1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 */ 6 7 #define INCLUDE_VERMAGIC 8 9 #include <linux/export.h> 10 #include <linux/extable.h> 11 #include <linux/moduleloader.h> 12 #include <linux/module_signature.h> 13 #include <linux/trace_events.h> 14 #include <linux/init.h> 15 #include <linux/kallsyms.h> 16 #include <linux/buildid.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/elf.h> 23 #include <linux/seq_file.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/rcupdate.h> 27 #include <linux/capability.h> 28 #include <linux/cpu.h> 29 #include <linux/moduleparam.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/vermagic.h> 33 #include <linux/notifier.h> 34 #include <linux/sched.h> 35 #include <linux/device.h> 36 #include <linux/string.h> 37 #include <linux/mutex.h> 38 #include <linux/rculist.h> 39 #include <linux/uaccess.h> 40 #include <asm/cacheflush.h> 41 #include <linux/set_memory.h> 42 #include <asm/mmu_context.h> 43 #include <linux/license.h> 44 #include <asm/sections.h> 45 #include <linux/tracepoint.h> 46 #include <linux/ftrace.h> 47 #include <linux/livepatch.h> 48 #include <linux/async.h> 49 #include <linux/percpu.h> 50 #include <linux/kmemleak.h> 51 #include <linux/jump_label.h> 52 #include <linux/pfn.h> 53 #include <linux/bsearch.h> 54 #include <linux/dynamic_debug.h> 55 #include <linux/audit.h> 56 #include <linux/cfi.h> 57 #include <uapi/linux/module.h> 58 #include "internal.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/module.h> 62 63 /* 64 * Mutex protects: 65 * 1) List of modules (also safely readable with preempt_disable), 66 * 2) module_use links, 67 * 3) mod_tree.addr_min/mod_tree.addr_max. 68 * (delete and add uses RCU list operations). 69 */ 70 DEFINE_MUTEX(module_mutex); 71 LIST_HEAD(modules); 72 73 /* Work queue for freeing init sections in success case */ 74 static void do_free_init(struct work_struct *w); 75 static DECLARE_WORK(init_free_wq, do_free_init); 76 static LLIST_HEAD(init_free_list); 77 78 struct mod_tree_root mod_tree __cacheline_aligned = { 79 .addr_min = -1UL, 80 }; 81 82 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 83 struct mod_tree_root mod_data_tree __cacheline_aligned = { 84 .addr_min = -1UL, 85 }; 86 #endif 87 88 struct symsearch { 89 const struct kernel_symbol *start, *stop; 90 const s32 *crcs; 91 enum mod_license license; 92 }; 93 94 /* 95 * Bounds of module text, for speeding up __module_address. 96 * Protected by module_mutex. 97 */ 98 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree) 99 { 100 unsigned long min = (unsigned long)base; 101 unsigned long max = min + size; 102 103 if (min < tree->addr_min) 104 tree->addr_min = min; 105 if (max > tree->addr_max) 106 tree->addr_max = max; 107 } 108 109 static void mod_update_bounds(struct module *mod) 110 { 111 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree); 112 if (mod->init_layout.size) 113 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree); 114 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 115 __mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree); 116 #endif 117 } 118 119 /* Block module loading/unloading? */ 120 int modules_disabled; 121 core_param(nomodule, modules_disabled, bint, 0); 122 123 /* Waiting for a module to finish initializing? */ 124 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 125 126 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 127 128 int register_module_notifier(struct notifier_block *nb) 129 { 130 return blocking_notifier_chain_register(&module_notify_list, nb); 131 } 132 EXPORT_SYMBOL(register_module_notifier); 133 134 int unregister_module_notifier(struct notifier_block *nb) 135 { 136 return blocking_notifier_chain_unregister(&module_notify_list, nb); 137 } 138 EXPORT_SYMBOL(unregister_module_notifier); 139 140 /* 141 * We require a truly strong try_module_get(): 0 means success. 