xref: /openbmc/linux/kernel/module/main.c (revision bb26cfd9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  */
6 
7 #define INCLUDE_VERMAGIC
8 
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/buildid.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/elf.h>
23 #include <linux/seq_file.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/rcupdate.h>
27 #include <linux/capability.h>
28 #include <linux/cpu.h>
29 #include <linux/moduleparam.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/vermagic.h>
33 #include <linux/notifier.h>
34 #include <linux/sched.h>
35 #include <linux/device.h>
36 #include <linux/string.h>
37 #include <linux/mutex.h>
38 #include <linux/rculist.h>
39 #include <linux/uaccess.h>
40 #include <asm/cacheflush.h>
41 #include <linux/set_memory.h>
42 #include <asm/mmu_context.h>
43 #include <linux/license.h>
44 #include <asm/sections.h>
45 #include <linux/tracepoint.h>
46 #include <linux/ftrace.h>
47 #include <linux/livepatch.h>
48 #include <linux/async.h>
49 #include <linux/percpu.h>
50 #include <linux/kmemleak.h>
51 #include <linux/jump_label.h>
52 #include <linux/pfn.h>
53 #include <linux/bsearch.h>
54 #include <linux/dynamic_debug.h>
55 #include <linux/audit.h>
56 #include <uapi/linux/module.h>
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/module.h>
61 
62 /*
63  * Mutex protects:
64  * 1) List of modules (also safely readable with preempt_disable),
65  * 2) module_use links,
66  * 3) mod_tree.addr_min/mod_tree.addr_max.
67  * (delete and add uses RCU list operations).
68  */
69 DEFINE_MUTEX(module_mutex);
70 LIST_HEAD(modules);
71 
72 /* Work queue for freeing init sections in success case */
73 static void do_free_init(struct work_struct *w);
74 static DECLARE_WORK(init_free_wq, do_free_init);
75 static LLIST_HEAD(init_free_list);
76 
77 struct mod_tree_root mod_tree __cacheline_aligned = {
78 	.addr_min = -1UL,
79 };
80 
81 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
82 struct mod_tree_root mod_data_tree __cacheline_aligned = {
83 	.addr_min = -1UL,
84 };
85 #endif
86 
87 #define module_addr_min mod_tree.addr_min
88 #define module_addr_max mod_tree.addr_max
89 
90 struct symsearch {
91 	const struct kernel_symbol *start, *stop;
92 	const s32 *crcs;
93 	enum mod_license license;
94 };
95 
96 /*
97  * Bounds of module text, for speeding up __module_address.
98  * Protected by module_mutex.
99  */
100 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree)
101 {
102 	unsigned long min = (unsigned long)base;
103 	unsigned long max = min + size;
104 
105 	if (min < tree->addr_min)
106 		tree->addr_min = min;
107 	if (max > tree->addr_max)
108 		tree->addr_max = max;
109 }
110 
111 static void mod_update_bounds(struct module *mod)
112 {
113 	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree);
114 	if (mod->init_layout.size)
115 		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree);
116 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
117 	__mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree);
118 #endif
119 }
120 
121 /* Block module loading/unloading? */
122 int modules_disabled = 0;
123 core_param(nomodule, modules_disabled, bint, 0);
124 
125 /* Waiting for a module to finish initializing? */
126 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
127 
128 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
129 
130 int register_module_notifier(struct notifier_block *nb)
131 {
132 	return blocking_notifier_chain_register(&module_notify_list, nb);
133 }
134 EXPORT_SYMBOL(register_module_notifier);
135 
136 int unregister_module_notifier(struct notifier_block *nb)
137 {
138 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
139 }
140 EXPORT_SYMBOL(unregister_module_notifier);
141 
142 /*
143  * We require a truly strong try_module_get(): 0 means success.
144  * Otherwise an error is returned due to ongoing or failed
145  * initialization etc.
146  */
147 static inline int strong_try_module_get(struct module *mod)
148 {
149 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
150 	if (mod && mod->state == MODULE_STATE_COMING)
151 		return -EBUSY;
152 	if (try_module_get(mod))
153 		return 0;
154 	else
155 		return -ENOENT;
156 }
157 
158 static inline void add_taint_module(struct module *mod, unsigned flag,
159 				    enum lockdep_ok lockdep_ok)
160 {
161 	add_taint(flag, lockdep_ok);
162 	set_bit(flag, &mod->taints);
163 }
164 
165 /*
166  * A thread that wants to hold a reference to a module only while it
167  * is running can call this to safely exit.
168  */
169 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
170 {
171 	module_put(mod);
172 	kthread_exit(code);
173 }
174 EXPORT_SYMBOL(__module_put_and_kthread_exit);
175 
176 /* Find a module section: 0 means not found. */
177 static unsigned int find_sec(const struct load_info *info, const char *name)
178 {
179 	unsigned int i;
180 
181 	for (i = 1; i < info->hdr->e_shnum; i++) {
182 		Elf_Shdr *shdr = &info->sechdrs[i];
183 		/* Alloc bit cleared means "ignore it." */
184 		if ((shdr->sh_flags & SHF_ALLOC)
185 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
186 			return i;
187 	}
188 	return 0;
189 }
190 
191 /* Find a module section, or NULL. */
192 static void *section_addr(const struct load_info *info, const char *name)
193 {
194 	/* Section 0 has sh_addr 0. */
195 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
196 }
197 
198 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
199 static void *section_objs(const struct load_info *info,
200 			  const char *name,
201 			  size_t object_size,
202 			  unsigned int *num)
203 {
204 	unsigned int sec = find_sec(info, name);
205 
206 	/* Section 0 has sh_addr 0 and sh_size 0. */
207 	*num = info->sechdrs[sec].sh_size / object_size;
208 	return (void *)info->sechdrs[sec].sh_addr;
209 }
210 
211 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
212 static unsigned int find_any_sec(const struct load_info *info, const char *name)
213 {
214 	unsigned int i;
215 
216 	for (i = 1; i < info->hdr->e_shnum; i++) {
217 		Elf_Shdr *shdr = &info->sechdrs[i];
218 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
219 			return i;
220 	}
221 	return 0;
222 }
223 
224 /*
225  * Find a module section, or NULL. Fill in number of "objects" in section.
226  * Ignores SHF_ALLOC flag.
227  */
228 static __maybe_unused void *any_section_objs(const struct load_info *info,
229 					     const char *name,
230 					     size_t object_size,
231 					     unsigned int *num)
232 {
233 	unsigned int sec = find_any_sec(info, name);
234 
235 	/* Section 0 has sh_addr 0 and sh_size 0. */
236 	*num = info->sechdrs[sec].sh_size / object_size;
237 	return (void *)info->sechdrs[sec].sh_addr;
238 }
239 
240 #ifndef CONFIG_MODVERSIONS
241 #define symversion(base, idx) NULL
242 #else
243 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
244 #endif
245 
246 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
247 {
248 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
249 	return offset_to_ptr(&sym->name_offset);
250 #else
251 	return sym->name;
252 #endif
253 }
254 
255 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
256 {
257 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
258 	if (!sym->namespace_offset)
259 		return NULL;
260 	return offset_to_ptr(&sym->namespace_offset);
261 #else
262 	return sym->namespace;
263 #endif
264 }
265 
266 int cmp_name(const void *name, const void *sym)
267 {
268 	return strcmp(name, kernel_symbol_name(sym));
269 }
270 
271 static bool find_exported_symbol_in_section(const struct symsearch *syms,
272 					    struct module *owner,
273 					    struct find_symbol_arg *fsa)
274 {
275 	struct kernel_symbol *sym;
276 
277 	if (!fsa->gplok && syms->license == GPL_ONLY)
278 		return false;
279 
280 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
281 			sizeof(struct kernel_symbol), cmp_name);
282 	if (!sym)
283 		return false;
284 
285 	fsa->owner = owner;
286 	fsa->crc = symversion(syms->crcs, sym - syms->start);
287 	fsa->sym = sym;
288 	fsa->license = syms->license;
289 
290 	return true;
291 }
292 
293 /*
294  * Find an exported symbol and return it, along with, (optional) crc and
295  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
296  */
297 bool find_symbol(struct find_symbol_arg *fsa)
298 {
299 	static const struct symsearch arr[] = {
300 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
301 		  NOT_GPL_ONLY },
302 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
303 		  __start___kcrctab_gpl,
304 		  GPL_ONLY },
305 	};
306 	struct module *mod;
307 	unsigned int i;
308 
309 	module_assert_mutex_or_preempt();
310 
311 	for (i = 0; i < ARRAY_SIZE(arr); i++)
312 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
313 			return true;
314 
315 	list_for_each_entry_rcu(mod, &modules, list,
316 				lockdep_is_held(&module_mutex)) {
317 		struct symsearch arr[] = {
318 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
319 			  NOT_GPL_ONLY },
320 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
321 			  mod->gpl_crcs,
322 			  GPL_ONLY },
323 		};
324 
325 		if (mod->state == MODULE_STATE_UNFORMED)
326 			continue;
327 
328 		for (i = 0; i < ARRAY_SIZE(arr); i++)
329 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
330 				return true;
331 	}
332 
333 	pr_debug("Failed to find symbol %s\n", fsa->name);
334 	return false;
335 }
336 
337 /*
338  * Search for module by name: must hold module_mutex (or preempt disabled
339  * for read-only access).
340  */
341 struct module *find_module_all(const char *name, size_t len,
342 			       bool even_unformed)
343 {
344 	struct module *mod;
345 
346 	module_assert_mutex_or_preempt();
347 
348 	list_for_each_entry_rcu(mod, &modules, list,
349 				lockdep_is_held(&module_mutex)) {
350 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
351 			continue;
352 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
353 			return mod;
354 	}
355 	return NULL;
356 }
357 
358 struct module *find_module(const char *name)
359 {
360 	return find_module_all(name, strlen(name), false);
361 }
362 
363 #ifdef CONFIG_SMP
364 
365 static inline void __percpu *mod_percpu(struct module *mod)
366 {
367 	return mod->percpu;
368 }
369 
370 static int percpu_modalloc(struct module *mod, struct load_info *info)
371 {
372 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
373 	unsigned long align = pcpusec->sh_addralign;
374 
375 	if (!pcpusec->sh_size)
376 		return 0;
377 
378 	if (align > PAGE_SIZE) {
379 		pr_warn("%s: per-cpu alignment %li > %li\n",
380 			mod->name, align, PAGE_SIZE);
381 		align = PAGE_SIZE;
382 	}
383 
384 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
385 	if (!mod->percpu) {
386 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
387 			mod->name, (unsigned long)pcpusec->sh_size);
388 		return -ENOMEM;
389 	}
390 	mod->percpu_size = pcpusec->sh_size;
391 	return 0;
392 }
393 
394 static void percpu_modfree(struct module *mod)
395 {
396 	free_percpu(mod->percpu);
397 }
398 
399 static unsigned int find_pcpusec(struct load_info *info)
400 {
401 	return find_sec(info, ".data..percpu");
402 }
403 
404 static void percpu_modcopy(struct module *mod,
405 			   const void *from, unsigned long size)
406 {
407 	int cpu;
408 
409 	for_each_possible_cpu(cpu)
410 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
411 }
412 
413 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
414 {
415 	struct module *mod;
416 	unsigned int cpu;
417 
418 	preempt_disable();
419 
420 	list_for_each_entry_rcu(mod, &modules, list) {
421 		if (mod->state == MODULE_STATE_UNFORMED)
422 			continue;
423 		if (!mod->percpu_size)
424 			continue;
425 		for_each_possible_cpu(cpu) {
426 			void *start = per_cpu_ptr(mod->percpu, cpu);
427 			void *va = (void *)addr;
428 
429 			if (va >= start && va < start + mod->percpu_size) {
430 				if (can_addr) {
431 					*can_addr = (unsigned long) (va - start);
432 					*can_addr += (unsigned long)
433 						per_cpu_ptr(mod->percpu,
434 							    get_boot_cpu_id());
435 				}
436 				preempt_enable();
437 				return true;
438 			}
439 		}
440 	}
441 
442 	preempt_enable();
443 	return false;
444 }
445 
446 /**
447  * is_module_percpu_address() - test whether address is from module static percpu
448  * @addr: address to test
449  *
450  * Test whether @addr belongs to module static percpu area.
