574 * targets (so 'a' can see what modules it targets). 575 */ 576 static int add_module_usage(struct module *a, struct module *b) 577 { 578 struct module_use *use; 579 580 pr_debug("Allocating new usage for %s.\n", a->name); 581 use = kmalloc(sizeof(*use), GFP_ATOMIC); 582 if (!use) 583 return -ENOMEM; 584 585 use->source = a; 586 use->target = b; 587 list_add(&use->source_list, &b->source_list); 588 list_add(&use->target_list, &a->target_list); 589 return 0; 590 } 591 592 /* Module a uses b: caller needs module_mutex() */ 593 static int ref_module(struct module *a, struct module *b) 594 { 595 int err; 596 597 if (b == NULL || already_uses(a, b)) 598 return 0; 599 600 /* If module isn't available, we fail. */ 601 err = strong_try_module_get(b); 602 if (err) 603 return err; 604 605 err = add_module_usage(a, b); 606 if (err) { 607 module_put(b); 608 return err; 609 } 610 return 0; 611 } 612 613 /* Clear the unload stuff of the module. */ 614 static void module_unload_free(struct module *mod) 615 { 616 struct module_use *use, *tmp; 617 618 mutex_lock(&module_mutex); 619 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 620 struct module *i = use->target; 621 pr_debug("%s unusing %s\n", mod->name, i->name); 622 module_put(i); 623 list_del(&use->source_list); 624 list_del(&use->target_list); 625 kfree(use); 626 } 627 mutex_unlock(&module_mutex); 628 } 629 630 #ifdef CONFIG_MODULE_FORCE_UNLOAD 631 static inline int try_force_unload(unsigned int flags) 632 { 633 int ret = (flags & O_TRUNC); 634 if (ret) 635 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 636 return ret; 637 } 638 #else 639 static inline int try_force_unload(unsigned int flags) 640 { 641 return 0; 642 } 643 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 644 645 /* Try to release refcount of module, 0 means success. */ 646 static int try_release_module_ref(struct module *mod) 647 { 648 int ret; 649 650 /* Try to decrement refcnt which we set at loading */ 651 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 652 BUG_ON(ret < 0); 653 if (ret) 654 /* Someone can put this right now, recover with checking */ 655 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 656 657 return ret; 658 } 659 660 static int try_stop_module(struct module *mod, int flags, int *forced) 661 { 662 /* If it's not unused, quit unless we're forcing. */ 663 if (try_release_module_ref(mod) != 0) { 664 *forced = try_force_unload(flags); 665 if (!(*forced)) 666 return -EWOULDBLOCK; 667 } 668 669 /* Mark it as dying. */ 670 mod->state = MODULE_STATE_GOING; 671 672 return 0; 673 } 674 675 /** 676 * module_refcount() - return the refcount or -1 if unloading 677 * @mod: the module we're checking 678 * 679 * Return: 680 * -1 if the module is in the process of unloading 681 * otherwise the number of references in the kernel to the module 682 */ 683 int module_refcount(struct module *mod) 684 { 685 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 686 } 687 EXPORT_SYMBOL(module_refcount); 688 689 /* This exists whether we can unload or not */ 690 static void free_module(struct module *mod); 691 692 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 693 unsigned int, flags) 694 { 695 struct module *mod; 696 char name[MODULE_NAME_LEN]; 697 int ret, forced = 0; 698 699 if (!capable(CAP_SYS_MODULE) || modules_disabled) 700 return -EPERM; 701 702 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 703 return -EFAULT; 704 name[MODULE_NAME_LEN-1] = '\0'; 705 706 audit_log_kern_module(name); 707 708 if (mutex_lock_interruptible(&module_mutex) != 0) 709 return -EINTR; 710 711 mod = find_module(name); 712 if (!mod) { 713 ret = -ENOENT; 714 goto out; 715 } 716 717 if (!list_empty(&mod->source_list)) { 718 /* Other modules depend on us: get rid of them first. */ 719 ret = -EWOULDBLOCK; 720 goto out; 721 } 722 723 /* Doing init or already dying? */ 724 if (mod->state != MODULE_STATE_LIVE) { 725 /* FIXME: if (force), slam module count damn the torpedoes */ 726 pr_debug("%s already dying\n", mod->name); 727 ret = -EBUSY; 728 goto out; 729 } 730 731 /* If it has an init func, it must have an exit func to unload */ 732 if (mod->init && !mod->exit) { 733 forced = try_force_unload(flags); 734 if (!forced) { 735 /* This module can't be removed */ 736 ret = -EBUSY; 737 goto out; 738 } 739 } 740 741 ret = try_stop_module(mod, flags, &forced); 742 if (ret != 0) 743 goto out; 744 745 mutex_unlock(&module_mutex); 746 /* Final destruction now no one is using it. */ 747 if (mod->exit != NULL) 748 mod->exit(); 749 blocking_notifier_call_chain(&module_notify_list, 750 MODULE_STATE_GOING, mod); 751 klp_module_going(mod); 752 ftrace_release_mod(mod); 753 754 async_synchronize_full(); 755 756 /* Store the name of the last unloaded module for diagnostic purposes */ 757 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module)); 758 759 free_module(mod); 760 /* someone could wait for the module in add_unformed_module() */ 761 wake_up_all(&module_wq); 762 return 0; 763 out: 764 mutex_unlock(&module_mutex); 765 return ret; 766 } 767 768 void __symbol_put(const char *symbol) 769 { 770 struct find_symbol_arg fsa = { 771 .name = symbol, 772 .gplok = true, 773 }; 774 775 preempt_disable(); 776 BUG_ON(!find_symbol(&fsa)); 777 module_put(fsa.owner); 778 preempt_enable(); 779 } 780 EXPORT_SYMBOL(__symbol_put); 781 782 /* Note this assumes addr is a function, which it currently always is. */ 783 void symbol_put_addr(void *addr) 784 { 785 struct module *modaddr; 786 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 787 788 if (core_kernel_text(a)) 789 return; 790 791 /* 792 * Even though we hold a reference on the module; we still need to 793 * disable preemption in order to safely traverse the data structure. 794 */ 795 preempt_disable(); 796 modaddr = __module_text_address(a); 797 BUG_ON(!modaddr); 798 module_put(modaddr); 799 preempt_enable(); 800 } 801 EXPORT_SYMBOL_GPL(symbol_put_addr); 802 803 static ssize_t show_refcnt(struct module_attribute *mattr, 804 struct module_kobject *mk, char *buffer) 805 { 806 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 807 } 808 809 static struct module_attribute modinfo_refcnt = 810 __ATTR(refcnt, 0444, show_refcnt, NULL); 811 812 void __module_get(struct module *module) 813 { 814 if (module) { 815 preempt_disable(); 816 atomic_inc(&module->refcnt); 817 trace_module_get(module, _RET_IP_); 818 preempt_enable(); 819 } 820 } 821 EXPORT_SYMBOL(__module_get); 822 823 bool try_module_get(struct module *module) 824 { 825 bool ret = true; 826 827 if (module) { 828 preempt_disable(); 829 /* Note: here, we can fail to get a reference */ 830 if (likely(module_is_live(module) && 831 atomic_inc_not_zero(&module->refcnt) != 0)) 832 trace_module_get(module, _RET_IP_); 833 else 834 ret = false; 835 836 preempt_enable(); 837 } 838 return ret; 839 } 840 EXPORT_SYMBOL(try_module_get); 841 842 void module_put(struct module *module) 843 { 844 int ret; 845 846 if (module) { 847 preempt_disable(); 848 ret = atomic_dec_if_positive(&module->refcnt); 849 WARN_ON(ret < 0); /* Failed to put refcount */ 850 trace_module_put(module, _RET_IP_); 851 preempt_enable(); 852 } 853 } 854 EXPORT_SYMBOL(module_put); 855 856 #else /* !CONFIG_MODULE_UNLOAD */ 857 static inline void module_unload_free(struct module *mod) 858 { 859 } 860 861 static int ref_module(struct module *a, struct module *b) 862 { 863 return strong_try_module_get(b); 864 } 865 866 static inline int module_unload_init(struct module *mod) 867 { 868 return 0; 869 } 870 #endif /* CONFIG_MODULE_UNLOAD */ 871 872 size_t module_flags_taint(unsigned long taints, char *buf) 873 { 874 size_t l = 0; 875 int i; 876 877 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 878 if (taint_flags[i].module && test_bit(i, &taints)) 879 buf[l++] = taint_flags[i].c_true; 880 } 881 882 return l; 883 } 884 885 static ssize_t show_initstate(struct module_attribute *mattr, 886 struct module_kobject *mk, char *buffer) 887 { 888 const char *state = "unknown"; 889 890 switch (mk->mod->state) { 891 case MODULE_STATE_LIVE: 892 state = "live"; 893 break; 894 case MODULE_STATE_COMING: 895 state = "coming"; 896 break; 897 case MODULE_STATE_GOING: 898 state = "going"; 899 break; 900 default: 901 BUG(); 902 } 903 return sprintf(buffer, "%s\n", state); 904 } 905 906 static struct module_attribute modinfo_initstate = 907 __ATTR(initstate, 0444, show_initstate, NULL); 908 909 static ssize_t store_uevent(struct module_attribute *mattr, 910 struct module_kobject *mk, 911 const char *buffer, size_t count) 912 { 913 int rc; 914 915 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 916 return rc ? rc : count; 917 } 918 919 struct module_attribute module_uevent = 920 __ATTR(uevent, 0200, NULL, store_uevent); 921 922 static ssize_t show_coresize(struct module_attribute *mattr, 923 struct module_kobject *mk, char *buffer) 924 { 925 return sprintf(buffer, "%u\n", mk->mod->core_layout.size); 926 } 927 928 static struct module_attribute modinfo_coresize = 929 __ATTR(coresize, 0444, show_coresize, NULL); 930 931 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 932 static ssize_t show_datasize(struct module_attribute *mattr, 933 struct