142 * Otherwise an error is returned due to ongoing or failed 143 * initialization etc. 144 */ 145 static inline int strong_try_module_get(struct module *mod) 146 { 147 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 148 if (mod && mod->state == MODULE_STATE_COMING) 149 return -EBUSY; 150 if (try_module_get(mod)) 151 return 0; 152 else 153 return -ENOENT; 154 } 155 156 static inline void add_taint_module(struct module *mod, unsigned flag, 157 enum lockdep_ok lockdep_ok) 158 { 159 add_taint(flag, lockdep_ok); 160 set_bit(flag, &mod->taints); 161 } 162 163 /* 164 * A thread that wants to hold a reference to a module only while it 165 * is running can call this to safely exit. 166 */ 167 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 168 { 169 module_put(mod); 170 kthread_exit(code); 171 } 172 EXPORT_SYMBOL(__module_put_and_kthread_exit); 173 174 /* Find a module section: 0 means not found. */ 175 static unsigned int find_sec(const struct load_info *info, const char *name) 176 { 177 unsigned int i; 178 179 for (i = 1; i < info->hdr->e_shnum; i++) { 180 Elf_Shdr *shdr = &info->sechdrs[i]; 181 /* Alloc bit cleared means "ignore it." */ 182 if ((shdr->sh_flags & SHF_ALLOC) 183 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 184 return i; 185 } 186 return 0; 187 } 188 189 /* Find a module section, or NULL. */ 190 static void *section_addr(const struct load_info *info, const char *name) 191 { 192 /* Section 0 has sh_addr 0. */ 193 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 194 } 195 196 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 197 static void *section_objs(const struct load_info *info, 198 const char *name, 199 size_t object_size, 200 unsigned int *num) 201 { 202 unsigned int sec = find_sec(info, name); 203 204 /* Section 0 has sh_addr 0 and sh_size 0. */ 205 *num = info->sechdrs[sec].sh_size / object_size; 206 return (void *)info->sechdrs[sec].sh_addr; 207 } 208 209 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 210 static unsigned int find_any_sec(const struct load_info *info, const char *name) 211 { 212 unsigned int i; 213 214 for (i = 1; i < info->hdr->e_shnum; i++) { 215 Elf_Shdr *shdr = &info->sechdrs[i]; 216 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 217 return i; 218 } 219 return 0; 220 } 221 222 /* 223 * Find a module section, or NULL. Fill in number of "objects" in section. 224 * Ignores SHF_ALLOC flag. 225 */ 226 static __maybe_unused void *any_section_objs(const struct load_info *info, 227 const char *name, 228 size_t object_size, 229 unsigned int *num) 230 { 231 unsigned int sec = find_any_sec(info, name); 232 233 /* Section 0 has sh_addr 0 and sh_size 0. */ 234 *num = info->sechdrs[sec].sh_size / object_size; 235 return (void *)info->sechdrs[sec].sh_addr; 236 } 237 238 #ifndef CONFIG_MODVERSIONS 239 #define symversion(base, idx) NULL 240 #else 241 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 242 #endif 243 244 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 245 { 246 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 247 return offset_to_ptr(&sym->name_offset); 248 #else 249 return sym->name; 250 #endif 251 } 252 253 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 254 { 255 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 256 if (!sym->namespace_offset) 257 return NULL; 258 return offset_to_ptr(&sym->namespace_offset); 259 #else 260 return sym->namespace; 261 #endif 262 } 263 264 int cmp_name(const void *name, const void *sym) 265 { 266 return strcmp(name, kernel_symbol_name(sym)); 267 } 268 269 static bool find_exported_symbol_in_section(const struct symsearch *syms, 270 struct module *owner, 271 struct find_symbol_arg *fsa) 272 { 273 struct kernel_symbol *sym; 274 275 if (!fsa->gplok && syms->license == GPL_ONLY) 276 return false; 277 278 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 279 sizeof(struct kernel_symbol), cmp_name); 280 if (!sym) 281 return false; 282 283 fsa->owner = owner; 284 fsa->crc = symversion(syms->crcs, sym - syms->start); 285 fsa->sym = sym; 286 fsa->license = syms->license; 287 288 return true; 289 } 290 291 /* 292 * Find an exported symbol and return it, along with, (optional) crc and 293 * (optional) module which owns it. Needs preempt disabled or module_mutex. 