451  *
452  * Return: %true if @addr is from module static percpu area
453  */
454 bool is_module_percpu_address(unsigned long addr)
455 {
456 	return __is_module_percpu_address(addr, NULL);
457 }
458 
459 #else /* ... !CONFIG_SMP */
460 
461 static inline void __percpu *mod_percpu(struct module *mod)
462 {
463 	return NULL;
464 }
465 static int percpu_modalloc(struct module *mod, struct load_info *info)
466 {
467 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
468 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
469 		return -ENOMEM;
470 	return 0;
471 }
472 static inline void percpu_modfree(struct module *mod)
473 {
474 }
475 static unsigned int find_pcpusec(struct load_info *info)
476 {
477 	return 0;
478 }
479 static inline void percpu_modcopy(struct module *mod,
480 				  const void *from, unsigned long size)
481 {
482 	/* pcpusec should be 0, and size of that section should be 0. */
483 	BUG_ON(size != 0);
484 }
485 bool is_module_percpu_address(unsigned long addr)
486 {
487 	return false;
488 }
489 
490 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
491 {
492 	return false;
493 }
494 
495 #endif /* CONFIG_SMP */
496 
497 #define MODINFO_ATTR(field)	\
498 static void setup_modinfo_##field(struct module *mod, const char *s)  \
499 {                                                                     \
500 	mod->field = kstrdup(s, GFP_KERNEL);                          \
501 }                                                                     \
502 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
503 			struct module_kobject *mk, char *buffer)      \
504 {                                                                     \
505 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
506 }                                                                     \
507 static int modinfo_##field##_exists(struct module *mod)               \
508 {                                                                     \
509 	return mod->field != NULL;                                    \
510 }                                                                     \
511 static void free_modinfo_##field(struct module *mod)                  \
512 {                                                                     \
513 	kfree(mod->field);                                            \
514 	mod->field = NULL;                                            \
515 }                                                                     \
516 static struct module_attribute modinfo_##field = {                    \
517 	.attr = { .name = __stringify(field), .mode = 0444 },         \
518 	.show = show_modinfo_##field,                                 \
519 	.setup = setup_modinfo_##field,                               \
520 	.test = modinfo_##field##_exists,                             \
521 	.free = free_modinfo_##field,                                 \
522 };
523 
524 MODINFO_ATTR(version);
525 MODINFO_ATTR(srcversion);
526 
527 static char last_unloaded_module[MODULE_NAME_LEN+1];
528 
529 #ifdef CONFIG_MODULE_UNLOAD
530 
531 EXPORT_TRACEPOINT_SYMBOL(module_get);
532 
533 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
534 #define MODULE_REF_BASE	1
535 
536 /* Init the unload section of the module. */
537 static int module_unload_init(struct module *mod)
538 {
539 	/*
540 	 * Initialize reference counter to MODULE_REF_BASE.
541 	 * refcnt == 0 means module is going.
542 	 */
543 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
544 
545 	INIT_LIST_HEAD(&mod->source_list);
546 	INIT_LIST_HEAD(&mod->target_list);
547 
548 	/* Hold reference count during initialization. */
549 	atomic_inc(&mod->refcnt);
550 
551 	return 0;
552 }
553 
554 /* Does a already use b? */
555 static int already_uses(struct module *a, struct module *b)
556 {
557 	struct module_use *use;
558 
559 	list_for_each_entry(use, &b->source_list, source_list) {
560 		if (use->source == a) {
561 			pr_debug("%s uses %s!\n", a->name, b->name);
562 			return 1;
563 		}
564 	}
565 	pr_debug("%s does not use %s!\n", a->name, b->name);
566 	return 0;
567 }
568 
569 /*
570  * Module a uses b
571  *  - we add 'a' as a "source", 'b' as a "target" of module use
572  *  - the module_use is added to the list of 'b' sources (so
573  *    'b' can walk the list to see who sourced them), and of 'a'
574  *    targets (so 'a' can see what modules it targets).
575  */
576 static int add_module_usage(struct module *a, struct module *b)
577 {
578 	struct module_use *use;
579 
580 	pr_debug("Allocating new usage for %s.\n", a->name);
581 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
582 	if (!use)
583 		return -ENOMEM;
584 
585 	use->source = a;
586 	use->target = b;
587 	list_add(&use->source_list, &b->source_list);
588 	list_add(&use->target_list, &a->target_list);
589 	return 0;
590 }
591 
592 /* Module a uses b: caller needs module_mutex() */
593 static int ref_module(struct module *a, struct module *b)
594 {
595 	int err;
596 
597 	if (b == NULL || already_uses(a, b))
598 		return 0;
599 
600 	/* If module isn't available, we fail. */
601 	err = strong_try_module_get(b);
602 	if (err)
603 		return err;
604 
605 	err = add_module_usage(a, b);
606 	if (err) {
607 		module_put(b);
608 		return err;
609 	}
610 	return 0;
611 }
612 
613 /* Clear the unload stuff of the module. */
614 static void module_unload_free(struct module *mod)
615 {
616 	struct module_use *use, *tmp;
617 
618 	mutex_lock(&module_mutex);
619 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
620 		struct module *i = use->target;
621 		pr_debug("%s unusing %s\n", mod->name, i->name);
622 		module_put(i);
623 		list_del(&use->source_list);
624 		list_del(&use->target_list);
625 		kfree(use);
626 	}
627 	mutex_unlock(&module_mutex);
628 }
629 
630 #ifdef CONFIG_MODULE_FORCE_UNLOAD
631 static inline int try_force_unload(unsigned int flags)
632 {
633 	int ret = (flags & O_TRUNC);
634 	if (ret)
635 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
636 	return ret;
637 }
638 #else
639 static inline int try_force_unload(unsigned int flags)
640 {
641 	return 0;
642 }
643 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
644 
645 /* Try to release refcount of module, 0 means success. */
646 static int try_release_module_ref(struct module *mod)
647 {
648 	int ret;
649 
650 	/* Try to decrement refcnt which we set at loading */
651 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
652 	BUG_ON(ret < 0);
653 	if (ret)
654 		/* Someone can put this right now, recover with checking */
655 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
656 
657 	return ret;
658 }
659 
660 static int try_stop_module(struct module *mod, int flags, int *forced)
661 {
662 	/* If it's not unused, quit unless we're forcing. */
663 	if (try_release_module_ref(mod) != 0) {
664 		*forced = try_force_unload(flags);
665 		if (!(*forced))
666 			return -EWOULDBLOCK;
667 	}
668 
669 	/* Mark it as dying. */
670 	mod->state = MODULE_STATE_GOING;
671 
672 	return 0;
673 }
674 
675 /**
676  * module_refcount() - return the refcount or -1 if unloading
677  * @mod:	the module we're checking
678  *
679  * Return:
680  *	-1 if the module is in the process of unloading
681  *	otherwise the number of references in the kernel to the module
682  */
683 int module_refcount(struct module *mod)
684 {
685 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
686 }
687 EXPORT_SYMBOL(module_refcount);
688 
689 /* This exists whether we can unload or not */
690 static void free_module(struct module *mod);
691 
692 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
693 		unsigned int, flags)
694 {
695 	struct module *mod;
696 	char name[MODULE_NAME_LEN];
697 	int ret, forced = 0;
698 
699 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
700 		return -EPERM;
701 
702 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
703 		return -EFAULT;
704 	name[MODULE_NAME_LEN-1] = '\0';
705 
706 	audit_log_kern_module(name);
707 
708 	if (mutex_lock_interruptible(&module_mutex) != 0)
709 		return -EINTR;
710 
711 	mod = find_module(name);
712 	if (!mod) {
713 		ret = -ENOENT;
714 		goto out;
715 	}
716 
717 	if (!list_empty(&mod->source_list)) {
718 		/* Other modules depend on us: get rid of them first. */
719 		ret = -EWOULDBLOCK;
720 		goto out;
721 	}
722 
723 	/* Doing init or already dying? */
724 	if (mod->state != MODULE_STATE_LIVE) {
725 		/* FIXME: if (force), slam module count damn the torpedoes */
726 		pr_debug("%s already dying\n", mod->name);
727 		ret = -EBUSY;
728 		goto out;
729 	}
730 
731 	/* If it has an init func, it must have an exit func to unload */
732 	if (mod->init && !mod->exit) {
733 		forced = try_force_unload(flags);
734 		if (!forced) {
735 			/* This module can't be removed */
736 			ret = -EBUSY;
737 			goto out;
738 		}
739 	}
740 
741 	ret = try_stop_module(mod, flags, &forced);
742 	if (ret != 0)
743 		goto out;
744 
745 	mutex_unlock(&module_mutex);
746 	/* Final destruction now no one is using it. */
747 	if (mod->exit != NULL)
748 		mod->exit();
749 	blocking_notifier_call_chain(&module_notify_list,
750 				     MODULE_STATE_GOING, mod);
751 	klp_module_going(mod);
752 	ftrace_release_mod(mod);
753 
754 	async_synchronize_full();
755 
756 	/* Store the name of the last unloaded module for diagnostic purposes */
757 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
758 
759 	free_module(mod);
760 	/* someone could wait for the module in add_unformed_module() */
761 	wake_up_all(&module_wq);
762 	return 0;
763 out:
764 	mutex_unlock(&module_mutex);
765 	return ret;
766 }
767 
768 void __symbol_put(const char *symbol)
769 {
770 	struct find_symbol_arg fsa = {
771 		.name	= symbol,
772 		.gplok	= true,
773 	};
774 
775 	preempt_disable();
776 	BUG_ON(!find_symbol(&fsa));
777 	module_put(fsa.owner);
778 	preempt_enable();
779 }
780 EXPORT_SYMBOL(__symbol_put);
781 
782 /* Note this assumes addr is a function, which it currently always is. */
783 void symbol_put_addr(void *addr)
784 {
785 	struct module *modaddr;
786 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
787 
788 	if (core_kernel_text(a))
789 		return;
790 
791 	/*
792 	 * Even though we hold a reference on the module; we still need to
793 	 * disable preemption in order to safely traverse the data structure.