module_kobject *mk, char *buffer) 934 { 935 return sprintf(buffer, "%u\n", mk->mod->data_layout.size); 936 } 937 938 static struct module_attribute modinfo_datasize = 939 __ATTR(datasize, 0444, show_datasize, NULL); 940 #endif 941 942 static ssize_t show_initsize(struct module_attribute *mattr, 943 struct module_kobject *mk, char *buffer) 944 { 945 return sprintf(buffer, "%u\n", mk->mod->init_layout.size); 946 } 947 948 static struct module_attribute modinfo_initsize = 949 __ATTR(initsize, 0444, show_initsize, NULL); 950 951 static ssize_t show_taint(struct module_attribute *mattr, 952 struct module_kobject *mk, char *buffer) 953 { 954 size_t l; 955 956 l = module_flags_taint(mk->mod->taints, buffer); 957 buffer[l++] = '\n'; 958 return l; 959 } 960 961 static struct module_attribute modinfo_taint = 962 __ATTR(taint, 0444, show_taint, NULL); 963 964 struct module_attribute *modinfo_attrs[] = { 965 &module_uevent, 966 &modinfo_version, 967 &modinfo_srcversion, 968 &modinfo_initstate, 969 &modinfo_coresize, 970 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 971 &modinfo_datasize, 972 #endif 973 &modinfo_initsize, 974 &modinfo_taint, 975 #ifdef CONFIG_MODULE_UNLOAD 976 &modinfo_refcnt, 977 #endif 978 NULL, 979 }; 980 981 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 982 983 static const char vermagic[] = VERMAGIC_STRING; 984 985 int try_to_force_load(struct module *mod, const char *reason) 986 { 987 #ifdef CONFIG_MODULE_FORCE_LOAD 988 if (!test_taint(TAINT_FORCED_MODULE)) 989 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 990 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 991 return 0; 992 #else 993 return -ENOEXEC; 994 #endif 995 } 996 997 static char *get_modinfo(const struct load_info *info, const char *tag); 998 static char *get_next_modinfo(const struct load_info *info, const char *tag, 999 char *prev); 1000 1001 static int verify_namespace_is_imported(const struct load_info *info, 1002 const struct kernel_symbol *sym, 1003 struct module *mod) 1004 { 1005 const char *namespace; 1006 char *imported_namespace; 1007 1008 namespace = kernel_symbol_namespace(sym); 1009 if (namespace && namespace[0]) { 1010 imported_namespace = get_modinfo(info, "import_ns"); 1011 while (imported_namespace) { 1012 if (strcmp(namespace, imported_namespace) == 0) 1013 return 0; 1014 imported_namespace = get_next_modinfo( 1015 info, "import_ns", imported_namespace); 1016 } 1017 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1018 pr_warn( 1019 #else 1020 pr_err( 1021 #endif 1022 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1023 mod->name, kernel_symbol_name(sym), namespace); 1024 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1025 return -EINVAL; 1026 #endif 1027 } 1028 return 0; 1029 } 1030 1031 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1032 { 1033 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1034 return true; 1035 1036 if (mod->using_gplonly_symbols) { 1037 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1038 mod->name, name, owner->name); 1039 return false; 1040 } 1041 1042 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1043 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1044 mod->name, name, owner->name); 1045 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1046 } 1047 return true; 1048 } 1049 1050 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1051 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1052 const struct load_info *info, 1053 const char *name, 1054 char ownername[]) 1055 { 1056 struct find_symbol_arg fsa = { 1057 .name = name, 1058 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1059 .warn = true, 1060 }; 1061 int err; 1062 1063 /* 1064 * The module_mutex should not be a heavily contended lock; 1065 * if we get the occasional sleep here, we'll go an extra iteration 1066 * in the wait_event_interruptible(), which is harmless. 1067 */ 1068 sched_annotate_sleep(); 1069 mutex_lock(&module_mutex); 1070 if (!find_symbol(&fsa)) 1071 goto unlock; 1072 1073 if (fsa.license == GPL_ONLY) 1074 mod->using_gplonly_symbols = true; 1075 1076 if (!inherit_taint(mod, fsa.owner, name)) { 1077 fsa.sym = NULL; 1078 goto getname; 1079 } 1080 1081 if (!check_version(info, name, mod, fsa.crc)) { 1082 fsa.sym = ERR_PTR(-EINVAL); 1083 goto getname; 1084 } 1085 1086 err = verify_namespace_is_imported(info, fsa.sym, mod); 1087 if (err) { 1088 fsa.sym = ERR_PTR(err); 1089 goto getname; 1090 } 1091 1092 err = ref_module(mod, fsa.owner); 1093 if (err) { 1094 fsa.sym = ERR_PTR(err); 1095 goto getname; 1096 } 1097 1098 getname: 1099 /* We must make copy under the lock if we failed to get ref. */ 1100 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1101 unlock: 1102 mutex_unlock(&module_mutex); 1103 return fsa.sym; 1104 } 1105 1106 static const struct kernel_symbol * 1107 resolve_symbol_wait(struct module *mod, 1108 const struct load_info *info, 1109 const char *name) 1110 { 1111 const struct kernel_symbol *ksym; 1112 char owner[MODULE_NAME_LEN]; 1113 1114 if (wait_event_interruptible_timeout(module_wq, 1115 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1116 || PTR_ERR(ksym) != -EBUSY, 1117 30 * HZ) <= 0) { 1118 pr_warn("%s: gave up waiting for init of module %s.\n", 1119 mod->name, owner); 1120 } 1121 return ksym; 1122 } 1123 1124 void __weak module_memfree(void *module_region) 1125 { 1126 /* 1127 * This memory may be RO, and freeing RO memory in an interrupt is not 1128 * supported by vmalloc. 1129 */ 1130 WARN_ON(in_interrupt()); 1131 vfree(module_region); 1132 } 1133 1134 void __weak module_arch_cleanup(struct module *mod) 1135 { 1136 } 1137 1138 void __weak module_arch_freeing_init(struct module *mod) 1139 { 1140 } 1141 1142 static void cfi_cleanup(struct module *mod); 1143 1144 /* Free a module, remove from lists, etc. */ 1145 static void free_module(struct module *mod) 1146 { 1147 trace_module_free(mod); 1148 1149 mod_sysfs_teardown(mod); 1150 1151 /* 1152 * We leave it in list to prevent duplicate loads, but make sure 1153 * that noone uses it while it's being deconstructed. 1154 */ 1155 mutex_lock(&module_mutex); 1156 mod->state = MODULE_STATE_UNFORMED; 1157 mutex_unlock(&module_mutex); 1158 1159 /* Remove dynamic debug info */ 1160 ddebug_remove_module(mod->name); 1161 1162 /* Arch-specific cleanup. */ 1163 module_arch_cleanup(mod); 1164 1165 /* Module unload stuff */ 1166 module_unload_free(mod); 1167 1168 /* Free any allocated parameters. */ 1169 destroy_params(mod->kp, mod->num_kp); 1170 1171 if (is_livepatch_module(mod)) 1172 free_module_elf(mod); 1173 1174 /* Now we can delete it from the lists */ 1175 mutex_lock(&module_mutex); 1176 /* Unlink carefully: kallsyms could be walking list. */ 1177 list_del_rcu(&mod->list); 1178 mod_tree_remove(mod); 1179 /* Remove this module from bug list, this uses list_del_rcu */ 1180 module_bug_cleanup(mod); 1181 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1182 synchronize_rcu(); 1183 if (try_add_tainted_module(mod)) 1184 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1185 mod->name); 1186 mutex_unlock(&module_mutex); 1187 1188 /* Clean up CFI for the module. */ 1189 cfi_cleanup(mod); 1190 1191 /* This may be empty, but that's OK */ 1192 module_arch_freeing_init(mod); 1193 module_memfree(mod->init_layout.base); 1194 kfree(mod->args); 1195 percpu_modfree(mod); 1196 1197 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1198 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size); 1199 1200 /* Finally, free the core (containing the module structure) */ 1201 module_memfree(mod->core_layout.base); 1202 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1203 vfree(mod->data_layout.base); 1204 #endif 1205 } 1206 1207 void *__symbol_get(const char *symbol) 1208 { 1209 struct find_symbol_arg fsa = { 1210 .name = symbol, 1211 .gplok = true, 1212 .warn = true, 1213 }; 1214 1215 preempt_disable(); 1216 if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) { 1217 preempt_enable(); 1218 return NULL; 1219 } 1220 preempt_enable(); 1221 return (void *)kernel_symbol_value(fsa.sym); 1222 } 1223 EXPORT_SYMBOL_GPL(__symbol_get); 1224 1225 /* 1226 * Ensure that an exported symbol [global namespace] does not already exist 1227 * in the kernel or in some other module's exported symbol table. 1228 * 1229 * You must hold the module_mutex. 1230 */ 1231 static int verify_exported_symbols(struct module *mod) 1232 { 1233 unsigned int i; 1234 const struct kernel_symbol *s; 1235 struct { 1236 const struct kernel_symbol *sym; 1237 unsigned int num; 1238 } arr[] = { 1239 { mod->syms, mod->num_syms }, 1240 { mod->gpl_syms, mod->num_gpl_syms }, 1241 }; 1242 1243 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1244 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1245 struct find_symbol_arg fsa = { 1246 .name = kernel_symbol_name(s), 1247 .gplok = true, 1248 }; 1249 if (find_symbol(&fsa)) { 1250 pr_err("%s: exports duplicate symbol %s" 1251 " (owned by %s)\n", 1252 mod->name, kernel_symbol_name(s), 1253 module_name(fsa.owner)); 1254 return -ENOEXEC; 1255 } 1256 } 1257 } 1258 return 0; 1259 } 1260 1261 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1262 { 1263 /* 1264 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1265 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1266 * i386 has a similar problem but may not deserve a fix. 1267 * 1268 * If we ever have to ignore many symbols, consider refactoring the code to 1269 * only warn if referenced by a relocation. 