294 */ 295 bool find_symbol(struct find_symbol_arg *fsa) 296 { 297 static const struct symsearch arr[] = { 298 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 299 NOT_GPL_ONLY }, 300 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 301 __start___kcrctab_gpl, 302 GPL_ONLY }, 303 }; 304 struct module *mod; 305 unsigned int i; 306 307 module_assert_mutex_or_preempt(); 308 309 for (i = 0; i < ARRAY_SIZE(arr); i++) 310 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 311 return true; 312 313 list_for_each_entry_rcu(mod, &modules, list, 314 lockdep_is_held(&module_mutex)) { 315 struct symsearch arr[] = { 316 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 317 NOT_GPL_ONLY }, 318 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 319 mod->gpl_crcs, 320 GPL_ONLY }, 321 }; 322 323 if (mod->state == MODULE_STATE_UNFORMED) 324 continue; 325 326 for (i = 0; i < ARRAY_SIZE(arr); i++) 327 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 328 return true; 329 } 330 331 pr_debug("Failed to find symbol %s\n", fsa->name); 332 return false; 333 } 334 335 /* 336 * Search for module by name: must hold module_mutex (or preempt disabled 337 * for read-only access). 338 */ 339 struct module *find_module_all(const char *name, size_t len, 340 bool even_unformed) 341 { 342 struct module *mod; 343 344 module_assert_mutex_or_preempt(); 345 346 list_for_each_entry_rcu(mod, &modules, list, 347 lockdep_is_held(&module_mutex)) { 348 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 349 continue; 350 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 351 return mod; 352 } 353 return NULL; 354 } 355 356 struct module *find_module(const char *name) 357 { 358 return find_module_all(name, strlen(name), false); 359 } 360 361 #ifdef CONFIG_SMP 362 363 static inline void __percpu *mod_percpu(struct module *mod) 364 { 365 return mod->percpu; 366 } 367 368 static int percpu_modalloc(struct module *mod, struct load_info *info) 369 { 370 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 371 unsigned long align = pcpusec->sh_addralign; 372 373 if (!pcpusec->sh_size) 374 return 0; 375 376 if (align > PAGE_SIZE) { 377 pr_warn("%s: per-cpu alignment %li > %li\n", 378 mod->name, align, PAGE_SIZE); 379 align = PAGE_SIZE; 380 } 381 382 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 383 if (!mod->percpu) { 384 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 385 mod->name, (unsigned long)pcpusec->sh_size); 386 return -ENOMEM; 387 } 388 mod->percpu_size = pcpusec->sh_size; 389 return 0; 390 } 391 392 static void percpu_modfree(struct module *mod) 393 { 394 free_percpu(mod->percpu); 395 } 396 397 static unsigned int find_pcpusec(struct load_info *info) 398 { 399 return find_sec(info, ".data..percpu"); 400 } 401 402 static void percpu_modcopy(struct module *mod, 403 const void *from, unsigned long size) 404 { 405 int cpu; 406 407 for_each_possible_cpu(cpu) 408 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 409 } 410 411 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 412 { 413 struct module *mod; 414 unsigned int cpu; 415 416 preempt_disable(); 417 418 list_for_each_entry_rcu(mod, &modules, list) { 419 if (mod->state == MODULE_STATE_UNFORMED) 420 continue; 421 if (!mod->percpu_size) 422 continue; 423 for_each_possible_cpu(cpu) { 424 void *start = per_cpu_ptr(mod->percpu, cpu); 425 void *va = (void *)addr; 426 427 if (va >= start && va < start + mod->percpu_size) { 428 if (can_addr) { 429 *can_addr = (unsigned long) (va - start); 430 *can_addr += (unsigned long) 431 per_cpu_ptr(mod->percpu, 432 get_boot_cpu_id()); 433 } 434 preempt_enable(); 