794 	 */
795 	preempt_disable();
796 	modaddr = __module_text_address(a);
797 	BUG_ON(!modaddr);
798 	module_put(modaddr);
799 	preempt_enable();
800 }
801 EXPORT_SYMBOL_GPL(symbol_put_addr);
802 
803 static ssize_t show_refcnt(struct module_attribute *mattr,
804 			   struct module_kobject *mk, char *buffer)
805 {
806 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
807 }
808 
809 static struct module_attribute modinfo_refcnt =
810 	__ATTR(refcnt, 0444, show_refcnt, NULL);
811 
812 void __module_get(struct module *module)
813 {
814 	if (module) {
815 		preempt_disable();
816 		atomic_inc(&module->refcnt);
817 		trace_module_get(module, _RET_IP_);
818 		preempt_enable();
819 	}
820 }
821 EXPORT_SYMBOL(__module_get);
822 
823 bool try_module_get(struct module *module)
824 {
825 	bool ret = true;
826 
827 	if (module) {
828 		preempt_disable();
829 		/* Note: here, we can fail to get a reference */
830 		if (likely(module_is_live(module) &&
831 			   atomic_inc_not_zero(&module->refcnt) != 0))
832 			trace_module_get(module, _RET_IP_);
833 		else
834 			ret = false;
835 
836 		preempt_enable();
837 	}
838 	return ret;
839 }
840 EXPORT_SYMBOL(try_module_get);
841 
842 void module_put(struct module *module)
843 {
844 	int ret;
845 
846 	if (module) {
847 		preempt_disable();
848 		ret = atomic_dec_if_positive(&module->refcnt);
849 		WARN_ON(ret < 0);	/* Failed to put refcount */
850 		trace_module_put(module, _RET_IP_);
851 		preempt_enable();
852 	}
853 }
854 EXPORT_SYMBOL(module_put);
855 
856 #else /* !CONFIG_MODULE_UNLOAD */
857 static inline void module_unload_free(struct module *mod)
858 {
859 }
860 
861 static int ref_module(struct module *a, struct module *b)
862 {
863 	return strong_try_module_get(b);
864 }
865 
866 static inline int module_unload_init(struct module *mod)
867 {
868 	return 0;
869 }
870 #endif /* CONFIG_MODULE_UNLOAD */
871 
872 size_t module_flags_taint(unsigned long taints, char *buf)
873 {
874 	size_t l = 0;
875 	int i;
876 
877 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
878 		if (taint_flags[i].module && test_bit(i, &taints))
879 			buf[l++] = taint_flags[i].c_true;
880 	}
881 
882 	return l;
883 }
884 
885 static ssize_t show_initstate(struct module_attribute *mattr,
886 			      struct module_kobject *mk, char *buffer)
887 {
888 	const char *state = "unknown";
889 
890 	switch (mk->mod->state) {
891 	case MODULE_STATE_LIVE:
892 		state = "live";
893 		break;
894 	case MODULE_STATE_COMING:
895 		state = "coming";
896 		break;
897 	case MODULE_STATE_GOING:
898 		state = "going";
899 		break;
900 	default:
901 		BUG();
902 	}
903 	return sprintf(buffer, "%s\n", state);
904 }
905 
906 static struct module_attribute modinfo_initstate =
907 	__ATTR(initstate, 0444, show_initstate, NULL);
908 
909 static ssize_t store_uevent(struct module_attribute *mattr,
910 			    struct module_kobject *mk,
911 			    const char *buffer, size_t count)
912 {
913 	int rc;
914 
915 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
916 	return rc ? rc : count;
917 }
918 
919 struct module_attribute module_uevent =
920 	__ATTR(uevent, 0200, NULL, store_uevent);
921 
922 static ssize_t show_coresize(struct module_attribute *mattr,
923 			     struct module_kobject *mk, char *buffer)
924 {
925 	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
926 }
927 
928 static struct module_attribute modinfo_coresize =
929 	__ATTR(coresize, 0444, show_coresize, NULL);
930 
931 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
932 static ssize_t show_datasize(struct module_attribute *mattr,
933 			     struct module_kobject *mk, char *buffer)
934 {
935 	return sprintf(buffer, "%u\n", mk->mod->data_layout.size);
936 }
937 
938 static struct module_attribute modinfo_datasize =
939 	__ATTR(datasize, 0444, show_datasize, NULL);
940 #endif
941 
942 static ssize_t show_initsize(struct module_attribute *mattr,
943 			     struct module_kobject *mk, char *buffer)
944 {
945 	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
946 }
947 
948 static struct module_attribute modinfo_initsize =
949 	__ATTR(initsize, 0444, show_initsize, NULL);
950 
951 static ssize_t show_taint(struct module_attribute *mattr,
952 			  struct module_kobject *mk, char *buffer)
953 {
954 	size_t l;
955 
956 	l = module_flags_taint(mk->mod->taints, buffer);
957 	buffer[l++] = '\n';
958 	return l;
959 }
960 
961 static struct module_attribute modinfo_taint =
962 	__ATTR(taint, 0444, show_taint, NULL);
963 
964 struct module_attribute *modinfo_attrs[] = {
965 	&module_uevent,
966 	&modinfo_version,
967 	&modinfo_srcversion,
968 	&modinfo_initstate,
969 	&modinfo_coresize,
970 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
971 	&modinfo_datasize,
972 #endif
973 	&modinfo_initsize,
974 	&modinfo_taint,
975 #ifdef CONFIG_MODULE_UNLOAD
976 	&modinfo_refcnt,
977 #endif
978 	NULL,
979 };
980 
981 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
982 
983 static const char vermagic[] = VERMAGIC_STRING;
984 
985 int try_to_force_load(struct module *mod, const char *reason)
986 {
987 #ifdef CONFIG_MODULE_FORCE_LOAD
988 	if (!test_taint(TAINT_FORCED_MODULE))
989 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
990 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
991 	return 0;
992 #else
993 	return -ENOEXEC;
994 #endif
995 }
996 
997 static char *get_modinfo(const struct load_info *info, const char *tag);
998 static char *get_next_modinfo(const struct load_info *info, const char *tag,
999 			      char *prev);
1000 
1001 static int verify_namespace_is_imported(const struct load_info *info,
1002 					const struct kernel_symbol *sym,
1003 					struct module *mod)
1004 {
1005 	const char *namespace;
1006 	char *imported_namespace;
1007 
1008 	namespace = kernel_symbol_namespace(sym);
1009 	if (namespace && namespace[0]) {
1010 		imported_namespace = get_modinfo(info, "import_ns");
1011 		while (imported_namespace) {
1012 			if (strcmp(namespace, imported_namespace) == 0)
1013 				return 0;
1014 			imported_namespace = get_next_modinfo(
1015 				info, "import_ns", imported_namespace);
1016 		}
1017 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1018 		pr_warn(
1019 #else
1020 		pr_err(
1021 #endif
1022 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1023 			mod->name, kernel_symbol_name(sym), namespace);
1024 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1025 		return -EINVAL;
1026 #endif
1027 	}
1028 	return 0;
1029 }
1030 
1031 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1032 {
1033 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1034 		return true;
1035 
1036 	if (mod->using_gplonly_symbols) {
1037 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1038 			mod->name, name, owner->name);
1039 		return false;
1040 	}
1041 
1042 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1043 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1044 			mod->name, name, owner->name);
1045 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1046 	}
1047 	return true;
1048 }
1049 
1050 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1051 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1052 						  const struct load_info *info,
1053 						  const char *name,
1054 						  char ownername[])
1055 {
1056 	struct find_symbol_arg fsa = {
1057 		.name	= name,
1058 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1059 		.warn	= true,
1060 	};
1061 	int err;
1062 
1063 	/*
1064 	 * The module_mutex should not be a heavily contended lock;
1065 	 * if we get the occasional sleep here, we'll go an extra iteration
1066 	 * in the wait_event_interruptible(), which is harmless.
1067 	 */
1068 	sched_annotate_sleep();
1069 	mutex_lock(&module_mutex);
1070 	if (!find_symbol(&fsa))
1071 		goto unlock;
1072 
1073 	if (fsa.license == GPL_ONLY)
1074 		mod->using_gplonly_symbols = true;
1075 
1076 	if (!inherit_taint(mod, fsa.owner, name)) {
1077 		fsa.sym = NULL;
1078 		goto getname;
1079 	}
1080 
1081 	if (!check_version(info, name, mod, fsa.crc)) {
1082 		fsa.sym = ERR_PTR(-EINVAL);
1083 		goto getname;
1084 	}
1085 
1086 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1087 	if (err) {
1088 		fsa.sym = ERR_PTR(err);
1089 		goto getname;
1090 	}
1091 
1092 	err = ref_module(mod, fsa.owner);
1093 	if (err) {
1094 		fsa.sym = ERR_PTR(err);
1095 		goto getname;
1096 	}
1097 
1098 getname:
1099 	/* We must make copy under the lock if we failed to get ref. */
1100 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1101 unlock:
1102 	mutex_unlock(&module_mutex);
1103 	return fsa.sym;
1104 }
1105 
1106 static const struct kernel_symbol *
1107 resolve_symbol_wait(struct module *mod,
1108 		    const struct load_info *info,
1109 		    const char *name)
1110 {
1111 	const struct kernel_symbol *ksym;
1112 	char owner[MODULE_NAME_LEN];
1113 
1114 	if (wait_event_interruptible_timeout(module_wq,
1115 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1116 			|| PTR_ERR(ksym) != -EBUSY,
1117 					     30 * HZ) <= 0) {
1118 		pr_warn("%s: gave up waiting for init of module %s.\n",
1119 			mod->name, owner);
1120 	}
1121 	return ksym;
1122 }
1123 
1124 void __weak module_memfree(void *module_region)
1125 {
1126 	/*
1127 	 * This memory may be RO, and freeing RO memory in an interrupt is not
1128 	 * supported by vmalloc.
1129 	 */
1130 	WARN_ON(in_interrupt());
1131 	vfree(module_region);
1132 }
1133 
1134 void __weak module_arch_cleanup(struct module *mod)
1135 {
1136 }
1137 
1138 void __weak module_arch_freeing_init(struct module *mod)
1139 {
1140 }
1141 
1142 static void cfi_cleanup(struct module *mod);
1143 
1144 /* Free a module, remove from lists, etc. */
1145 static void free_module(struct module *mod)
1146 {
1147 	trace_module_free(mod);
1148 
1149 	mod_sysfs_teardown(mod);
1150 
1151 	/*
1152 	 * We leave it in list to prevent duplicate loads, but make sure
1153 	 * that noone uses it while it's being deconstructed.
1154 	 */
1155 	mutex_lock(&module_mutex);
1156 	mod->state = MODULE_STATE_UNFORMED;
1157 	mutex_unlock(&module_mutex);
1158 
1159 	/* Remove dynamic debug info */
1160 	ddebug_remove_module(mod->name);
1161 
1162 	/* Arch-specific cleanup. */
1163 	module_arch_cleanup(mod);
1164 
1165 	/* Module unload stuff */
1166 	module_unload_free(mod);
1167 
1168 	/* Free any allocated parameters. */
1169 	destroy_params(mod->kp, mod->num_kp);
1170 
1171 	if (is_livepatch_module(mod))
1172 		free_module_elf(mod);
1173 
1174 	/* Now we can delete it from the lists */
1175 	mutex_lock(&module_mutex);
1176 	/* Unlink carefully: kallsyms could be walking list. */
1177 	list_del_rcu(&mod->list);
1178 	mod_tree_remove(mod);
1179 	/* Remove this module from bug list, this uses list_del_rcu */
1180 	module_bug_cleanup(mod);
1181 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1182 	synchronize_rcu();
1183 	if (try_add_tainted_module(mod))
1184 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1185 		       mod->name);
1186 	mutex_unlock(&module_mutex);
1187 
1188 	/* Clean up CFI for the module. */
1189 	cfi_cleanup(mod);
1190 
1191 	/* This may be empty, but that's OK */
1192 	module_arch_freeing_init(mod);
1193 	module_memfree(mod->init_layout.base);
1194 	kfree(mod->args);
1195 	percpu_modfree(mod);
1196 
1197 	/* Free lock-classes; relies on the preceding sync_rcu(). */
1198 	lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
1199 
1200 	/* Finally, free the core (containing the module structure) */
1201 	module_memfree(mod->core_layout.base);
1202 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1203 	vfree(mod->data_layout.base);
1204 #endif
1205 }
1206 
1207 void *__symbol_get(const char *symbol)
1208 {
1209 	struct find_symbol_arg fsa = {
1210 		.name	= symbol,
1211 		.gplok	= true,
1212 		.warn	= true,
1213 	};
1214 
1215 	preempt_disable();
1216 	if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
1217 		preempt_enable();
1218 		return NULL;
1219 	}
1220 	preempt_enable();
1221 	return (void *)kernel_symbol_value(fsa.sym);
1222 }
1223 EXPORT_SYMBOL_GPL(__symbol_get);
1224 
1225 /*
1226  * Ensure that an exported symbol [global namespace] does not already exist
1227  * in the kernel or in some other module's exported symbol table.
1228  *
1229  * You must hold the module_mutex.
1230  */
1231 static int verify_exported_symbols(struct module *mod)
1232 {
1233 	unsigned int i;
1234 	const struct kernel_symbol *s;
1235 	struct {
1236 		const struct kernel_symbol *sym;
1237 		unsigned int num;
1238 	} arr[] = {
1239 		{ mod->syms, mod->num_syms },
1240 		{ mod->gpl_syms, mod->num_gpl_syms },
1241 	};
1242 
1243 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1244 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1245 			struct find_symbol_arg fsa = {
1246 				.name	= kernel_symbol_name(s),
1247 				.gplok	= true,
1248 			};
1249 			if (find_symbol(&fsa)) {
1250 				pr_err("%s: exports duplicate symbol %s"
1251 				       " (owned by %s)\n",
1252 				       mod->name, kernel_symbol_name(s),
1253 				       module_name(fsa.owner));
1254 				return -ENOEXEC;
1255 			}
1256 		}
1257 	}
1258 	return 0;
1259 }
1260 
1261 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1262 {
1263 	/*
1264 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1265 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1266 	 * i386 has a similar problem but may not deserve a fix.