1270 */ 1271 if (emachine == EM_386 || emachine == EM_X86_64) 1272 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1273 return false; 1274 } 1275 1276 /* Change all symbols so that st_value encodes the pointer directly. */ 1277 static int simplify_symbols(struct module *mod, const struct load_info *info) 1278 { 1279 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1280 Elf_Sym *sym = (void *)symsec->sh_addr; 1281 unsigned long secbase; 1282 unsigned int i; 1283 int ret = 0; 1284 const struct kernel_symbol *ksym; 1285 1286 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1287 const char *name = info->strtab + sym[i].st_name; 1288 1289 switch (sym[i].st_shndx) { 1290 case SHN_COMMON: 1291 /* Ignore common symbols */ 1292 if (!strncmp(name, "__gnu_lto", 9)) 1293 break; 1294 1295 /* 1296 * We compiled with -fno-common. These are not 1297 * supposed to happen. 1298 */ 1299 pr_debug("Common symbol: %s\n", name); 1300 pr_warn("%s: please compile with -fno-common\n", 1301 mod->name); 1302 ret = -ENOEXEC; 1303 break; 1304 1305 case SHN_ABS: 1306 /* Don't need to do anything */ 1307 pr_debug("Absolute symbol: 0x%08lx\n", 1308 (long)sym[i].st_value); 1309 break; 1310 1311 case SHN_LIVEPATCH: 1312 /* Livepatch symbols are resolved by livepatch */ 1313 break; 1314 1315 case SHN_UNDEF: 1316 ksym = resolve_symbol_wait(mod, info, name); 1317 /* Ok if resolved. */ 1318 if (ksym && !IS_ERR(ksym)) { 1319 sym[i].st_value = kernel_symbol_value(ksym); 1320 break; 1321 } 1322 1323 /* Ok if weak or ignored. */ 1324 if (!ksym && 1325 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1326 ignore_undef_symbol(info->hdr->e_machine, name))) 1327 break; 1328 1329 ret = PTR_ERR(ksym) ?: -ENOENT; 1330 pr_warn("%s: Unknown symbol %s (err %d)\n", 1331 mod->name, name, ret); 1332 break; 1333 1334 default: 1335 /* Divert to percpu allocation if a percpu var. */ 1336 if (sym[i].st_shndx == info->index.pcpu) 1337 secbase = (unsigned long)mod_percpu(mod); 1338 else 1339 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1340 sym[i].st_value += secbase; 1341 break; 1342 } 1343 } 1344 1345 return ret; 1346 } 1347 1348 static int apply_relocations(struct module *mod, const struct load_info *info) 1349 { 1350 unsigned int i; 1351 int err = 0; 1352 1353 /* Now do relocations. */ 1354 for (i = 1; i < info->hdr->e_shnum; i++) { 1355 unsigned int infosec = info->sechdrs[i].sh_info; 1356 1357 /* Not a valid relocation section? */ 1358 if (infosec >= info->hdr->e_shnum) 1359 continue; 1360 1361 /* Don't bother with non-allocated sections */ 1362 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1363 continue; 1364 1365 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1366 err = klp_apply_section_relocs(mod, info->sechdrs, 1367 info->secstrings, 1368 info->strtab, 1369 info->index.sym, i, 1370 NULL); 1371 else if (info->sechdrs[i].sh_type == SHT_REL) 1372 err = apply_relocate(info->sechdrs, info->strtab, 1373 info->index.sym, i, mod); 1374 else if (info->sechdrs[i].sh_type == SHT_RELA) 1375 err = apply_relocate_add(info->sechdrs, info->strtab, 1376 info->index.sym, i, mod); 1377 if (err < 0) 1378 break; 1379 } 1380 return err; 1381 } 1382 1383 /* Additional bytes needed by arch in front of individual sections */ 1384 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1385 unsigned int section) 1386 { 1387 /* default implementation just returns zero */ 1388 return 0; 1389 } 1390 1391 /* Update size with this section: return offset. */ 1392 long module_get_offset(struct module *mod, unsigned int *size, 1393 Elf_Shdr *sechdr, unsigned int section) 1394 { 1395 long ret; 1396 1397 *size += arch_mod_section_prepend(mod, section); 1398 ret = ALIGN(*size, sechdr->sh_addralign ?: 1); 1399 *size = ret + sechdr->sh_size; 1400 return ret; 1401 } 1402 1403 static bool module_init_layout_section(const char *sname) 1404 { 1405 #ifndef CONFIG_MODULE_UNLOAD 1406 if (module_exit_section(sname)) 1407 return true; 1408 #endif 1409 return module_init_section(sname); 1410 } 1411 1412 /* 1413 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1414 * might -- code, read-only data, read-write data, small data. Tally 1415 * sizes, and place the offsets into sh_entsize fields: high bit means it 1416 * belongs in init. 1417 */ 1418 static void layout_sections(struct module *mod, struct load_info *info) 1419 { 1420 static unsigned long const masks[][2] = { 1421 /* 1422 * NOTE: all executable code must be the first section 1423 * in this array; otherwise modify the text_size 1424 * finder in the two loops below 1425 */ 1426 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1427 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1428 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1429 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1430 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1431 }; 1432 unsigned int m, i; 1433 1434 for (i = 0; i < info->hdr->e_shnum; i++) 1435 info->sechdrs[i].sh_entsize = ~0UL; 1436 1437 pr_debug("Core section allocation order:\n"); 1438 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1439 for (i = 0; i < info->hdr->e_shnum; ++i) { 1440 Elf_Shdr *s = &info->sechdrs[i]; 1441 const char *sname = info->secstrings + s->sh_name; 1442 unsigned int *sizep; 1443 1444 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1445 || (s->sh_flags & masks[m][1]) 1446 || s->sh_entsize != ~0UL 1447 || module_init_layout_section(sname)) 1448 continue; 1449 sizep = m ? &mod->data_layout.size : &mod->core_layout.size; 1450 s->sh_entsize = module_get_offset(mod, sizep, s, i); 1451 pr_debug("\t%s\n", sname); 1452 } 1453 switch (m) { 1454 case 0: /* executable */ 1455 mod->core_layout.size = strict_align(mod->core_layout.size); 1456 mod->core_layout.text_size = mod->core_layout.size; 1457 break; 1458 case 1: /* RO: text and ro-data */ 1459 mod->data_layout.size = strict_align(mod->data_layout.size); 1460 mod->data_layout.ro_size = mod->data_layout.size; 1461 break; 1462 case 2: /* RO after init */ 1463 mod->data_layout.size = strict_align(mod->data_layout.size); 1464 mod->data_layout.ro_after_init_size = mod->data_layout.size; 1465 break; 1466 case 4: /* whole core */ 1467 mod->data_layout.size = strict_align(mod->data_layout.size); 1468 break; 1469 } 1470 } 1471 1472 pr_debug("Init section allocation order:\n"); 1473 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1474 for (i = 0; i < info->hdr->e_shnum; ++i) { 1475 Elf_Shdr *s = &info->sechdrs[i]; 1476 const char *sname = info->secstrings + s->sh_name; 1477 1478 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1479 || (s->sh_flags & masks[m][1]) 1480 || s->sh_entsize != ~0UL 1481 || !module_init_layout_section(sname)) 1482 continue; 1483 s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i) 1484 | INIT_OFFSET_MASK); 1485 pr_debug("\t%s\n", sname); 1486 } 1487 switch (m) { 1488 case 0: /* executable */ 1489 mod->init_layout.size = strict_align(mod->init_layout.size); 1490 mod->init_layout.text_size = mod->init_layout.size; 1491 break; 1492 case 1: /* RO: text and ro-data */ 1493 mod->init_layout.size = strict_align(mod->init_layout.size); 1494 mod->init_layout.ro_size = mod->init_layout.size; 1495 break; 1496 case 2: 1497 /* 1498 * RO after init doesn't apply to init_layout (only 1499 * core_layout), so it just takes the value of ro_size. 1500 */ 1501 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size; 1502 break; 1503 case 4: /* whole init */ 1504 mod->init_layout.size = strict_align(mod->init_layout.size); 1505 break; 1506 } 1507 } 1508 } 1509 1510 static void set_license(struct module *mod, const char *license) 1511 { 1512 if (!license) 1513 license = "unspecified"; 1514 1515 if (!license_is_gpl_compatible(license)) { 1516 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1517 pr_warn("%s: module license '%s' taints kernel.