435 return true; 436 } 437 } 438 } 439 440 preempt_enable(); 441 return false; 442 } 443 444 /** 445 * is_module_percpu_address() - test whether address is from module static percpu 446 * @addr: address to test 447 * 448 * Test whether @addr belongs to module static percpu area. 449 * 450 * Return: %true if @addr is from module static percpu area 451 */ 452 bool is_module_percpu_address(unsigned long addr) 453 { 454 return __is_module_percpu_address(addr, NULL); 455 } 456 457 #else /* ... !CONFIG_SMP */ 458 459 static inline void __percpu *mod_percpu(struct module *mod) 460 { 461 return NULL; 462 } 463 static int percpu_modalloc(struct module *mod, struct load_info *info) 464 { 465 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 466 if (info->sechdrs[info->index.pcpu].sh_size != 0) 467 return -ENOMEM; 468 return 0; 469 } 470 static inline void percpu_modfree(struct module *mod) 471 { 472 } 473 static unsigned int find_pcpusec(struct load_info *info) 474 { 475 return 0; 476 } 477 static inline void percpu_modcopy(struct module *mod, 478 const void *from, unsigned long size) 479 { 480 /* pcpusec should be 0, and size of that section should be 0. */ 481 BUG_ON(size != 0); 482 } 483 bool is_module_percpu_address(unsigned long addr) 484 { 485 return false; 486 } 487 488 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 489 { 490 return false; 491 } 492 493 #endif /* CONFIG_SMP */ 494 495 #define MODINFO_ATTR(field) \ 496 static void setup_modinfo_##field(struct module *mod, const char *s) \ 497 { \ 498 mod->field = kstrdup(s, GFP_KERNEL); \ 499 } \ 500 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \ 501 struct module_kobject *mk, char *buffer) \ 502 { \ 503 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 504 } \ 505 static int modinfo_##field##_exists(struct module *mod) \ 506 { \ 507 return mod->field != NULL; \ 508 } \ 509 static void free_modinfo_##field(struct module *mod) \ 510 { \ 511 kfree(mod->field); \ 512 mod->field = NULL; \ 513 } \ 514 static struct module_attribute modinfo_##field = { \ 515 .attr = { .name = __stringify(field), .mode = 0444 }, \ 516 .show = show_modinfo_##field, \ 517 .setup = setup_modinfo_##field, \ 518 .test = modinfo_##field##_exists, \ 519 .free = free_modinfo_##field, \ 520 }; 521 522 MODINFO_ATTR(version); 523 MODINFO_ATTR(srcversion); 524 525 static struct { 526 char name[MODULE_NAME_LEN + 1]; 527 char taints[MODULE_FLAGS_BUF_SIZE]; 528 } last_unloaded_module; 529 530 #ifdef CONFIG_MODULE_UNLOAD 531 532 EXPORT_TRACEPOINT_SYMBOL(module_get); 533 534 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 535 #define MODULE_REF_BASE 1 536 537 /* Init the unload section of the module. */ 538 static int module_unload_init(struct module *mod) 539 { 540 /* 541 * Initialize reference counter to MODULE_REF_BASE. 542 * refcnt == 0 means module is going. 543 */ 544 atomic_set(&mod->refcnt, MODULE_REF_BASE); 545 546 INIT_LIST_HEAD(&mod->source_list); 547 INIT_LIST_HEAD(&mod->target_list); 548 549 /* Hold reference count during initialization. */ 550 atomic_inc(&mod->refcnt); 551 552 return 0; 553 } 554 555 /* Does a already use b? */ 556 static int already_uses(struct module *a, struct module *b) 557 { 558 struct module_use *use; 559 560 list_for_each_entry(use, &b->source_list, source_list) { 561 if (use->source == a) { 562 pr_debug("%s uses %s!\n", a->name, b->name); 563 return 1; 564 } 565 } 566 pr_debug("%s does not use %s!\n", a->name, b->name); 567 return 0; 568 } 569 570 /* 571 * Module a uses b 572 * - we add 'a' as a "source", 'b' as a "target" of module use 573 * - the module_use is added to the list of 'b' sources (so 574 * 'b' can walk the list to see who sourced them), and of 'a' 575 * targets (so 'a' can see what modules it targets). 576 */ 577 static int add_module_usage(struct module *a, struct module *b) 578 { 579 struct module_use *use; 580 581 pr_debug("Allocating new usage for %s.