1267 	 *
1268 	 * If we ever have to ignore many symbols, consider refactoring the code to
1269 	 * only warn if referenced by a relocation.
1270 	 */
1271 	if (emachine == EM_386 || emachine == EM_X86_64)
1272 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1273 	return false;
1274 }
1275 
1276 /* Change all symbols so that st_value encodes the pointer directly. */
1277 static int simplify_symbols(struct module *mod, const struct load_info *info)
1278 {
1279 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1280 	Elf_Sym *sym = (void *)symsec->sh_addr;
1281 	unsigned long secbase;
1282 	unsigned int i;
1283 	int ret = 0;
1284 	const struct kernel_symbol *ksym;
1285 
1286 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1287 		const char *name = info->strtab + sym[i].st_name;
1288 
1289 		switch (sym[i].st_shndx) {
1290 		case SHN_COMMON:
1291 			/* Ignore common symbols */
1292 			if (!strncmp(name, "__gnu_lto", 9))
1293 				break;
1294 
1295 			/*
1296 			 * We compiled with -fno-common.  These are not
1297 			 * supposed to happen.
1298 			 */
1299 			pr_debug("Common symbol: %s\n", name);
1300 			pr_warn("%s: please compile with -fno-common\n",
1301 			       mod->name);
1302 			ret = -ENOEXEC;
1303 			break;
1304 
1305 		case SHN_ABS:
1306 			/* Don't need to do anything */
1307 			pr_debug("Absolute symbol: 0x%08lx\n",
1308 			       (long)sym[i].st_value);
1309 			break;
1310 
1311 		case SHN_LIVEPATCH:
1312 			/* Livepatch symbols are resolved by livepatch */
1313 			break;
1314 
1315 		case SHN_UNDEF:
1316 			ksym = resolve_symbol_wait(mod, info, name);
1317 			/* Ok if resolved.  */
1318 			if (ksym && !IS_ERR(ksym)) {
1319 				sym[i].st_value = kernel_symbol_value(ksym);
1320 				break;
1321 			}
1322 
1323 			/* Ok if weak or ignored.  */
1324 			if (!ksym &&
1325 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1326 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1327 				break;
1328 
1329 			ret = PTR_ERR(ksym) ?: -ENOENT;
1330 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1331 				mod->name, name, ret);
1332 			break;
1333 
1334 		default:
1335 			/* Divert to percpu allocation if a percpu var. */
1336 			if (sym[i].st_shndx == info->index.pcpu)
1337 				secbase = (unsigned long)mod_percpu(mod);
1338 			else
1339 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1340 			sym[i].st_value += secbase;
1341 			break;
1342 		}
1343 	}
1344 
1345 	return ret;
1346 }
1347 
1348 static int apply_relocations(struct module *mod, const struct load_info *info)
1349 {
1350 	unsigned int i;
1351 	int err = 0;
1352 
1353 	/* Now do relocations. */
1354 	for (i = 1; i < info->hdr->e_shnum; i++) {
1355 		unsigned int infosec = info->sechdrs[i].sh_info;
1356 
1357 		/* Not a valid relocation section? */
1358 		if (infosec >= info->hdr->e_shnum)
1359 			continue;
1360 
1361 		/* Don't bother with non-allocated sections */
1362 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1363 			continue;
1364 
1365 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1366 			err = klp_apply_section_relocs(mod, info->sechdrs,
1367 						       info->secstrings,
1368 						       info->strtab,
1369 						       info->index.sym, i,
1370 						       NULL);
1371 		else if (info->sechdrs[i].sh_type == SHT_REL)
1372 			err = apply_relocate(info->sechdrs, info->strtab,
1373 					     info->index.sym, i, mod);
1374 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1375 			err = apply_relocate_add(info->sechdrs, info->strtab,
1376 						 info->index.sym, i, mod);
1377 		if (err < 0)
1378 			break;
1379 	}
1380 	return err;
1381 }
1382 
1383 /* Additional bytes needed by arch in front of individual sections */
1384 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1385 					     unsigned int section)
1386 {
1387 	/* default implementation just returns zero */
1388 	return 0;
1389 }
1390 
1391 /* Update size with this section: return offset. */
1392 long module_get_offset(struct module *mod, unsigned int *size,
1393 		       Elf_Shdr *sechdr, unsigned int section)
1394 {
1395 	long ret;
1396 
1397 	*size += arch_mod_section_prepend(mod, section);
1398 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1399 	*size = ret + sechdr->sh_size;
1400 	return ret;
1401 }
1402 
1403 static bool module_init_layout_section(const char *sname)
1404 {
1405 #ifndef CONFIG_MODULE_UNLOAD
1406 	if (module_exit_section(sname))
1407 		return true;
1408 #endif
1409 	return module_init_section(sname);
1410 }
1411 
1412 /*
1413  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1414  * might -- code, read-only data, read-write data, small data.  Tally
1415  * sizes, and place the offsets into sh_entsize fields: high bit means it
1416  * belongs in init.
1417  */
1418 static void layout_sections(struct module *mod, struct load_info *info)
1419 {
1420 	static unsigned long const masks[][2] = {
1421 		/*
1422 		 * NOTE: all executable code must be the first section
1423 		 * in this array; otherwise modify the text_size
1424 		 * finder in the two loops below
1425 		 */
1426 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1427 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1428 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1429 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1430 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1431 	};
1432 	unsigned int m, i;
1433 
1434 	for (i = 0; i < info->hdr->e_shnum; i++)
1435 		info->sechdrs[i].sh_entsize = ~0UL;
1436 
1437 	pr_debug("Core section allocation order:\n");
1438 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1439 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1440 			Elf_Shdr *s = &info->sechdrs[i];
1441 			const char *sname = info->secstrings + s->sh_name;
1442 			unsigned int *sizep;
1443 
1444 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1445 			    || (s->sh_flags & masks[m][1])
1446 			    || s->sh_entsize != ~0UL
1447 			    || module_init_layout_section(sname))
1448 				continue;
1449 			sizep = m ? &mod->data_layout.size : &mod->core_layout.size;
1450 			s->sh_entsize = module_get_offset(mod, sizep, s, i);
1451 			pr_debug("\t%s\n", sname);
1452 		}
1453 		switch (m) {
1454 		case 0: /* executable */
1455 			mod->core_layout.size = strict_align(mod->core_layout.size);
1456 			mod->core_layout.text_size = mod->core_layout.size;
1457 			break;
1458 		case 1: /* RO: text and ro-data */
1459 			mod->data_layout.size = strict_align(mod->data_layout.size);
1460 			mod->data_layout.ro_size = mod->data_layout.size;
1461 			break;
1462 		case 2: /* RO after init */
1463 			mod->data_layout.size = strict_align(mod->data_layout.size);
1464 			mod->data_layout.ro_after_init_size = mod->data_layout.size;
1465 			break;
1466 		case 4: /* whole core */
1467 			mod->data_layout.size = strict_align(mod->data_layout.size);
1468 			break;
1469 		}
1470 	}
1471 
1472 	pr_debug("Init section allocation order:\n");
1473 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1474 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1475 			Elf_Shdr *s = &info->sechdrs[i];
1476 			const char *sname = info->secstrings + s->sh_name;
1477 
1478 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1479 			    || (s->sh_flags & masks[m][1])
1480 			    || s->sh_entsize != ~0UL
1481 			    || !module_init_layout_section(sname))
1482 				continue;
1483 			s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i)
1484 					 | INIT_OFFSET_MASK);
1485 			pr_debug("\t%s\n", sname);
1486 		}
1487 		switch (m) {
1488 		case 0: /* executable */
1489 			mod->init_layout.size = strict_align(mod->init_layout.size);
1490 			mod->init_layout.text_size = mod->init_layout.size;
1491 			break;
1492 		case 1: /* RO: text and ro-data */
1493 			mod->init_layout.size = strict_align(mod->init_layout.size);
1494 			mod->init_layout.ro_size = mod->init_layout.size;
1495 			break;
1496 		case 2:
1497 			/*
1498 			 * RO after init doesn't apply to init_layout (only
1499 			 * core_layout), so it just takes the value of ro_size.
1500 			 */
1501 			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
1502 			break;
1503 		case 4: /* whole init */
1504 			mod->init_layout.size = strict_align(mod->init_layout.size);
1505 			break;
1506 		}
1507 	}
1508 }
1509 
1510 static void set_license(struct module *mod, const char *license)
1511 {
1512 	if (!license)
1513 		license = "unspecified";
1514 
1515 	if (!license_is_gpl_compatible(license)) {
1516 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1517 			pr_warn("%s: module license '%s' taints kernel.\n",
1518 				mod->name, license);
1519 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1520 				 LOCKDEP_NOW_UNRELIABLE);
1521 	}
1522 }
1523 
1524 /* Parse tag=value strings from .modinfo section */
1525 static char *next_string(char *string, unsigned long *secsize)
1526 {
1527 	/* Skip non-zero chars */
1528 	while (string[0]) {
1529 		string++;
1530 		if ((*secsize)-- <= 1)
1531 			return NULL;
1532 	}
1533 
1534 	/* Skip any zero padding. */
1535 	while (!string[0]) {
1536 		string++;
1537 		if ((*secsize)-- <= 1)
1538 			return NULL;
1539 	}
1540 	return string;
1541 }
1542 
1543 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1544 			      char *prev)
1545 {
1546 	char *p;
1547 	unsigned int taglen = strlen(tag);
1548 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1549 	unsigned long size = infosec->sh_size;
1550 
1551 	/*
1552 	 * get_modinfo() calls made before rewrite_section_headers()
1553 	 * must use sh_offset, as sh_addr isn't set!
1554 	 */
1555 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1556 
1557 	if (prev) {
1558 		size -= prev - modinfo;
1559 		modinfo = next_string(prev, &size);
1560 	}
1561 
1562 	for (p = modinfo; p; p = next_string(p, &size)) {
1563 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1564 			return p + taglen + 1;
1565 	}
1566 	return NULL;
1567 }
1568 
1569 static char *get_modinfo(const struct load_info *info, const char *tag)
1570 {
1571 	return get_next_modinfo(info, tag, NULL);
1572 }
1573 
1574 static void setup_modinfo(struct module *mod, struct load_info *info)
1575 {
1576 	struct module_attribute *attr;
1577 	int i;
1578 
1579 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1580 		if (attr->setup)
1581 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1582 	}
1583 }
1584 
1585 static void free_modinfo(struct module *mod)
1586 {
1587 	struct module_attribute *attr;
1588 	int i;
1589 
1590 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1591 		if (attr->free)
1592 			attr->free(mod);
1593 	}
1594 }
1595 
1596 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
1597 {
1598 	if (!debug)
1599 		return;
1600 	ddebug_add_module(debug, num, mod->name);
1601 }
1602 
1603 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
1604 {
1605 	if (debug)
1606 		ddebug_remove_module(mod->name);
1607 }
1608 
1609 void * __weak module_alloc(unsigned long size)
1610 {
1611 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
1612 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
1613 			NUMA_NO_NODE, __builtin_return_address(0));
1614 }
1615 
1616 bool __weak module_init_section(const char *name)
1617 {
1618 	return strstarts(name, ".init");
1619 }
1620 
1621 bool __weak module_exit_section(const char *name)
1622 {
1623 	return strstarts(name, ".exit");
1624 }
1625 
1626 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1627 {
1628 #if defined(CONFIG_64BIT)
1629 	unsigned long long secend;
1630 #else
1631 	unsigned long secend;
1632 #endif
1633 
1634 	/*
1635 	 * Check for both overflow and offset/size being
1636 	 * too large.