\n", 1518 mod->name, license); 1519 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1520 LOCKDEP_NOW_UNRELIABLE); 1521 } 1522 } 1523 1524 /* Parse tag=value strings from .modinfo section */ 1525 static char *next_string(char *string, unsigned long *secsize) 1526 { 1527 /* Skip non-zero chars */ 1528 while (string[0]) { 1529 string++; 1530 if ((*secsize)-- <= 1) 1531 return NULL; 1532 } 1533 1534 /* Skip any zero padding. */ 1535 while (!string[0]) { 1536 string++; 1537 if ((*secsize)-- <= 1) 1538 return NULL; 1539 } 1540 return string; 1541 } 1542 1543 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1544 char *prev) 1545 { 1546 char *p; 1547 unsigned int taglen = strlen(tag); 1548 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1549 unsigned long size = infosec->sh_size; 1550 1551 /* 1552 * get_modinfo() calls made before rewrite_section_headers() 1553 * must use sh_offset, as sh_addr isn't set! 1554 */ 1555 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1556 1557 if (prev) { 1558 size -= prev - modinfo; 1559 modinfo = next_string(prev, &size); 1560 } 1561 1562 for (p = modinfo; p; p = next_string(p, &size)) { 1563 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1564 return p + taglen + 1; 1565 } 1566 return NULL; 1567 } 1568 1569 static char *get_modinfo(const struct load_info *info, const char *tag) 1570 { 1571 return get_next_modinfo(info, tag, NULL); 1572 } 1573 1574 static void setup_modinfo(struct module *mod, struct load_info *info) 1575 { 1576 struct module_attribute *attr; 1577 int i; 1578 1579 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1580 if (attr->setup) 1581 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1582 } 1583 } 1584 1585 static void free_modinfo(struct module *mod) 1586 { 1587 struct module_attribute *attr; 1588 int i; 1589 1590 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1591 if (attr->free) 1592 attr->free(mod); 1593 } 1594 } 1595 1596 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num) 1597 { 1598 if (!debug) 1599 return; 1600 ddebug_add_module(debug, num, mod->name); 1601 } 1602 1603 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug) 1604 { 1605 if (debug) 1606 ddebug_remove_module(mod->name); 1607 } 1608 1609 void * __weak module_alloc(unsigned long size) 1610 { 1611 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 1612 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 1613 NUMA_NO_NODE, __builtin_return_address(0)); 1614 } 1615 1616 bool __weak module_init_section(const char *name) 1617 { 1618 return strstarts(name, ".init"); 1619 } 1620 1621 bool __weak module_exit_section(const char *name) 1622 { 1623 return strstarts(name, ".exit"); 1624 } 1625 1626 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr) 1627 { 1628 #if defined(CONFIG_64BIT) 1629 unsigned long long secend; 1630 #else 1631 unsigned long secend; 1632 #endif 1633 1634 /* 1635 * Check for both overflow and offset/size being 1636 * too large. 1637 */ 1638 secend = shdr->sh_offset + shdr->sh_size; 1639 if (secend < shdr->sh_offset || secend > info->len) 1640 return -ENOEXEC; 1641 1642 return 0; 1643 } 1644 1645 /* 1646 * Sanity checks against invalid binaries, wrong arch, weird elf version. 1647 * 1648 * Also do basic validity checks against section offsets and sizes, the 1649 * section name string table, and the indices used for it (sh_name). 1650 */ 1651 static int elf_validity_check(struct load_info *info) 1652 { 1653 unsigned int i; 1654 Elf_Shdr *shdr, *strhdr; 1655 int err; 1656 1657 if (info->len < sizeof(*(info->hdr))) { 1658 pr_err("Invalid ELF header len %lu\n", info->len); 1659 goto no_exec; 1660 } 1661 1662 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1663 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1664 goto no_exec; 1665 } 1666 if (info->hdr->e_type != ET_REL) { 1667 pr_err("Invalid ELF header type: %u != %u\n", 1668 info->hdr->e_type, ET_REL); 1669 goto no_exec; 1670 } 1671 if (!elf_check_arch(info->hdr)) { 1672 pr_err("Invalid architecture in ELF header: %u\n", 1673 info->hdr->e_machine); 1674 goto no_exec; 1675 } 1676 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1677 pr_err("Invalid ELF section header size\n"); 1678 goto no_exec; 1679 } 1680 1681 /* 1682 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1683 * known and small. So e_shnum * sizeof(Elf_Shdr) 1684 * will not overflow unsigned long on any platform. 1685 */ 1686 if (info->hdr->e_shoff >= info->len 1687 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1688 info->len - info->hdr->e_shoff)) { 1689 pr_err("Invalid ELF section header overflow\n"); 1690 goto no_exec; 1691 } 1692 1693 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1694 1695 /* 1696 * Verify if the section name table index is valid. 1697 */ 1698 if (info->hdr->e_shstrndx == SHN_UNDEF 1699 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1700 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1701 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1702 info->hdr->e_shnum); 1703 goto no_exec; 1704 } 1705 1706 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1707 err = validate_section_offset(info, strhdr); 1708 if (err < 0) { 1709 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type); 1710 return err; 1711 } 1712 1713 /* 1714 * The section name table must be NUL-terminated, as required 1715 * by the spec. This makes strcmp and pr_* calls that access 1716 * strings in the section safe. 1717 */ 1718 info->secstrings = (void *)info->hdr + strhdr->sh_offset; 1719 if (strhdr->sh_size == 0) { 1720 pr_err("empty section name table\n"); 1721 goto no_exec; 1722 } 1723 if (info->secstrings[strhdr->sh_size - 1] != '\0') { 1724 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1725 goto no_exec; 1726 } 1727 1728 /* 1729 * The code assumes that section 0 has a length of zero and 1730 * an addr of zero, so check for it. 1731 */ 1732 if (info->sechdrs[0].sh_type != SHT_NULL 1733 || info->sechdrs[0].sh_size != 0 1734 || info->sechdrs[0].sh_addr != 0) { 1735 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1736 info->sechdrs[0].sh_type); 1737 goto no_exec; 1738 } 1739 1740 for (i = 1; i < info->hdr->e_shnum; i++) { 1741 shdr = &info->sechdrs[i]; 1742 switch (shdr->sh_type) { 1743 case SHT_NULL: 1744 case SHT_NOBITS: 1745 continue; 1746 case SHT_SYMTAB: 1747 if (shdr->sh_link == SHN_UNDEF 1748 || shdr->sh_link >= info->hdr->e_shnum) { 1749 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 1750 shdr->sh_link, shdr->sh_link, 1751 info->hdr->e_shnum); 1752 goto no_exec; 1753 } 1754 fallthrough; 1755 default: 1756 err = validate_section_offset(info, shdr); 1757 if (err < 0) { 1758 pr_err("Invalid ELF section in module (section %u type %u)\n", 1759 i, shdr->sh_type); 1760 return err; 1761 } 1762 1763 if (shdr->sh_flags & SHF_ALLOC) { 1764 if (shdr->sh_name >= strhdr->sh_size) { 1765 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1766 i, shdr->sh_type); 1767 return -ENOEXEC; 1768 } 1769 } 1770 break; 1771 } 1772 } 1773 1774 return 0; 1775 1776 no_exec: 1777 return -ENOEXEC; 1778 } 1779 1780 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 1781 1782 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 1783 { 1784 do { 1785 unsigned long n = min(len, COPY_CHUNK_SIZE); 1786 1787 if (copy_from_user(dst, usrc, n) != 0) 1788 return -EFAULT; 1789 cond_resched(); 1790 dst += n; 1791 usrc += n; 1792 len -= n; 1793 } while (len); 1794 return 0; 1795 } 1796 1797 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 1798 { 1799 if (!get_modinfo(info, "livepatch")) 1800 /* Nothing more to do */ 1801 return 0; 1802 1803 if (set_livepatch_module(mod)) { 1804 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 1805 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 1806 mod->name); 1807 return 0; 1808 } 1809 1810 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 1811 mod->name); 1812 return -ENOEXEC; 1813 } 1814 1815 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 1816 { 1817 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 1818 return; 1819 1820 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 1821 mod->name); 1822 } 1823 1824 /* Sets info->hdr and info->len. */ 1825 static int copy_module_from_user(const void __user *umod, unsigned long len, 1826 struct load_info *info) 1827 { 1828 int err; 1829 1830 info->len = len; 1831 if (info->len < sizeof(*(info->hdr))) 1832 return -ENOEXEC; 1833 1834 err = security_kernel_load_data(LOADING_MODULE, true); 1835 if (err) 1836 return err; 1837 1838 /* Suck in entire file: we'll want most of it. */ 1839 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 1840 if (!info->hdr) 1841 return -ENOMEM; 1842 1843 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 1844 err = -EFAULT; 1845 goto out; 1846 } 1847 1848 err = security_kernel_post_load_data((char *)info->hdr, info->len, 1849 LOADING_MODULE, "init_module"); 1850 out: 1851 if (err) 1852 vfree(info->hdr); 1853 1854 return err; 1855 } 1856 1857 static void free_copy(struct load_info *info, int flags) 1858 { 1859 if (flags & MODULE_INIT_COMPRESSED_FILE) 1860 module_decompress_cleanup(info); 1861 else 1862 vfree(info->hdr); 1863 } 1864 1865 static int rewrite_section_headers(struct load_info *info, int flags) 1866 { 1867 unsigned int i; 1868 1869 /* This should always be true, but let's be sure. */ 1870 info->sechdrs[0].sh_addr = 0; 1871 1872 for (i = 1; i < info->hdr->e_shnum; i++) { 1873 Elf_Shdr *shdr = &info->sechdrs[i]; 1874 1875 /* 1876 * Mark all sections sh_addr with their address in the 1877 * temporary image. 1878 */ 1879 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 1880 1881 } 1882 1883 /* Track but don't keep modinfo and version sections. */ 1884 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 1885 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 1886 1887 return 0; 1888 } 1889 1890 /* 1891 * Set up our basic convenience variables (pointers to section headers, 1892 * search for module section index etc), and do some basic section 1893 * verification. 1894 * 1895 * Set info->mod to the temporary copy of the module in info->hdr. The final one 1896 * will be allocated in move_module(). 