\n", a->name); 582 use = kmalloc(sizeof(*use), GFP_ATOMIC); 583 if (!use) 584 return -ENOMEM; 585 586 use->source = a; 587 use->target = b; 588 list_add(&use->source_list, &b->source_list); 589 list_add(&use->target_list, &a->target_list); 590 return 0; 591 } 592 593 /* Module a uses b: caller needs module_mutex() */ 594 static int ref_module(struct module *a, struct module *b) 595 { 596 int err; 597 598 if (b == NULL || already_uses(a, b)) 599 return 0; 600 601 /* If module isn't available, we fail. */ 602 err = strong_try_module_get(b); 603 if (err) 604 return err; 605 606 err = add_module_usage(a, b); 607 if (err) { 608 module_put(b); 609 return err; 610 } 611 return 0; 612 } 613 614 /* Clear the unload stuff of the module. */ 615 static void module_unload_free(struct module *mod) 616 { 617 struct module_use *use, *tmp; 618 619 mutex_lock(&module_mutex); 620 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 621 struct module *i = use->target; 622 pr_debug("%s unusing %s\n", mod->name, i->name); 623 module_put(i); 624 list_del(&use->source_list); 625 list_del(&use->target_list); 626 kfree(use); 627 } 628 mutex_unlock(&module_mutex); 629 } 630 631 #ifdef CONFIG_MODULE_FORCE_UNLOAD 632 static inline int try_force_unload(unsigned int flags) 633 { 634 int ret = (flags & O_TRUNC); 635 if (ret) 636 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 637 return ret; 638 } 639 #else 640 static inline int try_force_unload(unsigned int flags) 641 { 642 return 0; 643 } 644 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 645 646 /* Try to release refcount of module, 0 means success. */ 647 static int try_release_module_ref(struct module *mod) 648 { 649 int ret; 650 651 /* Try to decrement refcnt which we set at loading */ 652 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 653 BUG_ON(ret < 0); 654 if (ret) 655 /* Someone can put this right now, recover with checking */ 656 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 657 658 return ret; 659 } 660 661 static int try_stop_module(struct module *mod, int flags, int *forced) 662 { 663 /* If it's not unused, quit unless we're forcing. */ 664 if (try_release_module_ref(mod) != 0) { 665 *forced = try_force_unload(flags); 666 if (!(*forced)) 667 return -EWOULDBLOCK; 668 } 669 670 /* Mark it as dying. */ 671 mod->state = MODULE_STATE_GOING; 672 673 return 0; 674 } 675 676 /** 677 * module_refcount() - return the refcount or -1 if unloading 678 * @mod: the module we're checking 679 * 680 * Return: 681 * -1 if the module is in the process of unloading 682 * otherwise the number of references in the kernel to the module 683 */ 684 int module_refcount(struct module *mod) 685 { 686 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 687 } 688 EXPORT_SYMBOL(module_refcount); 689 690 /* This exists whether we can unload or not */ 691 static void free_module(struct module *mod); 692 693 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 694 unsigned int, flags) 695 { 696 struct module *mod; 697 char name[MODULE_NAME_LEN]; 698 char buf[MODULE_FLAGS_BUF_SIZE]; 699 int ret, forced = 0; 700 701 if (!capable(CAP_SYS_MODULE) || modules_disabled) 702 return -EPERM; 703 704 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 705 return -EFAULT; 706 name[MODULE_NAME_LEN-1] = '\0'; 707 708 audit_log_kern_module(name); 709 710 if (mutex_lock_interruptible(&module_mutex) != 0) 711 return -EINTR; 712 713 mod = find_module(name); 714 if (!mod) { 715 ret = -ENOENT; 716 goto out; 717 } 718 719 if (!list_empty(&mod->source_list)) { 720 /* Other modules depend on us: get rid of them first. */ 721 ret = -EWOULDBLOCK; 722 goto out; 723 } 724 725 /* Doing init or already dying? */ 726 if (mod->state != MODULE_STATE_LIVE) { 727 /* FIXME: if (force), slam module count damn the torpedoes */ 728 pr_debug("%s already dying\n", mod->name); 729 ret = -EBUSY; 730 goto out; 731 } 732 733 /* If it has an