1637 	 */
1638 	secend = shdr->sh_offset + shdr->sh_size;
1639 	if (secend < shdr->sh_offset || secend > info->len)
1640 		return -ENOEXEC;
1641 
1642 	return 0;
1643 }
1644 
1645 /*
1646  * Sanity checks against invalid binaries, wrong arch, weird elf version.
1647  *
1648  * Also do basic validity checks against section offsets and sizes, the
1649  * section name string table, and the indices used for it (sh_name).
1650  */
1651 static int elf_validity_check(struct load_info *info)
1652 {
1653 	unsigned int i;
1654 	Elf_Shdr *shdr, *strhdr;
1655 	int err;
1656 
1657 	if (info->len < sizeof(*(info->hdr))) {
1658 		pr_err("Invalid ELF header len %lu\n", info->len);
1659 		goto no_exec;
1660 	}
1661 
1662 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1663 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1664 		goto no_exec;
1665 	}
1666 	if (info->hdr->e_type != ET_REL) {
1667 		pr_err("Invalid ELF header type: %u != %u\n",
1668 		       info->hdr->e_type, ET_REL);
1669 		goto no_exec;
1670 	}
1671 	if (!elf_check_arch(info->hdr)) {
1672 		pr_err("Invalid architecture in ELF header: %u\n",
1673 		       info->hdr->e_machine);
1674 		goto no_exec;
1675 	}
1676 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1677 		pr_err("Invalid ELF section header size\n");
1678 		goto no_exec;
1679 	}
1680 
1681 	/*
1682 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1683 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1684 	 * will not overflow unsigned long on any platform.
1685 	 */
1686 	if (info->hdr->e_shoff >= info->len
1687 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1688 		info->len - info->hdr->e_shoff)) {
1689 		pr_err("Invalid ELF section header overflow\n");
1690 		goto no_exec;
1691 	}
1692 
1693 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1694 
1695 	/*
1696 	 * Verify if the section name table index is valid.
1697 	 */
1698 	if (info->hdr->e_shstrndx == SHN_UNDEF
1699 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1700 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1701 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1702 		       info->hdr->e_shnum);
1703 		goto no_exec;
1704 	}
1705 
1706 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1707 	err = validate_section_offset(info, strhdr);
1708 	if (err < 0) {
1709 		pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1710 		return err;
1711 	}
1712 
1713 	/*
1714 	 * The section name table must be NUL-terminated, as required
1715 	 * by the spec. This makes strcmp and pr_* calls that access
1716 	 * strings in the section safe.
1717 	 */
1718 	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1719 	if (strhdr->sh_size == 0) {
1720 		pr_err("empty section name table\n");
1721 		goto no_exec;
1722 	}
1723 	if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1724 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1725 		goto no_exec;
1726 	}
1727 
1728 	/*
1729 	 * The code assumes that section 0 has a length of zero and
1730 	 * an addr of zero, so check for it.
1731 	 */
1732 	if (info->sechdrs[0].sh_type != SHT_NULL
1733 	    || info->sechdrs[0].sh_size != 0
1734 	    || info->sechdrs[0].sh_addr != 0) {
1735 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1736 		       info->sechdrs[0].sh_type);
1737 		goto no_exec;
1738 	}
1739 
1740 	for (i = 1; i < info->hdr->e_shnum; i++) {
1741 		shdr = &info->sechdrs[i];
1742 		switch (shdr->sh_type) {
1743 		case SHT_NULL:
1744 		case SHT_NOBITS:
1745 			continue;
1746 		case SHT_SYMTAB:
1747 			if (shdr->sh_link == SHN_UNDEF
1748 			    || shdr->sh_link >= info->hdr->e_shnum) {
1749 				pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1750 				       shdr->sh_link, shdr->sh_link,
1751 				       info->hdr->e_shnum);
1752 				goto no_exec;
1753 			}
1754 			fallthrough;
1755 		default:
1756 			err = validate_section_offset(info, shdr);
1757 			if (err < 0) {
1758 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1759 					i, shdr->sh_type);
1760 				return err;
1761 			}
1762 
1763 			if (shdr->sh_flags & SHF_ALLOC) {
1764 				if (shdr->sh_name >= strhdr->sh_size) {
1765 					pr_err("Invalid ELF section name in module (section %u type %u)\n",
1766 					       i, shdr->sh_type);
1767 					return -ENOEXEC;
1768 				}
1769 			}
1770 			break;
1771 		}
1772 	}
1773 
1774 	return 0;
1775 
1776 no_exec:
1777 	return -ENOEXEC;
1778 }
1779 
1780 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1781 
1782 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1783 {
1784 	do {
1785 		unsigned long n = min(len, COPY_CHUNK_SIZE);
1786 
1787 		if (copy_from_user(dst, usrc, n) != 0)
1788 			return -EFAULT;
1789 		cond_resched();
1790 		dst += n;
1791 		usrc += n;
1792 		len -= n;
1793 	} while (len);
1794 	return 0;
1795 }
1796 
1797 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1798 {
1799 	if (!get_modinfo(info, "livepatch"))
1800 		/* Nothing more to do */
1801 		return 0;
1802 
1803 	if (set_livepatch_module(mod)) {
1804 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
1805 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
1806 				mod->name);
1807 		return 0;
1808 	}
1809 
1810 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1811 	       mod->name);
1812 	return -ENOEXEC;
1813 }
1814 
1815 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1816 {
1817 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1818 		return;
1819 
1820 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1821 		mod->name);
1822 }
1823 
1824 /* Sets info->hdr and info->len. */
1825 static int copy_module_from_user(const void __user *umod, unsigned long len,
1826 				  struct load_info *info)
1827 {
1828 	int err;
1829 
1830 	info->len = len;
1831 	if (info->len < sizeof(*(info->hdr)))
1832 		return -ENOEXEC;
1833 
1834 	err = security_kernel_load_data(LOADING_MODULE, true);
1835 	if (err)
1836 		return err;
1837 
1838 	/* Suck in entire file: we'll want most of it. */
1839 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
1840 	if (!info->hdr)
1841 		return -ENOMEM;
1842 
1843 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
1844 		err = -EFAULT;
1845 		goto out;
1846 	}
1847 
1848 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
1849 					     LOADING_MODULE, "init_module");
1850 out:
1851 	if (err)
1852 		vfree(info->hdr);
1853 
1854 	return err;
1855 }
1856 
1857 static void free_copy(struct load_info *info, int flags)
1858 {
1859 	if (flags & MODULE_INIT_COMPRESSED_FILE)
1860 		module_decompress_cleanup(info);
1861 	else
1862 		vfree(info->hdr);
1863 }
1864 
1865 static int rewrite_section_headers(struct load_info *info, int flags)
1866 {
1867 	unsigned int i;
1868 
1869 	/* This should always be true, but let's be sure. */
1870 	info->sechdrs[0].sh_addr = 0;
1871 
1872 	for (i = 1; i < info->hdr->e_shnum; i++) {
1873 		Elf_Shdr *shdr = &info->sechdrs[i];
1874 
1875 		/*
1876 		 * Mark all sections sh_addr with their address in the
1877 		 * temporary image.
1878 		 */
1879 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
1880 
1881 	}
1882 
1883 	/* Track but don't keep modinfo and version sections. */
1884 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
1885 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
1886 
1887 	return 0;
1888 }
1889 
1890 /*
1891  * Set up our basic convenience variables (pointers to section headers,
1892  * search for module section index etc), and do some basic section
1893  * verification.
1894  *
1895  * Set info->mod to the temporary copy of the module in info->hdr. The final one
1896  * will be allocated in move_module().
1897  */
1898 static int setup_load_info(struct load_info *info, int flags)
1899 {
1900 	unsigned int i;
1901 
1902 	/* Try to find a name early so we can log errors with a module name */
1903 	info->index.info = find_sec(info, ".modinfo");
1904 	if (info->index.info)
1905 		info->name = get_modinfo(info, "name");
1906 
1907 	/* Find internal symbols and strings. */
1908 	for (i = 1; i < info->hdr->e_shnum; i++) {
1909 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
1910 			info->index.sym = i;
1911 			info->index.str = info->sechdrs[i].sh_link;
1912 			info->strtab = (char *)info->hdr
1913 				+ info->sechdrs[info->index.str].sh_offset;
1914 			break;
1915 		}
1916 	}
1917 
1918 	if (info->index.sym == 0) {
1919 		pr_warn("%s: module has no symbols (stripped?)\n",
1920 			info->name ?: "(missing .modinfo section or name field)");
1921 		return -ENOEXEC;
1922 	}
1923 
1924 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
1925 	if (!info->index.mod) {
1926 		pr_warn("%s: No module found in object\n",
1927 			info->name ?: "(missing .modinfo section or name field)");
1928 		return -ENOEXEC;
1929 	}
1930 	/* This is temporary: point mod into copy of data. */
1931 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
1932 
1933 	/*
1934 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
1935 	 * on-disk struct mod 'name' field.
1936 	 */
1937 	if (!info->name)
1938 		info->name = info->mod->name;
1939 
1940 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1941 		info->index.vers = 0; /* Pretend no __versions section! */
1942 	else
1943 		info->index.vers = find_sec(info, "__versions");
1944 
1945 	info->index.pcpu = find_pcpusec(info);
1946 
1947 	return 0;
1948 }
1949 
1950 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
1951 {
1952 	const char *modmagic = get_modinfo(info, "vermagic");
1953 	int err;
1954 
1955 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
1956 		modmagic = NULL;
1957 
1958 	/* This is allowed: modprobe --force will invalidate it. */
1959 	if (!modmagic) {
1960 		err = try_to_force_load(mod, "bad vermagic");
1961 		if (err)
1962 			return err;
1963 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
1964 		pr_err("%s: version magic '%s' should be '%s'\n",
1965 		       info->name, modmagic, vermagic);
1966 		return -ENOEXEC;
1967 	}
1968 
1969 	if (!get_modinfo(info, "intree")) {
1970 		if (!test_taint(TAINT_OOT_MODULE))
1971 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
1972 				mod->name);
1973 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
1974 	}
1975 
1976 	check_modinfo_retpoline(mod, info);
1977 
1978 	if (get_modinfo(info, "staging")) {
1979 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
1980 		pr_warn("%s: module is from the staging directory, the quality "
1981 			"is unknown, you have been warned.\n", mod->name);
1982 	}
1983 
1984 	err = check_modinfo_livepatch(mod, info);
1985 	if (err)
1986 		return err;
1987 
1988 	/* Set up license info based on the info section */
1989 	set_license(mod, get_modinfo(info, "license"));
1990 
1991 	if (get_modinfo(info, "test")) {
1992 		if (!test_taint(TAINT_TEST))
1993 			pr_warn("%s: loading test module taints kernel.\n",
1994 				mod->name);
1995 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
1996 	}
1997 
1998 	return 0;
1999 }
2000 
2001 static int find_module_sections(struct module *mod, struct load_info *info)
2002 {
2003 	mod->kp = section_objs(info, "__param",
2004 			       sizeof(*mod->kp), &mod->num_kp);
2005 	mod->syms = section_objs(info, "__ksymtab",
2006 				 sizeof(*mod->syms), &mod->num_syms);
2007 	mod->crcs = section_addr(info, "__kcrctab");
2008 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2009 				     sizeof(*mod->gpl_syms),
2010 				     &mod->num_gpl_syms);
2011 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2012 
2013 #ifdef CONFIG_CONSTRUCTORS
2014 	mod->ctors = section_objs(info, ".ctors",
2015 				  sizeof(*mod->ctors), &mod->num_ctors);
2016 	if (!mod->ctors)
2017 		mod->ctors = section_objs(info, ".init_array",
2018 				sizeof(*mod->ctors), &mod->num_ctors);
2019 	else if (find_sec(info, ".init_array")) {
2020 		/*
2021 		 * This shouldn't happen with same compiler and binutils
2022 		 * building all parts of the module.