1897 */ 1898 static int setup_load_info(struct load_info *info, int flags) 1899 { 1900 unsigned int i; 1901 1902 /* Try to find a name early so we can log errors with a module name */ 1903 info->index.info = find_sec(info, ".modinfo"); 1904 if (info->index.info) 1905 info->name = get_modinfo(info, "name"); 1906 1907 /* Find internal symbols and strings. */ 1908 for (i = 1; i < info->hdr->e_shnum; i++) { 1909 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 1910 info->index.sym = i; 1911 info->index.str = info->sechdrs[i].sh_link; 1912 info->strtab = (char *)info->hdr 1913 + info->sechdrs[info->index.str].sh_offset; 1914 break; 1915 } 1916 } 1917 1918 if (info->index.sym == 0) { 1919 pr_warn("%s: module has no symbols (stripped?)\n", 1920 info->name ?: "(missing .modinfo section or name field)"); 1921 return -ENOEXEC; 1922 } 1923 1924 info->index.mod = find_sec(info, ".gnu.linkonce.this_module"); 1925 if (!info->index.mod) { 1926 pr_warn("%s: No module found in object\n", 1927 info->name ?: "(missing .modinfo section or name field)"); 1928 return -ENOEXEC; 1929 } 1930 /* This is temporary: point mod into copy of data. */ 1931 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 1932 1933 /* 1934 * If we didn't load the .modinfo 'name' field earlier, fall back to 1935 * on-disk struct mod 'name' field. 1936 */ 1937 if (!info->name) 1938 info->name = info->mod->name; 1939 1940 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) 1941 info->index.vers = 0; /* Pretend no __versions section! */ 1942 else 1943 info->index.vers = find_sec(info, "__versions"); 1944 1945 info->index.pcpu = find_pcpusec(info); 1946 1947 return 0; 1948 } 1949 1950 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 1951 { 1952 const char *modmagic = get_modinfo(info, "vermagic"); 1953 int err; 1954 1955 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 1956 modmagic = NULL; 1957 1958 /* This is allowed: modprobe --force will invalidate it. */ 1959 if (!modmagic) { 1960 err = try_to_force_load(mod, "bad vermagic"); 1961 if (err) 1962 return err; 1963 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 1964 pr_err("%s: version magic '%s' should be '%s'\n", 1965 info->name, modmagic, vermagic); 1966 return -ENOEXEC; 1967 } 1968 1969 if (!get_modinfo(info, "intree")) { 1970 if (!test_taint(TAINT_OOT_MODULE)) 1971 pr_warn("%s: loading out-of-tree module taints kernel.\n", 1972 mod->name); 1973 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 1974 } 1975 1976 check_modinfo_retpoline(mod, info); 1977 1978 if (get_modinfo(info, "staging")) { 1979 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 1980 pr_warn("%s: module is from the staging directory, the quality " 1981 "is unknown, you have been warned.\n", mod->name); 1982 } 1983 1984 err = check_modinfo_livepatch(mod, info); 1985 if (err) 1986 return err; 1987 1988 /* Set up license info based on the info section */ 1989 set_license(mod, get_modinfo(info, "license")); 1990 1991 if (get_modinfo(info, "test")) { 1992 if (!test_taint(TAINT_TEST)) 1993 pr_warn("%s: loading test module taints kernel.\n", 1994 mod->name); 1995 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 1996 } 1997 1998 return 0; 1999 } 2000 2001 static int find_module_sections(struct module *mod, struct load_info *info) 2002 { 2003 mod->kp = section_objs(info, "__param", 2004 sizeof(*mod->kp), &mod->num_kp); 2005 mod->syms = section_objs(info, "__ksymtab", 2006 sizeof(*mod->syms), &mod->num_syms); 2007 mod->crcs = section_addr(info, "__kcrctab"); 2008 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2009 sizeof(*mod->gpl_syms), 2010 &mod->num_gpl_syms); 2011 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2012 2013 #ifdef CONFIG_CONSTRUCTORS 2014 mod->ctors = section_objs(info, ".ctors", 2015 sizeof(*mod->ctors), &mod->num_ctors); 2016 if (!mod->ctors) 2017 mod->ctors = section_objs(info, ".init_array", 2018 sizeof(*mod->ctors), &mod->num_ctors); 2019 else if (find_sec(info, ".init_array")) { 2020 /* 2021 * This shouldn't happen with same compiler and binutils 2022 * building all parts of the module. 2023 */ 2024 pr_warn("%s: has both .ctors and .init_array.\n", 2025 mod->name); 2026 return -EINVAL; 2027 } 2028 #endif 2029 2030 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2031 &mod->noinstr_text_size); 2032 2033 #ifdef CONFIG_TRACEPOINTS 2034 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2035 sizeof(*mod->tracepoints_ptrs), 2036 &mod->num_tracepoints); 2037 #endif 2038 #ifdef CONFIG_TREE_SRCU 2039 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2040 sizeof(*mod->srcu_struct_ptrs), 2041 &mod->num_srcu_structs); 2042 #endif 2043 #ifdef CONFIG_BPF_EVENTS 2044 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2045 sizeof(*mod->bpf_raw_events), 2046 &mod->num_bpf_raw_events); 2047 #endif 2048 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2049 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2050 #endif 2051 #ifdef CONFIG_JUMP_LABEL 2052 mod->jump_entries = section_objs(info, "__jump_table", 2053 sizeof(*mod->jump_entries), 2054 &mod->num_jump_entries); 2055 #endif 2056 #ifdef CONFIG_EVENT_TRACING 2057 mod->trace_events = section_objs(info, "_ftrace_events", 2058 sizeof(*mod->trace_events), 2059 &mod->num_trace_events); 2060 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2061 sizeof(*mod->trace_evals), 2062 &mod->num_trace_evals); 2063 #endif 2064 #ifdef CONFIG_TRACING 2065 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2066 sizeof(*mod->trace_bprintk_fmt_start), 2067 &mod->num_trace_bprintk_fmt); 2068 #endif 2069 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2070 /* sechdrs[0].sh_size is always zero */ 2071 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2072 sizeof(*mod->ftrace_callsites), 2073 &mod->num_ftrace_callsites); 2074 #endif 2075 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2076 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2077 sizeof(*mod->ei_funcs), 2078 &mod->num_ei_funcs); 2079 #endif 2080 #ifdef CONFIG_KPROBES 2081 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2082 &mod->kprobes_text_size); 2083 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2084 sizeof(unsigned long), 2085 &mod->num_kprobe_blacklist); 2086 #endif 2087 #ifdef CONFIG_PRINTK_INDEX 2088 mod->printk_index_start = section_objs(info, ".printk_index", 2089 sizeof(*mod->printk_index_start), 2090 &mod->printk_index_size); 2091 #endif 2092 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2093 mod->static_call_sites = section_objs(info, ".static_call_sites", 2094 sizeof(*mod->static_call_sites), 2095 &mod->num_static_call_sites); 2096 #endif 2097 #ifdef CONFIG_KUNIT 2098 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2099 sizeof(*mod->kunit_suites), 2100 &mod->num_kunit_suites); 2101 #endif 2102 2103 mod->extable = section_objs(info, "__ex_table", 2104 sizeof(*mod->extable), &mod->num_exentries); 2105 2106 if (section_addr(info, "__obsparm")) 2107 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2108 2109 info->debug = section_objs(info, "__dyndbg", 2110 sizeof(*info->debug), &info->num_debug); 2111 2112 return 0; 2113 } 2114 2115 static int move_module(struct module *mod, struct load_info *info) 2116 { 2117 int i; 2118 void *ptr; 2119 2120 /* Do the allocs. */ 2121 ptr = module_alloc(mod->core_layout.size); 2122 /* 2123 * The pointer to this block is stored in the module structure 2124 * which is inside the block. Just mark it as not being a 2125 * leak. 2126 */ 2127 kmemleak_not_leak(ptr); 2128 if (!ptr) 2129 return -ENOMEM; 2130 2131 memset(ptr, 0, mod->core_layout.size); 2132 mod->core_layout.base = ptr; 2133 2134 if (mod->init_layout.size) { 2135 ptr = module_alloc(mod->init_layout.size); 2136 /* 2137 * The pointer to this block is stored in the module structure 2138 * which is inside the block. This block doesn't need to be 2139 * scanned as it contains data and code that will be freed 2140 * after the module is initialized. 2141 */ 2142 kmemleak_ignore(ptr); 2143 if (!ptr) { 2144 module_memfree(mod->core_layout.base); 2145 return -ENOMEM; 2146 } 2147 memset(ptr, 0, mod->init_layout.size); 2148 mod->init_layout.base = ptr; 2149 } else 2150 mod->init_layout.base = NULL; 2151 2152 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 2153 /* Do the allocs. */ 2154 ptr = vmalloc(mod->data_layout.size); 2155 /* 2156 * The pointer to this block is stored in the module structure 2157 * which is inside the block. Just mark it as not being a 2158 * leak. 2159 */ 2160 kmemleak_not_leak(ptr); 2161 if (!ptr) { 2162 module_memfree(mod->core_layout.base); 2163 module_memfree(mod->init_layout.base); 2164 return -ENOMEM; 2165 } 2166 2167 memset(ptr, 0, mod->data_layout.size); 2168 mod->data_layout.base = ptr; 2169 #endif 2170 /* Transfer each section which specifies SHF_ALLOC */ 2171 pr_debug("final section addresses:\n"); 2172 for (i = 0; i < info->hdr->e_shnum; i++) { 2173 void *dest; 2174 Elf_Shdr *shdr = &info->sechdrs[i]; 2175 2176 if (!(shdr->sh_flags & SHF_ALLOC)) 2177 continue; 2178 2179 if (shdr->sh_entsize & INIT_OFFSET_MASK) 2180 dest = mod->init_layout.base 2181 + (shdr->sh_entsize & ~INIT_OFFSET_MASK); 2182 else if (!