init func, it must have an exit func to unload */ 734 if (mod->init && !mod->exit) { 735 forced = try_force_unload(flags); 736 if (!forced) { 737 /* This module can't be removed */ 738 ret = -EBUSY; 739 goto out; 740 } 741 } 742 743 ret = try_stop_module(mod, flags, &forced); 744 if (ret != 0) 745 goto out; 746 747 mutex_unlock(&module_mutex); 748 /* Final destruction now no one is using it. */ 749 if (mod->exit != NULL) 750 mod->exit(); 751 blocking_notifier_call_chain(&module_notify_list, 752 MODULE_STATE_GOING, mod); 753 klp_module_going(mod); 754 ftrace_release_mod(mod); 755 756 async_synchronize_full(); 757 758 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 759 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 760 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 761 762 free_module(mod); 763 /* someone could wait for the module in add_unformed_module() */ 764 wake_up_all(&module_wq); 765 return 0; 766 out: 767 mutex_unlock(&module_mutex); 768 return ret; 769 } 770 771 void __symbol_put(const char *symbol) 772 { 773 struct find_symbol_arg fsa = { 774 .name = symbol, 775 .gplok = true, 776 }; 777 778 preempt_disable(); 779 BUG_ON(!find_symbol(&fsa)); 780 module_put(fsa.owner); 781 preempt_enable(); 782 } 783 EXPORT_SYMBOL(__symbol_put); 784 785 /* Note this assumes addr is a function, which it currently always is. */ 786 void symbol_put_addr(void *addr) 787 { 788 struct module *modaddr; 789 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 790 791 if (core_kernel_text(a)) 792 return; 793 794 /* 795 * Even though we hold a reference on the module; we still need to 796 * disable preemption in order to safely traverse the data structure. 797 */ 798 preempt_disable(); 799 modaddr = __module_text_address(a); 800 BUG_ON(!modaddr); 801 module_put(modaddr); 802 preempt_enable(); 803 } 804 EXPORT_SYMBOL_GPL(symbol_put_addr); 805 806 static ssize_t show_refcnt(struct module_attribute *mattr, 807 struct module_kobject *mk, char *buffer) 808 { 809 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 810 } 811 812 static struct module_attribute modinfo_refcnt = 813 __ATTR(refcnt, 0444, show_refcnt, NULL); 814 815 void __module_get(struct module *module) 816 { 817 if (module) { 818 preempt_disable(); 819 atomic_inc(&module->refcnt); 820 trace_module_get(module, _RET_IP_); 821 preempt_enable(); 822 } 823 } 824 EXPORT_SYMBOL(__module_get); 825 826 bool try_module_get(struct module *module) 827 { 828 bool ret = true; 829 830 if (module) { 831 preempt_disable(); 832 /* Note: here, we can fail to get a reference */ 833 if (likely(module_is_live(module) && 834 atomic_inc_not_zero(&module->refcnt) != 0)) 835 trace_module_get(module, _RET_IP_); 836 else 837 ret = false; 838 839 preempt_enable(); 840 } 841 return ret; 842 } 843 EXPORT_SYMBOL(try_module_get); 844 845 void module_put(struct module *module) 846 { 847 int ret; 848 849 if (module) { 850 preempt_disable(); 851 ret = atomic_dec_if_positive(&module->refcnt); 852 WARN_ON(ret < 0); /* Failed to put refcount */ 853 trace_module_put(module, _RET_IP_); 854 preempt_enable(); 855 } 856 } 857 EXPORT_SYMBOL(module_put); 858 859 #else /* !CONFIG_MODULE_UNLOAD */ 860 static inline void module_unload_free(struct module *mod) 861 { 862 } 863 864 static int ref_module(struct module *a, struct module *b) 865 { 866 return strong_try_module_get(b); 867 } 868 869 static inline int module_unload_init(struct module *mod) 870 { 871 return 0; 872 } 873 #endif /* CONFIG_MODULE_UNLOAD */ 874 875 size_t module_flags_taint(unsigned long taints, char *buf) 876 { 877 size_t l = 0; 878 int i; 879 880 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 881 if (taint_flags[i].module && test_bit(i, &taints)) 882 buf[l++] = taint_flags[i].c_true; 883 } 884 885 return l; 886 } 887 888 static ssize_t show_initstate(struct module_attribute *mattr, 889 struct module_kobject *mk, char *buffer) 890 { 891 const char *state = "unknown"; 892 893 switch (mk->mod->state) { 894 case MODULE_STATE_LIVE: 895 state = "live"; 896 break; 897 case MODULE_STATE_COMING: 898 state = "coming"; 899 break; 900 case MODULE_STATE_GOING: 901 state = "going"; 902 break; 903 default: 904 BUG(); 905 } 906 return sprintf(buffer, "%s\n", state); 907 } 908 909 static struct module_attribute modinfo_initstate = 910 __ATTR(initstate, 0444, show_initstate, NULL); 911 912 static ssize_t store_uevent(struct module_attribute *mattr, 913 struct module_kobject *mk, 914 const char *buffer, size_t count) 915 { 916 int rc; 917 918 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 919 return rc ? rc : count; 920 } 921 922 struct module_attribute module_uevent = 923 __ATTR(uevent, 0200, NULL, store_uevent); 924 925 static ssize_t show_coresize(struct module_attribute *mattr, 926 struct module_kobject *mk, char *buffer) 927 { 928 return sprintf(buffer, "%u\n", mk->mod->core_layout.size); 929 } 930 931 static struct module_attribute modinfo_coresize = 932 __ATTR(coresize, 0444, show_coresize, NULL); 933 934 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 935 static ssize_t show_datasize(struct module_attribute *mattr, 936 struct module_kobject *mk, char *buffer) 937 { 938 return sprintf(buffer, "%u\n", mk->mod->data_layout.size); 939 } 940 941 static struct module_attribute modinfo_datasize = 942 __ATTR(datasize, 0444, show_datasize, NULL); 943 #endif 944 945 static ssize_t show_initsize(struct module_attribute *mattr, 946 struct module_kobject *mk, char *buffer) 947 { 948 return sprintf(buffer, "%u\n", mk->mod->init_layout.size); 949 } 950 951 static struct module_attribute modinfo_initsize = 952 __ATTR(initsize, 0444, show_initsize, NULL); 953 954 static ssize_t show_taint(struct module_attribute *mattr, 955 struct module_kobject *mk, char *buffer) 956 { 957 size_t l; 958 959 l = module_flags_taint(mk->mod->taints, buffer); 960 buffer[l++] = '\n'; 961 return l; 962 } 963 964 static struct module_attribute modinfo_taint = 965 __ATTR(taint, 0444, show_taint, NULL); 966 967 struct module_attribute *modinfo_attrs[] = { 968 &module_uevent, 969 &modinfo_version, 970 &modinfo_srcversion, 971 &modinfo_initstate, 972 &modinfo_coresize, 973 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 974 &modinfo_datasize, 975 #endif 976 &modinfo_initsize, 977 &modinfo_taint, 978 #ifdef CONFIG_MODULE_UNLOAD 979 &modinfo_refcnt, 980 #endif 981 NULL, 982 }; 983 984 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 985 986 static const char vermagic[] = VERMAGIC_STRING; 987 988 int try_to_force_load(struct module *mod, const char *reason) 989 { 990 #ifdef CONFIG_MODULE_FORCE_LOAD 991 if (!test_taint(TAINT_FORCED_MODULE)) 992 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 993 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 994 return 0; 995 #else 996 return -ENOEXEC; 997 #endif 998 } 999 1000 static char *get_modinfo(const struct load_info *info, const char *tag); 1001 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1002 char *prev); 1003 1004 static int verify_namespace_is_imported(const struct load_info *info, 1005 const struct kernel_symbol *sym, 1006 struct module *mod) 1007 { 1008 const char *namespace; 1009 char *imported_namespace; 1010 1011 namespace = kernel_symbol_namespace(sym); 1012 if (namespace && namespace[0]) { 1013 imported_namespace = get_modinfo(info, "import_ns"); 1014 while (imported_namespace) { 1015 if (strcmp(namespace, imported_namespace) == 0) 1016 return 0; 1017 imported_namespace = get_next_modinfo( 1018 info, "import_ns", imported_namespace); 1019 } 1020 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1021 pr_warn( 1022 #else 1023 pr_err( 1024 #endif 1025 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1026 mod->name, kernel_symbol_name(sym), namespace); 1027 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1028 return -EINVAL; 1029 #endif 