2023 		 */
2024 		pr_warn("%s: has both .ctors and .init_array.\n",
2025 		       mod->name);
2026 		return -EINVAL;
2027 	}
2028 #endif
2029 
2030 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2031 						&mod->noinstr_text_size);
2032 
2033 #ifdef CONFIG_TRACEPOINTS
2034 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2035 					     sizeof(*mod->tracepoints_ptrs),
2036 					     &mod->num_tracepoints);
2037 #endif
2038 #ifdef CONFIG_TREE_SRCU
2039 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2040 					     sizeof(*mod->srcu_struct_ptrs),
2041 					     &mod->num_srcu_structs);
2042 #endif
2043 #ifdef CONFIG_BPF_EVENTS
2044 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2045 					   sizeof(*mod->bpf_raw_events),
2046 					   &mod->num_bpf_raw_events);
2047 #endif
2048 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2049 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2050 #endif
2051 #ifdef CONFIG_JUMP_LABEL
2052 	mod->jump_entries = section_objs(info, "__jump_table",
2053 					sizeof(*mod->jump_entries),
2054 					&mod->num_jump_entries);
2055 #endif
2056 #ifdef CONFIG_EVENT_TRACING
2057 	mod->trace_events = section_objs(info, "_ftrace_events",
2058 					 sizeof(*mod->trace_events),
2059 					 &mod->num_trace_events);
2060 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2061 					sizeof(*mod->trace_evals),
2062 					&mod->num_trace_evals);
2063 #endif
2064 #ifdef CONFIG_TRACING
2065 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2066 					 sizeof(*mod->trace_bprintk_fmt_start),
2067 					 &mod->num_trace_bprintk_fmt);
2068 #endif
2069 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2070 	/* sechdrs[0].sh_size is always zero */
2071 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2072 					     sizeof(*mod->ftrace_callsites),
2073 					     &mod->num_ftrace_callsites);
2074 #endif
2075 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2076 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2077 					    sizeof(*mod->ei_funcs),
2078 					    &mod->num_ei_funcs);
2079 #endif
2080 #ifdef CONFIG_KPROBES
2081 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2082 						&mod->kprobes_text_size);
2083 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2084 						sizeof(unsigned long),
2085 						&mod->num_kprobe_blacklist);
2086 #endif
2087 #ifdef CONFIG_PRINTK_INDEX
2088 	mod->printk_index_start = section_objs(info, ".printk_index",
2089 					       sizeof(*mod->printk_index_start),
2090 					       &mod->printk_index_size);
2091 #endif
2092 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2093 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2094 					      sizeof(*mod->static_call_sites),
2095 					      &mod->num_static_call_sites);
2096 #endif
2097 #ifdef CONFIG_KUNIT
2098 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2099 					      sizeof(*mod->kunit_suites),
2100 					      &mod->num_kunit_suites);
2101 #endif
2102 
2103 	mod->extable = section_objs(info, "__ex_table",
2104 				    sizeof(*mod->extable), &mod->num_exentries);
2105 
2106 	if (section_addr(info, "__obsparm"))
2107 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2108 
2109 	info->debug = section_objs(info, "__dyndbg",
2110 				   sizeof(*info->debug), &info->num_debug);
2111 
2112 	return 0;
2113 }
2114 
2115 static int move_module(struct module *mod, struct load_info *info)
2116 {
2117 	int i;
2118 	void *ptr;
2119 
2120 	/* Do the allocs. */
2121 	ptr = module_alloc(mod->core_layout.size);
2122 	/*
2123 	 * The pointer to this block is stored in the module structure
2124 	 * which is inside the block. Just mark it as not being a
2125 	 * leak.
2126 	 */
2127 	kmemleak_not_leak(ptr);
2128 	if (!ptr)
2129 		return -ENOMEM;
2130 
2131 	memset(ptr, 0, mod->core_layout.size);
2132 	mod->core_layout.base = ptr;
2133 
2134 	if (mod->init_layout.size) {
2135 		ptr = module_alloc(mod->init_layout.size);
2136 		/*
2137 		 * The pointer to this block is stored in the module structure
2138 		 * which is inside the block. This block doesn't need to be
2139 		 * scanned as it contains data and code that will be freed
2140 		 * after the module is initialized.
2141 		 */
2142 		kmemleak_ignore(ptr);
2143 		if (!ptr) {
2144 			module_memfree(mod->core_layout.base);
2145 			return -ENOMEM;
2146 		}
2147 		memset(ptr, 0, mod->init_layout.size);
2148 		mod->init_layout.base = ptr;
2149 	} else
2150 		mod->init_layout.base = NULL;
2151 
2152 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2153 	/* Do the allocs. */
2154 	ptr = vmalloc(mod->data_layout.size);
2155 	/*
2156 	 * The pointer to this block is stored in the module structure
2157 	 * which is inside the block. Just mark it as not being a
2158 	 * leak.
2159 	 */
2160 	kmemleak_not_leak(ptr);
2161 	if (!ptr) {
2162 		module_memfree(mod->core_layout.base);
2163 		module_memfree(mod->init_layout.base);
2164 		return -ENOMEM;
2165 	}
2166 
2167 	memset(ptr, 0, mod->data_layout.size);
2168 	mod->data_layout.base = ptr;
2169 #endif
2170 	/* Transfer each section which specifies SHF_ALLOC */
2171 	pr_debug("final section addresses:\n");
2172 	for (i = 0; i < info->hdr->e_shnum; i++) {
2173 		void *dest;
2174 		Elf_Shdr *shdr = &info->sechdrs[i];
2175 
2176 		if (!(shdr->sh_flags & SHF_ALLOC))
2177 			continue;
2178 
2179 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2180 			dest = mod->init_layout.base
2181 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2182 		else if (!(shdr->sh_flags & SHF_EXECINSTR))
2183 			dest = mod->data_layout.base + shdr->sh_entsize;
2184 		else
2185 			dest = mod->core_layout.base + shdr->sh_entsize;
2186 
2187 		if (shdr->sh_type != SHT_NOBITS)
2188 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2189 		/* Update sh_addr to point to copy in image. */
2190 		shdr->sh_addr = (unsigned long)dest;
2191 		pr_debug("\t0x%lx %s\n",
2192 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2193 	}
2194 
2195 	return 0;
2196 }
2197 
2198 static int check_module_license_and_versions(struct module *mod)
2199 {
2200 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2201 
2202 	/*
2203 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2204 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2205 	 * using GPL-only symbols it needs.
2206 	 */
2207 	if (strcmp(mod->name, "ndiswrapper") == 0)
2208 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2209 
2210 	/* driverloader was caught wrongly pretending to be under GPL */
2211 	if (strcmp(mod->name, "driverloader") == 0)
2212 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2213 				 LOCKDEP_NOW_UNRELIABLE);
2214 
2215 	/* lve claims to be GPL but upstream won't provide source */
2216 	if (strcmp(mod->name, "lve") == 0)
2217 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2218 				 LOCKDEP_NOW_UNRELIABLE);
2219 
2220 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2221 		pr_warn("%s: module license taints kernel.\n", mod->name);
2222 
2223 #ifdef CONFIG_MODVERSIONS
2224 	if ((mod->num_syms && !mod->crcs) ||
2225 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2226 		return try_to_force_load(mod,
2227 					 "no versions for exported symbols");
2228 	}
2229 #endif
2230 	return 0;
2231 }
2232 
2233 static void flush_module_icache(const struct module *mod)
2234 {
2235 	/*
2236 	 * Flush the instruction cache, since we've played with text.
2237 	 * Do it before processing of module parameters, so the module
2238 	 * can provide parameter accessor functions of its own.
2239 	 */
2240 	if (mod->init_layout.base)
2241 		flush_icache_range((unsigned long)mod->init_layout.base,
2242 				   (unsigned long)mod->init_layout.base
2243 				   + mod->init_layout.size);
2244 	flush_icache_range((unsigned long)mod->core_layout.base,
2245 			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
2246 }
2247 
2248 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2249 				     Elf_Shdr *sechdrs,
2250 				     char *secstrings,
2251 				     struct module *mod)
2252 {
2253 	return 0;
2254 }
2255 
2256 /* module_blacklist is a comma-separated list of module names */
2257 static char *module_blacklist;
2258 static bool blacklisted(const char *module_name)
2259 {
2260 	const char *p;
2261 	size_t len;
2262 
2263 	if (!module_blacklist)
2264 		return false;
2265 
2266 	for (p = module_blacklist; *p; p += len) {
2267 		len = strcspn(p, ",");
2268 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2269 			return true;
2270 		if (p[len] == ',')
2271 			len++;
2272 	}
2273 	return false;
2274 }
2275 core_param(module_blacklist, module_blacklist, charp, 0400);
2276 
2277 static struct module *layout_and_allocate(struct load_info *info, int flags)
2278 {
2279 	struct module *mod;
2280 	unsigned int ndx;
2281 	int err;
2282 
2283 	err = check_modinfo(info->mod, info, flags);
2284 	if (err)
2285 		return ERR_PTR(err);
2286 
2287 	/* Allow arches to frob section contents and sizes.  */
2288 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2289 					info->secstrings, info->mod);
2290 	if (err < 0)
2291 		return ERR_PTR(err);
2292 
2293 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2294 					  info->secstrings, info->mod);
2295 	if (err < 0)
2296 		return ERR_PTR(err);
2297 
2298 	/* We will do a special allocation for per-cpu sections later. */
2299 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2300 
2301 	/*
2302 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2303 	 * layout_sections() can put it in the right place.
2304 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2305 	 */
2306 	ndx = find_sec(info, ".data..ro_after_init");
2307 	if (ndx)
2308 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2309 	/*
2310 	 * Mark the __jump_table section as ro_after_init as well: these data
2311 	 * structures are never modified, with the exception of entries that
2312 	 * refer to code in the __init section, which are annotated as such
2313 	 * at module load time.
2314 	 */
2315 	ndx = find_sec(info, "__jump_table");
2316 	if (ndx)
2317 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2318 
2319 	/*
2320 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2321 	 * this is done generically; there doesn't appear to be any
2322 	 * special cases for the architectures.
2323 	 */
2324 	layout_sections(info->mod, info);
2325 	layout_symtab(info->mod, info);
2326 
2327 	/* Allocate and move to the final place */
2328 	err = move_module(info->mod, info);
2329 	if (err)
2330 		return ERR_PTR(err);
2331 
2332 	/* Module has been copied to its final place now: return it. */
2333 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2334 	kmemleak_load_module(mod, info);
2335 	return mod;
2336 }
2337 
2338 /* mod is no longer valid after this! */
2339 static void module_deallocate(struct module *mod, struct load_info *info)
2340 {
2341 	percpu_modfree(mod);
2342 	module_arch_freeing_init(mod);
2343 	module_memfree(mod->init_layout.base);
2344 	module_memfree(mod->core_layout.base);
2345 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2346 	vfree(mod->data_layout.base);
2347 #endif
2348 }
2349 
2350 int __weak module_finalize(const Elf_Ehdr *hdr,
2351 			   const Elf_Shdr *sechdrs,
2352 			   struct module *me)
2353 {
2354 	return 0;
2355 }
2356 
2357 static int post_relocation(struct module *mod, const struct load_info *info)
2358 {
2359 	/* Sort exception table now relocations are done. */
2360 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2361 
2362 	/* Copy relocated percpu area over. */
2363 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2364 		       info->sechdrs[info->index.pcpu].sh_size);
2365 
2366 	/* Setup kallsyms-specific fields. */
2367 	add_kallsyms(mod, info);
2368 
2369 	/* Arch-specific module finalizing. */
2370 	return module_finalize(info->hdr, info->sechdrs, mod);
2371 }
2372 
2373 /* Is this module of this name done loading?  No locks held. */
2374 static bool finished_loading(const char *name)
2375 {
2376 	struct module *mod;
2377 	bool ret;
2378 
2379 	/*
2380 	 * The module_mutex should not be a heavily contended lock;
2381 	 * if we get the occasional sleep here, we'll go an extra iteration
2382 	 * in the wait_event_interruptible(), which is harmless.