(shdr->sh_flags & SHF_EXECINSTR)) 2183 dest = mod->data_layout.base + shdr->sh_entsize; 2184 else 2185 dest = mod->core_layout.base + shdr->sh_entsize; 2186 2187 if (shdr->sh_type != SHT_NOBITS) 2188 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2189 /* Update sh_addr to point to copy in image. */ 2190 shdr->sh_addr = (unsigned long)dest; 2191 pr_debug("\t0x%lx %s\n", 2192 (long)shdr->sh_addr, info->secstrings + shdr->sh_name); 2193 } 2194 2195 return 0; 2196 } 2197 2198 static int check_module_license_and_versions(struct module *mod) 2199 { 2200 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2201 2202 /* 2203 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2204 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2205 * using GPL-only symbols it needs. 2206 */ 2207 if (strcmp(mod->name, "ndiswrapper") == 0) 2208 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2209 2210 /* driverloader was caught wrongly pretending to be under GPL */ 2211 if (strcmp(mod->name, "driverloader") == 0) 2212 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2213 LOCKDEP_NOW_UNRELIABLE); 2214 2215 /* lve claims to be GPL but upstream won't provide source */ 2216 if (strcmp(mod->name, "lve") == 0) 2217 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2218 LOCKDEP_NOW_UNRELIABLE); 2219 2220 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2221 pr_warn("%s: module license taints kernel.\n", mod->name); 2222 2223 #ifdef CONFIG_MODVERSIONS 2224 if ((mod->num_syms && !mod->crcs) || 2225 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2226 return try_to_force_load(mod, 2227 "no versions for exported symbols"); 2228 } 2229 #endif 2230 return 0; 2231 } 2232 2233 static void flush_module_icache(const struct module *mod) 2234 { 2235 /* 2236 * Flush the instruction cache, since we've played with text. 2237 * Do it before processing of module parameters, so the module 2238 * can provide parameter accessor functions of its own. 2239 */ 2240 if (mod->init_layout.base) 2241 flush_icache_range((unsigned long)mod->init_layout.base, 2242 (unsigned long)mod->init_layout.base 2243 + mod->init_layout.size); 2244 flush_icache_range((unsigned long)mod->core_layout.base, 2245 (unsigned long)mod->core_layout.base + mod->core_layout.size); 2246 } 2247 2248 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2249 Elf_Shdr *sechdrs, 2250 char *secstrings, 2251 struct module *mod) 2252 { 2253 return 0; 2254 } 2255 2256 /* module_blacklist is a comma-separated list of module names */ 2257 static char *module_blacklist; 2258 static bool blacklisted(const char *module_name) 2259 { 2260 const char *p; 2261 size_t len; 2262 2263 if (!module_blacklist) 2264 return false; 2265 2266 for (p = module_blacklist; *p; p += len) { 2267 len = strcspn(p, ","); 2268 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2269 return true; 2270 if (p[len] == ',') 2271 len++; 2272 } 2273 return false; 2274 } 2275 core_param(module_blacklist, module_blacklist, charp, 0400); 2276 2277 static struct module *layout_and_allocate(struct load_info *info, int flags) 2278 { 2279 struct module *mod; 2280 unsigned int ndx; 2281 int err; 2282 2283 err = check_modinfo(info->mod, info, flags); 2284 if (err) 2285 return ERR_PTR(err); 2286 2287 /* Allow arches to frob section contents and sizes. */ 2288 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2289 info->secstrings, info->mod); 2290 if (err < 0) 2291 return ERR_PTR(err); 2292 2293 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2294 info->secstrings, info->mod); 2295 if (err < 0) 2296 return ERR_PTR(err); 2297 2298 /* We will do a special allocation for per-cpu sections later. */ 2299 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2300 2301 /* 2302 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2303 * layout_sections() can put it in the right place. 2304 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2305 */ 2306 ndx = find_sec(info, ".data..ro_after_init"); 2307 if (ndx) 2308 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2309 /* 2310 * Mark the __jump_table section as ro_after_init as well: these data 2311 * structures are never modified, with the exception of entries that 2312 * refer to code in the __init section, which are annotated as such 2313 * at module load time. 2314 */ 2315 ndx = find_sec(info, "__jump_table"); 2316 if (ndx) 2317 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2318 2319 /* 2320 * Determine total sizes, and put offsets in sh_entsize. For now 2321 * this is done generically; there doesn't appear to be any 2322 * special cases for the architectures. 2323 */ 2324 layout_sections(info->mod, info); 2325 layout_symtab(info->mod, info); 2326 2327 /* Allocate and move to the final place */ 2328 err = move_module(info->mod, info); 2329 if (err) 2330 return ERR_PTR(err); 2331 2332 /* Module has been copied to its final place now: return it. */ 2333 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2334 kmemleak_load_module(mod, info); 2335 return mod; 2336 } 2337 2338 /* mod is no longer valid after this! */ 2339 static void module_deallocate(struct module *mod, struct load_info *info) 2340 { 2341 percpu_modfree(mod); 2342 module_arch_freeing_init(mod); 2343 module_memfree(mod->init_layout.base); 2344 module_memfree(mod->core_layout.base); 2345 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 2346 vfree(mod->data_layout.base); 2347 #endif 2348 } 2349 2350 int __weak module_finalize(const Elf_Ehdr *hdr, 2351 const Elf_Shdr *sechdrs, 2352 struct module *me) 2353 { 2354 return 0; 2355 } 2356 2357 static int post_relocation(struct module *mod, const struct load_info *info) 2358 { 2359 /* Sort exception table now relocations are done. */ 2360 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2361 2362 /* Copy relocated percpu area over. */ 2363 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2364 info->sechdrs[info->index.pcpu].sh_size); 2365 2366 /* Setup kallsyms-specific fields. */ 2367 add_kallsyms(mod, info); 2368 2369 /* Arch-specific module finalizing. */ 2370 return module_finalize(info->hdr, info->sechdrs, mod); 2371 } 2372 2373 /* Is this module of this name done loading? No locks held. */ 2374 static bool finished_loading(const char *name) 2375 { 2376 struct module *mod; 2377 bool ret; 2378 2379 /* 2380 * The module_mutex should not be a heavily contended lock; 2381 * if we get the occasional sleep here, we'll go an extra iteration 2382 * in the wait_event_interruptible(), which is harmless. 2383 */ 2384 sched_annotate_sleep(); 2385 mutex_lock(&module_mutex); 2386 mod = find_module_all(name, strlen(name), true); 2387 ret = !mod || mod->state == MODULE_STATE_LIVE; 2388 mutex_unlock(&module_mutex); 2389 2390 return ret; 2391 } 2392 2393 /* Call module constructors. */ 2394 static void do_mod_ctors(struct module *mod) 2395 { 2396 #ifdef CONFIG_CONSTRUCTORS 2397 unsigned long i; 2398 2399 for (i = 0; i < mod->num_ctors; i++) 2400 mod->ctors[i](); 2401 #endif 2402 } 2403 2404 /* For freeing module_init on success, in case kallsyms traversing */ 2405 struct mod_initfree { 2406 struct llist_node node; 2407 void *module_init; 2408 }; 2409 2410 static void do_free_init(struct work_struct *w) 2411 { 2412 struct llist_node *pos, *n, *list; 2413 struct mod_initfree *initfree; 2414 2415 list = llist_del_all(&init_free_list); 2416 2417 synchronize_rcu(); 2418 2419 llist_for_each_safe(pos, n, list) { 2420 initfree = container_of(pos, struct mod_initfree, node); 2421 module_memfree(initfree->module_init); 2422 kfree(initfree); 2423 } 2424 } 2425 2426 /* 2427 * This is where the real work happens. 2428 * 2429 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2430 * helper command 'lx-symbols'. 2431 */ 2432 static noinline int do_init_module(struct module *mod) 2433 { 2434 int ret = 0; 2435 struct mod_initfree *freeinit; 2436 2437 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2438 if (!freeinit) { 2439 ret = -ENOMEM; 2440 goto fail; 2441 } 2442 freeinit->module_init = mod->init_layout.base; 2443 2444 do_mod_ctors(mod); 2445 /* Start the module */ 2446 if (mod->init != NULL) 2447 ret = do_one_initcall(mod->init); 2448 if (ret < 0) { 2449 goto fail_free_freeinit; 2450 } 2451 if (ret > 0) { 2452 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2453 "follow 0/-E convention\n" 2454 "%s: loading module anyway...\n", 2455 __func__, mod->name, ret, __func__); 2456 dump_stack(); 2457 } 2458 2459 /* Now it's a first class citizen! */ 2460 mod->state = MODULE_STATE_LIVE; 2461 blocking_notifier_call_chain(&module_notify_list, 2462 MODULE_STATE_LIVE, mod); 2463 2464 /* Delay uevent until module has finished its init routine */ 2465 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2466 2467 /* 2468 * We need to finish all async code before the module init sequence 2469 * is done. This has potential to deadlock if synchronous module 2470 * loading is requested from async (which is not allowed!). 2471 * 2472 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2473 * request_module() from async workers") for more details. 