2383 	 */
2384 	sched_annotate_sleep();
2385 	mutex_lock(&module_mutex);
2386 	mod = find_module_all(name, strlen(name), true);
2387 	ret = !mod || mod->state == MODULE_STATE_LIVE;
2388 	mutex_unlock(&module_mutex);
2389 
2390 	return ret;
2391 }
2392 
2393 /* Call module constructors. */
2394 static void do_mod_ctors(struct module *mod)
2395 {
2396 #ifdef CONFIG_CONSTRUCTORS
2397 	unsigned long i;
2398 
2399 	for (i = 0; i < mod->num_ctors; i++)
2400 		mod->ctors[i]();
2401 #endif
2402 }
2403 
2404 /* For freeing module_init on success, in case kallsyms traversing */
2405 struct mod_initfree {
2406 	struct llist_node node;
2407 	void *module_init;
2408 };
2409 
2410 static void do_free_init(struct work_struct *w)
2411 {
2412 	struct llist_node *pos, *n, *list;
2413 	struct mod_initfree *initfree;
2414 
2415 	list = llist_del_all(&init_free_list);
2416 
2417 	synchronize_rcu();
2418 
2419 	llist_for_each_safe(pos, n, list) {
2420 		initfree = container_of(pos, struct mod_initfree, node);
2421 		module_memfree(initfree->module_init);
2422 		kfree(initfree);
2423 	}
2424 }
2425 
2426 /*
2427  * This is where the real work happens.
2428  *
2429  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2430  * helper command 'lx-symbols'.
2431  */
2432 static noinline int do_init_module(struct module *mod)
2433 {
2434 	int ret = 0;
2435 	struct mod_initfree *freeinit;
2436 
2437 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2438 	if (!freeinit) {
2439 		ret = -ENOMEM;
2440 		goto fail;
2441 	}
2442 	freeinit->module_init = mod->init_layout.base;
2443 
2444 	do_mod_ctors(mod);
2445 	/* Start the module */
2446 	if (mod->init != NULL)
2447 		ret = do_one_initcall(mod->init);
2448 	if (ret < 0) {
2449 		goto fail_free_freeinit;
2450 	}
2451 	if (ret > 0) {
2452 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2453 			"follow 0/-E convention\n"
2454 			"%s: loading module anyway...\n",
2455 			__func__, mod->name, ret, __func__);
2456 		dump_stack();
2457 	}
2458 
2459 	/* Now it's a first class citizen! */
2460 	mod->state = MODULE_STATE_LIVE;
2461 	blocking_notifier_call_chain(&module_notify_list,
2462 				     MODULE_STATE_LIVE, mod);
2463 
2464 	/* Delay uevent until module has finished its init routine */
2465 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2466 
2467 	/*
2468 	 * We need to finish all async code before the module init sequence
2469 	 * is done. This has potential to deadlock if synchronous module
2470 	 * loading is requested from async (which is not allowed!).
2471 	 *
2472 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2473 	 * request_module() from async workers") for more details.
2474 	 */
2475 	if (!mod->async_probe_requested)
2476 		async_synchronize_full();
2477 
2478 	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
2479 			mod->init_layout.size);
2480 	mutex_lock(&module_mutex);
2481 	/* Drop initial reference. */
2482 	module_put(mod);
2483 	trim_init_extable(mod);
2484 #ifdef CONFIG_KALLSYMS
2485 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
2486 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2487 #endif
2488 	module_enable_ro(mod, true);
2489 	mod_tree_remove_init(mod);
2490 	module_arch_freeing_init(mod);
2491 	mod->init_layout.base = NULL;
2492 	mod->init_layout.size = 0;
2493 	mod->init_layout.ro_size = 0;
2494 	mod->init_layout.ro_after_init_size = 0;
2495 	mod->init_layout.text_size = 0;
2496 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2497 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
2498 	mod->btf_data = NULL;
2499 #endif
2500 	/*
2501 	 * We want to free module_init, but be aware that kallsyms may be
2502 	 * walking this with preempt disabled.  In all the failure paths, we
2503 	 * call synchronize_rcu(), but we don't want to slow down the success
2504 	 * path. module_memfree() cannot be called in an interrupt, so do the
2505 	 * work and call synchronize_rcu() in a work queue.
2506 	 *
2507 	 * Note that module_alloc() on most architectures creates W+X page
2508 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
2509 	 * code such as mark_rodata_ro() which depends on those mappings to
2510 	 * be cleaned up needs to sync with the queued work - ie
2511 	 * rcu_barrier()
2512 	 */
2513 	if (llist_add(&freeinit->node, &init_free_list))
2514 		schedule_work(&init_free_wq);
2515 
2516 	mutex_unlock(&module_mutex);
2517 	wake_up_all(&module_wq);
2518 
2519 	return 0;
2520 
2521 fail_free_freeinit:
2522 	kfree(freeinit);
2523 fail:
2524 	/* Try to protect us from buggy refcounters. */
2525 	mod->state = MODULE_STATE_GOING;
2526 	synchronize_rcu();
2527 	module_put(mod);
2528 	blocking_notifier_call_chain(&module_notify_list,
2529 				     MODULE_STATE_GOING, mod);
2530 	klp_module_going(mod);
2531 	ftrace_release_mod(mod);
2532 	free_module(mod);
2533 	wake_up_all(&module_wq);
2534 	return ret;
2535 }
2536 
2537 static int may_init_module(void)
2538 {
2539 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
2540 		return -EPERM;
2541 
2542 	return 0;
2543 }
2544 
2545 /*
2546  * We try to place it in the list now to make sure it's unique before
2547  * we dedicate too many resources.  In particular, temporary percpu
2548  * memory exhaustion.
2549  */
2550 static int add_unformed_module(struct module *mod)
2551 {
2552 	int err;
2553 	struct module *old;
2554 
2555 	mod->state = MODULE_STATE_UNFORMED;
2556 
2557 again:
2558 	mutex_lock(&module_mutex);
2559 	old = find_module_all(mod->name, strlen(mod->name), true);
2560 	if (old != NULL) {
2561 		if (old->state != MODULE_STATE_LIVE) {
2562 			/* Wait in case it fails to load. */
2563 			mutex_unlock(&module_mutex);
2564 			err = wait_event_interruptible(module_wq,
2565 					       finished_loading(mod->name));
2566 			if (err)
2567 				goto out_unlocked;
2568 			goto again;
2569 		}
2570 		err = -EEXIST;
2571 		goto out;
2572 	}
2573 	mod_update_bounds(mod);
2574 	list_add_rcu(&mod->list, &modules);
2575 	mod_tree_insert(mod);
2576 	err = 0;
2577 
2578 out:
2579 	mutex_unlock(&module_mutex);
2580 out_unlocked:
2581 	return err;
2582 }
2583 
2584 static int complete_formation(struct module *mod, struct load_info *info)
2585 {
2586 	int err;
2587 
2588 	mutex_lock(&module_mutex);
2589 
2590 	/* Find duplicate symbols (must be called under lock). */
2591 	err = verify_exported_symbols(mod);
2592 	if (err < 0)
2593 		goto out;
2594 
2595 	/* This relies on module_mutex for list integrity. */
2596 	module_bug_finalize(info->hdr, info->sechdrs, mod);
2597 
2598 	if (module_check_misalignment(mod))
2599 		goto out_misaligned;
2600 
2601 	module_enable_ro(mod, false);
2602 	module_enable_nx(mod);
2603 	module_enable_x(mod);
2604 
2605 	/*
2606 	 * Mark state as coming so strong_try_module_get() ignores us,
2607 	 * but kallsyms etc. can see us.
2608 	 */
2609 	mod->state = MODULE_STATE_COMING;
2610 	mutex_unlock(&module_mutex);
2611 
2612 	return 0;
2613 
2614 out_misaligned:
2615 	err = -EINVAL;
2616 out:
2617 	mutex_unlock(&module_mutex);
2618 	return err;
2619 }
2620 
2621 static int prepare_coming_module(struct module *mod)
2622 {
2623 	int err;
2624 
2625 	ftrace_module_enable(mod);
2626 	err = klp_module_coming(mod);
2627 	if (err)
2628 		return err;
2629 
2630 	err = blocking_notifier_call_chain_robust(&module_notify_list,
2631 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2632 	err = notifier_to_errno(err);
2633 	if (err)
2634 		klp_module_going(mod);
2635 
2636 	return err;
2637 }
2638 
2639 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2640 				   void *arg)
2641 {
2642 	struct module *mod = arg;
2643 	int ret;
2644 
2645 	if (strcmp(param, "async_probe") == 0) {
2646 		mod->async_probe_requested = true;
2647 		return 0;
2648 	}
2649 
2650 	/* Check for magic 'dyndbg' arg */
2651 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2652 	if (ret != 0)
2653 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2654 	return 0;
2655 }
2656 
2657 static void cfi_init(struct module *mod);
2658 
2659 /*
2660  * Allocate and load the module: note that size of section 0 is always
2661  * zero, and we rely on this for optional sections.
2662  */
2663 static int load_module(struct load_info *info, const char __user *uargs,
2664 		       int flags)
2665 {
2666 	struct module *mod;
2667 	long err = 0;
2668 	char *after_dashes;
2669 
2670 	/*
2671 	 * Do the signature check (if any) first. All that
2672 	 * the signature check needs is info->len, it does
2673 	 * not need any of the section info. That can be
2674 	 * set up later. This will minimize the chances
2675 	 * of a corrupt module causing problems before
2676 	 * we even get to the signature check.
2677 	 *
2678 	 * The check will also adjust info->len by stripping
2679 	 * off the sig length at the end of the module, making
2680 	 * checks against info->len more correct.
2681 	 */
2682 	err = module_sig_check(info, flags);
2683 	if (err)
2684 		goto free_copy;
2685 
2686 	/*
2687 	 * Do basic sanity checks against the ELF header and
2688 	 * sections.
2689 	 */
2690 	err = elf_validity_check(info);
2691 	if (err)
2692 		goto free_copy;
2693 
2694 	/*
2695 	 * Everything checks out, so set up the section info
2696 	 * in the info structure.
2697 	 */
2698 	err = setup_load_info(info, flags);
2699 	if (err)
2700 		goto free_copy;
2701 
2702 	/*
2703 	 * Now that we know we have the correct module name, check
2704 	 * if it's blacklisted.
2705 	 */
2706 	if (blacklisted(info->name)) {
2707 		err = -EPERM;
2708 		pr_err("Module %s is blacklisted\n", info->name);
2709 		goto free_copy;
2710 	}
2711 
2712 	err = rewrite_section_headers(info, flags);
2713 	if (err)
2714 		goto free_copy;
2715 
2716 	/* Check module struct version now, before we try to use module. */
2717 	if (!check_modstruct_version(info, info->mod)) {
2718 		err = -ENOEXEC;
2719 		goto free_copy;
2720 	}
2721 
2722 	/* Figure out module layout, and allocate all the memory. */
2723 	mod = layout_and_allocate(info, flags);
2724 	if (IS_ERR(mod)) {
2725 		err = PTR_ERR(mod);
2726 		goto free_copy;
2727 	}
2728 
2729 	audit_log_kern_module(mod->name);
2730 
2731 	/* Reserve our place in the list. */
2732 	err = add_unformed_module(mod);
2733 	if (err)
2734 		goto free_module;
2735 
2736 #ifdef CONFIG_MODULE_SIG
2737 	mod->sig_ok = info->sig_ok;
2738 	if (!mod->sig_ok) {
2739 		pr_notice_once("%s: module verification failed: signature "
2740 			       "and/or required key missing - tainting "
2741 			       "kernel\n", mod->name);
2742 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2743 	}
2744 #endif
2745 
2746 	/* To avoid stressing percpu allocator, do this once we're unique. */
2747 	err = percpu_modalloc(mod, info);
2748 	if (err)
2749 		goto unlink_mod;
2750 
2751 	/* Now module is in final location, initialize linked lists, etc. */
2752 	err = module_unload_init(mod);
2753 	if (err)
2754 		goto unlink_mod;
2755 
2756 	init_param_lock(mod);
2757 
2758 	/*
2759 	 * Now we've got everything in the final locations, we can
2760 	 * find optional sections.