2474 */ 2475 if (!mod->async_probe_requested) 2476 async_synchronize_full(); 2477 2478 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base + 2479 mod->init_layout.size); 2480 mutex_lock(&module_mutex); 2481 /* Drop initial reference. */ 2482 module_put(mod); 2483 trim_init_extable(mod); 2484 #ifdef CONFIG_KALLSYMS 2485 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2486 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2487 #endif 2488 module_enable_ro(mod, true); 2489 mod_tree_remove_init(mod); 2490 module_arch_freeing_init(mod); 2491 mod->init_layout.base = NULL; 2492 mod->init_layout.size = 0; 2493 mod->init_layout.ro_size = 0; 2494 mod->init_layout.ro_after_init_size = 0; 2495 mod->init_layout.text_size = 0; 2496 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2497 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */ 2498 mod->btf_data = NULL; 2499 #endif 2500 /* 2501 * We want to free module_init, but be aware that kallsyms may be 2502 * walking this with preempt disabled. In all the failure paths, we 2503 * call synchronize_rcu(), but we don't want to slow down the success 2504 * path. module_memfree() cannot be called in an interrupt, so do the 2505 * work and call synchronize_rcu() in a work queue. 2506 * 2507 * Note that module_alloc() on most architectures creates W+X page 2508 * mappings which won't be cleaned up until do_free_init() runs. Any 2509 * code such as mark_rodata_ro() which depends on those mappings to 2510 * be cleaned up needs to sync with the queued work - ie 2511 * rcu_barrier() 2512 */ 2513 if (llist_add(&freeinit->node, &init_free_list)) 2514 schedule_work(&init_free_wq); 2515 2516 mutex_unlock(&module_mutex); 2517 wake_up_all(&module_wq); 2518 2519 return 0; 2520 2521 fail_free_freeinit: 2522 kfree(freeinit); 2523 fail: 2524 /* Try to protect us from buggy refcounters. */ 2525 mod->state = MODULE_STATE_GOING; 2526 synchronize_rcu(); 2527 module_put(mod); 2528 blocking_notifier_call_chain(&module_notify_list, 2529 MODULE_STATE_GOING, mod); 2530 klp_module_going(mod); 2531 ftrace_release_mod(mod); 2532 free_module(mod); 2533 wake_up_all(&module_wq); 2534 return ret; 2535 } 2536 2537 static int may_init_module(void) 2538 { 2539 if (!capable(CAP_SYS_MODULE) || modules_disabled) 2540 return -EPERM; 2541 2542 return 0; 2543 } 2544 2545 /* 2546 * We try to place it in the list now to make sure it's unique before 2547 * we dedicate too many resources. In particular, temporary percpu 2548 * memory exhaustion. 2549 */ 2550 static int add_unformed_module(struct module *mod) 2551 { 2552 int err; 2553 struct module *old; 2554 2555 mod->state = MODULE_STATE_UNFORMED; 2556 2557 again: 2558 mutex_lock(&module_mutex); 2559 old = find_module_all(mod->name, strlen(mod->name), true); 2560 if (old != NULL) { 2561 if (old->state != MODULE_STATE_LIVE) { 2562 /* Wait in case it fails to load. */ 2563 mutex_unlock(&module_mutex); 2564 err = wait_event_interruptible(module_wq, 2565 finished_loading(mod->name)); 2566 if (err) 2567 goto out_unlocked; 2568 goto again; 2569 } 2570 err = -EEXIST; 2571 goto out; 2572 } 2573 mod_update_bounds(mod); 2574 list_add_rcu(&mod->list, &modules); 2575 mod_tree_insert(mod); 2576 err = 0; 2577 2578 out: 2579 mutex_unlock(&module_mutex); 2580 out_unlocked: 2581 return err; 2582 } 2583 2584 static int complete_formation(struct module *mod, struct load_info *info) 2585 { 2586 int err; 2587 2588 mutex_lock(&module_mutex); 2589 2590 /* Find duplicate symbols (must be called under lock). */ 2591 err = verify_exported_symbols(mod); 2592 if (err < 0) 2593 goto out; 2594 2595 /* This relies on module_mutex for list integrity. */ 2596 module_bug_finalize(info->hdr, info->sechdrs, mod); 2597 2598 if (module_check_misalignment(mod)) 2599 goto out_misaligned; 2600 2601 module_enable_ro(mod, false); 2602 module_enable_nx(mod); 2603 module_enable_x(mod); 2604 2605 /* 2606 * Mark state as coming so strong_try_module_get() ignores us, 2607 * but kallsyms etc. can see us. 2608 */ 2609 mod->state = MODULE_STATE_COMING; 2610 mutex_unlock(&module_mutex); 2611 2612 return 0; 2613 2614 out_misaligned: 2615 err = -EINVAL; 2616 out: 2617 mutex_unlock(&module_mutex); 2618 return err; 2619 } 2620 2621 static int prepare_coming_module(struct module *mod) 2622 { 2623 int err; 2624 2625 ftrace_module_enable(mod); 2626 err = klp_module_coming(mod); 2627 if (err) 2628 return err; 2629 2630 err = blocking_notifier_call_chain_robust(&module_notify_list, 2631 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 2632 err = notifier_to_errno(err); 2633 if (err) 2634 klp_module_going(mod); 2635 2636 return err; 2637 } 2638 2639 static int unknown_module_param_cb(char *param, char *val, const char *modname, 2640 void *arg) 2641 { 2642 struct module *mod = arg; 2643 int ret; 2644 2645 if (strcmp(param, "async_probe") == 0) { 2646 mod->async_probe_requested = true; 2647 return 0; 2648 } 2649 2650 /* Check for magic 'dyndbg' arg */ 2651 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 2652 if (ret != 0) 2653 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 2654 return 0; 2655 } 2656 2657 static void cfi_init(struct module *mod); 2658 2659 /* 2660 * Allocate and load the module: note that size of section 0 is always 2661 * zero, and we rely on this for optional sections. 2662 */ 2663 static int load_module(struct load_info *info, const char __user *uargs, 2664 int flags) 2665 { 2666 struct module *mod; 2667 long err = 0; 2668 char *after_dashes; 2669 2670 /* 2671 * Do the signature check (if any) first. All that 2672 * the signature check needs is info->len, it does 2673 * not need any of the section info. That can be 2674 * set up later. This will minimize the chances 2675 * of a corrupt module causing problems before 2676 * we even get to the signature check. 2677 * 2678 * The check will also adjust info->len by stripping 2679 * off the sig length at the end of the module, making 2680 * checks against info->len more correct. 2681 */ 2682 err = module_sig_check(info, flags); 2683 if (err) 2684 goto free_copy; 2685 2686 /* 2687 * Do basic sanity checks against the ELF header and 2688 * sections. 2689 */ 2690 err = elf_validity_check(info); 2691 if (err) 2692 goto free_copy; 2693 2694 /* 2695 * Everything checks out, so set up the section info 2696 * in the info structure. 2697 */ 2698 err = setup_load_info(info, flags); 2699 if (err) 2700 goto free_copy; 2701 2702 /* 2703 * Now that we know we have the correct module name, check 2704 * if it's blacklisted. 2705 */ 2706 if (blacklisted(info->name)) { 2707 err = -EPERM; 2708 pr_err("Module %s is blacklisted\n", info->name); 2709 goto free_copy; 2710 } 2711 2712 err = rewrite_section_headers(info, flags); 2713 if (err) 2714 goto free_copy; 2715 2716 /* Check module struct version now, before we try to use module. */ 2717 if (!check_modstruct_version(info, info->mod)) { 2718 err = -ENOEXEC; 2719 goto free_copy; 2720 } 2721 2722 /* Figure out module layout, and allocate all the memory. */ 2723 mod = layout_and_allocate(info, flags); 2724 if (IS_ERR(mod)) { 2725 err = PTR_ERR(mod); 2726 goto free_copy; 2727 } 2728 2729 audit_log_kern_module(mod->name); 2730 2731 /* Reserve our place in the list. */ 2732 err = add_unformed_module(mod); 2733 if (err) 2734 goto free_module; 2735 2736 #ifdef CONFIG_MODULE_SIG 2737 mod->sig_ok = info->sig_ok; 2738 if (!mod->sig_ok) { 2739 pr_notice_once("%s: module verification failed: signature " 2740 "and/or required key missing - tainting " 2741 "kernel\n", mod->name); 2742 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2743 } 2744 #endif 2745 2746 /* To avoid stressing percpu allocator, do this once we're unique. */ 2747 err = percpu_modalloc(mod, info); 2748 if (err) 2749 goto unlink_mod; 2750 2751 /* Now module is in final location, initialize linked lists, etc. */ 2752 err = module_unload_init(mod); 2753 if (err) 2754 goto unlink_mod; 2755 2756 init_param_lock(mod); 2757 2758 /* 2759 * Now we've got everything in the final locations, we can 2760 * find optional sections. 