2761 	 */
2762 	err = find_module_sections(mod, info);
2763 	if (err)
2764 		goto free_unload;
2765 
2766 	err = check_module_license_and_versions(mod);
2767 	if (err)
2768 		goto free_unload;
2769 
2770 	/* Set up MODINFO_ATTR fields */
2771 	setup_modinfo(mod, info);
2772 
2773 	/* Fix up syms, so that st_value is a pointer to location. */
2774 	err = simplify_symbols(mod, info);
2775 	if (err < 0)
2776 		goto free_modinfo;
2777 
2778 	err = apply_relocations(mod, info);
2779 	if (err < 0)
2780 		goto free_modinfo;
2781 
2782 	err = post_relocation(mod, info);
2783 	if (err < 0)
2784 		goto free_modinfo;
2785 
2786 	flush_module_icache(mod);
2787 
2788 	/* Setup CFI for the module. */
2789 	cfi_init(mod);
2790 
2791 	/* Now copy in args */
2792 	mod->args = strndup_user(uargs, ~0UL >> 1);
2793 	if (IS_ERR(mod->args)) {
2794 		err = PTR_ERR(mod->args);
2795 		goto free_arch_cleanup;
2796 	}
2797 
2798 	init_build_id(mod, info);
2799 	dynamic_debug_setup(mod, info->debug, info->num_debug);
2800 
2801 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2802 	ftrace_module_init(mod);
2803 
2804 	/* Finally it's fully formed, ready to start executing. */
2805 	err = complete_formation(mod, info);
2806 	if (err)
2807 		goto ddebug_cleanup;
2808 
2809 	err = prepare_coming_module(mod);
2810 	if (err)
2811 		goto bug_cleanup;
2812 
2813 	/* Module is ready to execute: parsing args may do that. */
2814 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2815 				  -32768, 32767, mod,
2816 				  unknown_module_param_cb);
2817 	if (IS_ERR(after_dashes)) {
2818 		err = PTR_ERR(after_dashes);
2819 		goto coming_cleanup;
2820 	} else if (after_dashes) {
2821 		pr_warn("%s: parameters '%s' after `--' ignored\n",
2822 		       mod->name, after_dashes);
2823 	}
2824 
2825 	/* Link in to sysfs. */
2826 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
2827 	if (err < 0)
2828 		goto coming_cleanup;
2829 
2830 	if (is_livepatch_module(mod)) {
2831 		err = copy_module_elf(mod, info);
2832 		if (err < 0)
2833 			goto sysfs_cleanup;
2834 	}
2835 
2836 	/* Get rid of temporary copy. */
2837 	free_copy(info, flags);
2838 
2839 	/* Done! */
2840 	trace_module_load(mod);
2841 
2842 	return do_init_module(mod);
2843 
2844  sysfs_cleanup:
2845 	mod_sysfs_teardown(mod);
2846  coming_cleanup:
2847 	mod->state = MODULE_STATE_GOING;
2848 	destroy_params(mod->kp, mod->num_kp);
2849 	blocking_notifier_call_chain(&module_notify_list,
2850 				     MODULE_STATE_GOING, mod);
2851 	klp_module_going(mod);
2852  bug_cleanup:
2853 	mod->state = MODULE_STATE_GOING;
2854 	/* module_bug_cleanup needs module_mutex protection */
2855 	mutex_lock(&module_mutex);
2856 	module_bug_cleanup(mod);
2857 	mutex_unlock(&module_mutex);
2858 
2859  ddebug_cleanup:
2860 	ftrace_release_mod(mod);
2861 	dynamic_debug_remove(mod, info->debug);
2862 	synchronize_rcu();
2863 	kfree(mod->args);
2864  free_arch_cleanup:
2865 	cfi_cleanup(mod);
2866 	module_arch_cleanup(mod);
2867  free_modinfo:
2868 	free_modinfo(mod);
2869  free_unload:
2870 	module_unload_free(mod);
2871  unlink_mod:
2872 	mutex_lock(&module_mutex);
2873 	/* Unlink carefully: kallsyms could be walking list. */
2874 	list_del_rcu(&mod->list);
2875 	mod_tree_remove(mod);
2876 	wake_up_all(&module_wq);
2877 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
2878 	synchronize_rcu();
2879 	mutex_unlock(&module_mutex);
2880  free_module:
2881 	/* Free lock-classes; relies on the preceding sync_rcu() */
2882 	lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
2883 
2884 	module_deallocate(mod, info);
2885  free_copy:
2886 	free_copy(info, flags);
2887 	return err;
2888 }
2889 
2890 SYSCALL_DEFINE3(init_module, void __user *, umod,
2891 		unsigned long, len, const char __user *, uargs)
2892 {
2893 	int err;
2894 	struct load_info info = { };
2895 
2896 	err = may_init_module();
2897 	if (err)
2898 		return err;
2899 
2900 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
2901 	       umod, len, uargs);
2902 
2903 	err = copy_module_from_user(umod, len, &info);
2904 	if (err)
2905 		return err;
2906 
2907 	return load_module(&info, uargs, 0);
2908 }
2909 
2910 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
2911 {
2912 	struct load_info info = { };
2913 	void *buf = NULL;
2914 	int len;
2915 	int err;
2916 
2917 	err = may_init_module();
2918 	if (err)
2919 		return err;
2920 
2921 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
2922 
2923 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
2924 		      |MODULE_INIT_IGNORE_VERMAGIC
2925 		      |MODULE_INIT_COMPRESSED_FILE))
2926 		return -EINVAL;
2927 
2928 	len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL,
2929 				       READING_MODULE);
2930 	if (len < 0)
2931 		return len;
2932 
2933 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
2934 		err = module_decompress(&info, buf, len);
2935 		vfree(buf); /* compressed data is no longer needed */
2936 		if (err)
2937 			return err;
2938 	} else {
2939 		info.hdr = buf;
2940 		info.len = len;
2941 	}
2942 
2943 	return load_module(&info, uargs, flags);
2944 }
2945 
2946 static inline int within(unsigned long addr, void *start, unsigned long size)
2947 {
2948 	return ((void *)addr >= start && (void *)addr < start + size);
2949 }
2950 
2951 static void cfi_init(struct module *mod)
2952 {
2953 #ifdef CONFIG_CFI_CLANG
2954 	initcall_t *init;
2955 #ifdef CONFIG_MODULE_UNLOAD
2956 	exitcall_t *exit;
2957 #endif
2958 
2959 	rcu_read_lock_sched();
2960 	mod->cfi_check = (cfi_check_fn)
2961 		find_kallsyms_symbol_value(mod, "__cfi_check");
2962 	init = (initcall_t *)
2963 		find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
2964 	/* Fix init/exit functions to point to the CFI jump table */
2965 	if (init)
2966 		mod->init = *init;
2967 #ifdef CONFIG_MODULE_UNLOAD
2968 	exit = (exitcall_t *)
2969 		find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
2970 	if (exit)
2971 		mod->exit = *exit;
2972 #endif
2973 	rcu_read_unlock_sched();
2974 
2975 	cfi_module_add(mod, mod_tree.addr_min);
2976 #endif
2977 }
2978 
2979 static void cfi_cleanup(struct module *mod)
2980 {
2981 #ifdef CONFIG_CFI_CLANG
2982 	cfi_module_remove(mod, mod_tree.addr_min);
2983 #endif
2984 }
2985 
2986 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
2987 char *module_flags(struct module *mod, char *buf)
2988 {
2989 	int bx = 0;
2990 
2991 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
2992 	if (mod->taints ||
2993 	    mod->state == MODULE_STATE_GOING ||
2994 	    mod->state == MODULE_STATE_COMING) {
2995 		buf[bx++] = '(';
2996 		bx += module_flags_taint(mod->taints, buf + bx);
2997 		/* Show a - for module-is-being-unloaded */
2998 		if (mod->state == MODULE_STATE_GOING)
2999 			buf[bx++] = '-';
3000 		/* Show a + for module-is-being-loaded */
3001 		if (mod->state == MODULE_STATE_COMING)
3002 			buf[bx++] = '+';
3003 		buf[bx++] = ')';
3004 	}
3005 	buf[bx] = '\0';
3006 
3007 	return buf;
3008 }
3009 
3010 /* Given an address, look for it in the module exception tables. */
3011 const struct exception_table_entry *search_module_extables(unsigned long addr)
3012 {
3013 	const struct exception_table_entry *e = NULL;
3014 	struct module *mod;
3015 
3016 	preempt_disable();
3017 	mod = __module_address(addr);
3018 	if (!mod)
3019 		goto out;
3020 
3021 	if (!mod->num_exentries)
3022 		goto out;
3023 
3024 	e = search_extable(mod->extable,
3025 			   mod->num_exentries,
3026 			   addr);
3027 out:
3028 	preempt_enable();
3029 
3030 	/*
3031 	 * Now, if we found one, we are running inside it now, hence
3032 	 * we cannot unload the module, hence no refcnt needed.
3033 	 */
3034 	return e;
3035 }
3036 
3037 /**
3038  * is_module_address() - is this address inside a module?
3039  * @addr: the address to check.
3040  *
3041  * See is_module_text_address() if you simply want to see if the address
3042  * is code (not data).
3043  */
3044 bool is_module_address(unsigned long addr)
3045 {
3046 	bool ret;
3047 
3048 	preempt_disable();
3049 	ret = __module_address(addr) != NULL;
3050 	preempt_enable();
3051 
3052 	return ret;
3053 }
3054 
3055 /**
3056  * __module_address() - get the module which contains an address.
3057  * @addr: the address.
3058  *
3059  * Must be called with preempt disabled or module mutex held so that
3060  * module doesn't get freed during this.
3061  */
3062 struct module *__module_address(unsigned long addr)
3063 {
3064 	struct module *mod;
3065 	struct mod_tree_root *tree;
3066 
3067 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3068 		tree = &mod_tree;
3069 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3070 	else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max)
3071 		tree = &mod_data_tree;
3072 #endif
3073 	else
3074 		return NULL;
3075 
3076 	module_assert_mutex_or_preempt();
3077 
3078 	mod = mod_find(addr, tree);
3079 	if (mod) {
3080 		BUG_ON(!within_module(addr, mod));
3081 		if (mod->state == MODULE_STATE_UNFORMED)
3082 			mod = NULL;
3083 	}
3084 	return mod;
3085 }
3086 
3087 /**
3088  * is_module_text_address() - is this address inside module code?
3089  * @addr: the address to check.
3090  *
3091  * See is_module_address() if you simply want to see if the address is
3092  * anywhere in a module.  See kernel_text_address() for testing if an
3093  * address corresponds to kernel or module code.
3094  */
3095 bool is_module_text_address(unsigned long addr)
3096 {
3097 	bool ret;
3098 
3099 	preempt_disable();
3100 	ret = __module_text_address(addr) != NULL;
3101 	preempt_enable();
3102 
3103 	return ret;
3104 }
3105 
3106 /**
3107  * __module_text_address() - get the module whose code contains an address.
3108  * @addr: the address.
3109  *
3110  * Must be called with preempt disabled or module mutex held so that
3111  * module doesn't get freed during this.
3112  */
3113 struct module *__module_text_address(unsigned long addr)
3114 {
3115 	struct module *mod = __module_address(addr);
3116 	if (mod) {
3117 		/* Make sure it's within the text section. */
3118 		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
3119 		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
3120 			mod = NULL;
3121 	}
3122 	return mod;
3123 }
3124 
3125 /* Don't grab lock, we're oopsing. */
3126 void print_modules(void)
3127 {
3128 	struct module *mod;
3129 	char buf[MODULE_FLAGS_BUF_SIZE];
3130 
3131 	printk(KERN_DEFAULT "Modules linked in:");
3132 	/* Most callers should already have preempt disabled, but make sure */
3133 	preempt_disable();
3134 	list_for_each_entry_rcu(mod, &modules, list) {
3135 		if (mod->state == MODULE_STATE_UNFORMED)
3136 			continue;
3137 		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
3138 	}
3139 
3140 	print_unloaded_tainted_modules();
3141 	preempt_enable();
3142 	if (last_unloaded_module[0])
3143 		pr_cont(" [last unloaded: %s]", last_unloaded_module);
3144 	pr_cont("\n");
3145 }
3146