2761 */ 2762 err = find_module_sections(mod, info); 2763 if (err) 2764 goto free_unload; 2765 2766 err = check_module_license_and_versions(mod); 2767 if (err) 2768 goto free_unload; 2769 2770 /* Set up MODINFO_ATTR fields */ 2771 setup_modinfo(mod, info); 2772 2773 /* Fix up syms, so that st_value is a pointer to location. */ 2774 err = simplify_symbols(mod, info); 2775 if (err < 0) 2776 goto free_modinfo; 2777 2778 err = apply_relocations(mod, info); 2779 if (err < 0) 2780 goto free_modinfo; 2781 2782 err = post_relocation(mod, info); 2783 if (err < 0) 2784 goto free_modinfo; 2785 2786 flush_module_icache(mod); 2787 2788 /* Setup CFI for the module. */ 2789 cfi_init(mod); 2790 2791 /* Now copy in args */ 2792 mod->args = strndup_user(uargs, ~0UL >> 1); 2793 if (IS_ERR(mod->args)) { 2794 err = PTR_ERR(mod->args); 2795 goto free_arch_cleanup; 2796 } 2797 2798 init_build_id(mod, info); 2799 dynamic_debug_setup(mod, info->debug, info->num_debug); 2800 2801 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 2802 ftrace_module_init(mod); 2803 2804 /* Finally it's fully formed, ready to start executing. */ 2805 err = complete_formation(mod, info); 2806 if (err) 2807 goto ddebug_cleanup; 2808 2809 err = prepare_coming_module(mod); 2810 if (err) 2811 goto bug_cleanup; 2812 2813 /* Module is ready to execute: parsing args may do that. */ 2814 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 2815 -32768, 32767, mod, 2816 unknown_module_param_cb); 2817 if (IS_ERR(after_dashes)) { 2818 err = PTR_ERR(after_dashes); 2819 goto coming_cleanup; 2820 } else if (after_dashes) { 2821 pr_warn("%s: parameters '%s' after `--' ignored\n", 2822 mod->name, after_dashes); 2823 } 2824 2825 /* Link in to sysfs. */ 2826 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 2827 if (err < 0) 2828 goto coming_cleanup; 2829 2830 if (is_livepatch_module(mod)) { 2831 err = copy_module_elf(mod, info); 2832 if (err < 0) 2833 goto sysfs_cleanup; 2834 } 2835 2836 /* Get rid of temporary copy. */ 2837 free_copy(info, flags); 2838 2839 /* Done! */ 2840 trace_module_load(mod); 2841 2842 return do_init_module(mod); 2843 2844 sysfs_cleanup: 2845 mod_sysfs_teardown(mod); 2846 coming_cleanup: 2847 mod->state = MODULE_STATE_GOING; 2848 destroy_params(mod->kp, mod->num_kp); 2849 blocking_notifier_call_chain(&module_notify_list, 2850 MODULE_STATE_GOING, mod); 2851 klp_module_going(mod); 2852 bug_cleanup: 2853 mod->state = MODULE_STATE_GOING; 2854 /* module_bug_cleanup needs module_mutex protection */ 2855 mutex_lock(&module_mutex); 2856 module_bug_cleanup(mod); 2857 mutex_unlock(&module_mutex); 2858 2859 ddebug_cleanup: 2860 ftrace_release_mod(mod); 2861 dynamic_debug_remove(mod, info->debug); 2862 synchronize_rcu(); 2863 kfree(mod->args); 2864 free_arch_cleanup: 2865 cfi_cleanup(mod); 2866 module_arch_cleanup(mod); 2867 free_modinfo: 2868 free_modinfo(mod); 2869 free_unload: 2870 module_unload_free(mod); 2871 unlink_mod: 2872 mutex_lock(&module_mutex); 2873 /* Unlink carefully: kallsyms could be walking list. */ 2874 list_del_rcu(&mod->list); 2875 mod_tree_remove(mod); 2876 wake_up_all(&module_wq); 2877 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 2878 synchronize_rcu(); 2879 mutex_unlock(&module_mutex); 2880 free_module: 2881 /* Free lock-classes; relies on the preceding sync_rcu() */ 2882 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size); 2883 2884 module_deallocate(mod, info); 2885 free_copy: 2886 free_copy(info, flags); 2887 return err; 2888 } 2889 2890 SYSCALL_DEFINE3(init_module, void __user *, umod, 2891 unsigned long, len, const char __user *, uargs) 2892 { 2893 int err; 2894 struct load_info info = { }; 2895 2896 err = may_init_module(); 2897 if (err) 2898 return err; 2899 2900 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 2901 umod, len, uargs); 2902 2903 err = copy_module_from_user(umod, len, &info); 2904 if (err) 2905 return err; 2906 2907 return load_module(&info, uargs, 0); 2908 } 2909 2910 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 2911 { 2912 struct load_info info = { }; 2913 void *buf = NULL; 2914 int len; 2915 int err; 2916 2917 err = may_init_module(); 2918 if (err) 2919 return err; 2920 2921 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 2922 2923 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 2924 |MODULE_INIT_IGNORE_VERMAGIC 2925 |MODULE_INIT_COMPRESSED_FILE)) 2926 return -EINVAL; 2927 2928 len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL, 2929 READING_MODULE); 2930 if (len < 0) 2931 return len; 2932 2933 if (flags & MODULE_INIT_COMPRESSED_FILE) { 2934 err = module_decompress(&info, buf, len); 2935 vfree(buf); /* compressed data is no longer needed */ 2936 if (err) 2937 return err; 2938 } else { 2939 info.hdr = buf; 2940 info.len = len; 2941 } 2942 2943 return load_module(&info, uargs, flags); 2944 } 2945 2946 static inline int within(unsigned long addr, void *start, unsigned long size) 2947 { 2948 return ((void *)addr >= start && (void *)addr < start + size); 2949 } 2950 2951 static void cfi_init(struct module *mod) 2952 { 2953 #ifdef CONFIG_CFI_CLANG 2954 initcall_t *init; 2955 #ifdef CONFIG_MODULE_UNLOAD 2956 exitcall_t *exit; 2957 #endif 2958 2959 rcu_read_lock_sched(); 2960 mod->cfi_check = (cfi_check_fn) 2961 find_kallsyms_symbol_value(mod, "__cfi_check"); 2962 init = (initcall_t *) 2963 find_kallsyms_symbol_value(mod, "__cfi_jt_init_module"); 2964 /* Fix init/exit functions to point to the CFI jump table */ 2965 if (init) 2966 mod->init = *init; 2967 #ifdef CONFIG_MODULE_UNLOAD 2968 exit = (exitcall_t *) 2969 find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module"); 2970 if (exit) 2971 mod->exit = *exit; 2972 #endif 2973 rcu_read_unlock_sched(); 2974 2975 cfi_module_add(mod, mod_tree.addr_min); 2976 #endif 2977 } 2978 2979 static void cfi_cleanup(struct module *mod) 2980 { 2981 #ifdef CONFIG_CFI_CLANG 2982 cfi_module_remove(mod, mod_tree.addr_min); 2983 #endif 2984 } 2985 2986 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 2987 char *module_flags(struct module *mod, char *buf) 2988 { 2989 int bx = 0; 2990 2991 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 2992 if (mod->taints || 2993 mod->state == MODULE_STATE_GOING || 2994 mod->state == MODULE_STATE_COMING) { 2995 buf[bx++] = '('; 2996 bx += module_flags_taint(mod->taints, buf + bx); 2997 /* Show a - for module-is-being-unloaded */ 2998 if (mod->state == MODULE_STATE_GOING) 2999 buf[bx++] = '-'; 3000 /* Show a + for module-is-being-loaded */ 3001 if (mod->state == MODULE_STATE_COMING) 3002 buf[bx++] = '+'; 3003 buf[bx++] = ')'; 3004 } 3005 buf[bx] = '\0'; 3006 3007 return buf; 3008 } 3009 3010 /* Given an address, look for it in the module exception tables. */ 3011 const struct exception_table_entry *search_module_extables(unsigned long addr) 3012 { 3013 const struct exception_table_entry *e = NULL; 3014 struct module *mod; 3015 3016 preempt_disable(); 3017 mod = __module_address(addr); 3018 if (!mod) 3019 goto out; 3020 3021 if (!mod->num_exentries) 3022 goto out; 3023 3024 e = search_extable(mod->extable, 3025 mod->num_exentries, 3026 addr); 3027 out: 3028 preempt_enable(); 3029 3030 /* 3031 * Now, if we found one, we are running inside it now, hence 3032 * we cannot unload the module, hence no refcnt needed. 3033 */ 3034 return e; 3035 } 3036 3037 /** 3038 * is_module_address() - is this address inside a module? 3039 * @addr: the address to check. 3040 * 3041 * See is_module_text_address() if you simply want to see if the address 3042 * is code (not data). 3043 */ 3044 bool is_module_address(unsigned long addr) 3045 { 3046 bool ret; 3047 3048 preempt_disable(); 3049 ret = __module_address(addr) != NULL; 3050 preempt_enable(); 3051 3052 return ret; 3053 } 3054 3055 /** 3056 * __module_address() - get the module which contains an address. 3057 * @addr: the address. 3058 * 3059 * Must be called with preempt disabled or module mutex held so that 3060 * module doesn't get freed during this. 3061 */ 3062 struct module *__module_address(unsigned long addr) 3063 { 3064 struct module *mod; 3065 struct mod_tree_root *tree; 3066 3067 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3068 tree = &mod_tree; 3069 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3070 else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max) 3071 tree = &mod_data_tree; 3072 #endif 3073 else 3074 return NULL; 3075 3076 module_assert_mutex_or_preempt(); 3077 3078 mod = mod_find(addr, tree); 3079 if (mod) { 3080 BUG_ON(!within_module(addr, mod)); 3081 if (mod->state == MODULE_STATE_UNFORMED) 3082 mod = NULL; 3083 } 3084 return mod; 3085 } 3086 3087 /** 3088 * is_module_text_address() - is this address inside module code? 3089 * @addr: the address to check. 3090 * 3091 * See is_module_address() if you simply want to see if the address is 3092 * anywhere in a module. See kernel_text_address() for testing if an 3093 * address corresponds to kernel or module code. 3094 */ 3095 bool is_module_text_address(unsigned long addr) 3096 { 3097 bool ret; 3098 3099 preempt_disable(); 3100 ret = __module_text_address(addr) != NULL; 3101 preempt_enable(); 3102 3103 return ret; 3104 } 3105 3106 /** 3107 * __module_text_address() - get the module whose code contains an address. 3108 * @addr: the address. 3109 * 3110 * Must be called with preempt disabled or module mutex held so that 3111 * module doesn't get freed during this. 3112 */ 3113 struct module *__module_text_address(unsigned long addr) 3114 { 3115 struct module *mod = __module_address(addr); 3116 if (mod) { 3117 /* Make sure it's within the text section. */ 3118 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size) 3119 && !within(addr, mod->core_layout.base, mod->core_layout.text_size)) 3120 mod = NULL; 3121 } 3122 return mod; 3123 } 3124 3125 /* Don't grab lock, we're oopsing. */ 3126 void print_modules(void) 3127 { 3128 struct module *mod; 3129 char buf[MODULE_FLAGS_BUF_SIZE]; 3130 3131 printk(KERN_DEFAULT "Modules linked in:"); 3132 /* Most callers should already have preempt disabled, but make sure */ 3133 preempt_disable(); 3134 list_for_each_entry_rcu(mod, &modules, list) { 3135 if (mod->state == MODULE_STATE_UNFORMED) 3136 continue; 3137 pr_cont(" %s%s", mod->name, module_flags(mod, buf)); 3138 } 3139 3140 print_unloaded_tainted_modules(); 3141 preempt_enable(); 3142 if (last_unloaded_module[0]) 3143 pr_cont(" [last unloaded: %s]", last_unloaded_module); 3144 pr_cont("\n"); 3145 } 3146