1030 } 1031 return 0; 1032 } 1033 1034 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1035 { 1036 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1037 return true; 1038 1039 if (mod->using_gplonly_symbols) { 1040 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1041 mod->name, name, owner->name); 1042 return false; 1043 } 1044 1045 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1046 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1047 mod->name, name, owner->name); 1048 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1049 } 1050 return true; 1051 } 1052 1053 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1054 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1055 const struct load_info *info, 1056 const char *name, 1057 char ownername[]) 1058 { 1059 struct find_symbol_arg fsa = { 1060 .name = name, 1061 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1062 .warn = true, 1063 }; 1064 int err; 1065 1066 /* 1067 * The module_mutex should not be a heavily contended lock; 1068 * if we get the occasional sleep here, we'll go an extra iteration 1069 * in the wait_event_interruptible(), which is harmless. 1070 */ 1071 sched_annotate_sleep(); 1072 mutex_lock(&module_mutex); 1073 if (!find_symbol(&fsa)) 1074 goto unlock; 1075 1076 if (fsa.license == GPL_ONLY) 1077 mod->using_gplonly_symbols = true; 1078 1079 if (!inherit_taint(mod, fsa.owner, name)) { 1080 fsa.sym = NULL; 1081 goto getname; 1082 } 1083 1084 if (!check_version(info, name, mod, fsa.crc)) { 1085 fsa.sym = ERR_PTR(-EINVAL); 1086 goto getname; 1087 } 1088 1089 err = verify_namespace_is_imported(info, fsa.sym, mod); 1090 if (err) { 1091 fsa.sym = ERR_PTR(err); 1092 goto getname; 1093 } 1094 1095 err = ref_module(mod, fsa.owner); 1096 if (err) { 1097 fsa.sym = ERR_PTR(err); 1098 goto getname; 1099 } 1100 1101 getname: 1102 /* We must make copy under the lock if we failed to get ref. */ 1103 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1104 unlock: 1105 mutex_unlock(&module_mutex); 1106 return fsa.sym; 1107 } 1108 1109 static const struct kernel_symbol * 1110 resolve_symbol_wait(struct module *mod, 1111 const struct load_info *info, 1112 const char *name) 1113 { 1114 const struct kernel_symbol *ksym; 1115 char owner[MODULE_NAME_LEN]; 1116 1117 if (wait_event_interruptible_timeout(module_wq, 1118 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1119 || PTR_ERR(ksym) != -EBUSY, 1120 30 * HZ) <= 0) { 1121 pr_warn("%s: gave up waiting for init of module %s.\n", 1122 mod->name, owner); 1123 } 1124 return ksym; 1125 } 1126 1127 void __weak module_memfree(void *module_region) 1128 { 1129 /* 1130 * This memory may be RO, and freeing RO memory in an interrupt is not 1131 * supported by vmalloc. 1132 */ 1133 WARN_ON(in_interrupt()); 1134 vfree(module_region); 1135 } 1136 1137 void __weak module_arch_cleanup(struct module *mod) 1138 { 1139 } 1140 1141 void __weak module_arch_freeing_init(struct module *mod) 1142 { 1143 } 1144 1145 /* Free a module, remove from lists, etc. */ 1146 static void free_module(struct module *mod) 1147 { 1148 trace_module_free(mod); 1149 1150 mod_sysfs_teardown(mod); 1151 1152 /* 1153 * We leave it in list to prevent duplicate loads, but make sure 1154 * that noone uses it while it's being deconstructed. 1155 */ 1156 mutex_lock(&module_mutex); 1157 mod->state = MODULE_STATE_UNFORMED; 1158 mutex_unlock(&module_mutex); 1159 1160 /* Remove dynamic debug info */ 1161 ddebug_remove_module(mod->name); 1162 1163 /* Arch-specific cleanup. */ 1164 module_arch_cleanup(mod); 1165 1166 /* Module unload stuff */ 1167 module_unload_free(mod); 1168 1169 /* Free any allocated parameters. */ 1170 destroy_params(mod->kp, mod->num_kp); 1171 1172 if (is_livepatch_module(mod)) 1173 free_module_elf(mod); 1174 1175 /* Now we can delete it from the lists */ 1176 mutex_lock(&module_mutex); 1177 /* Unlink carefully: kallsyms could be walking list. */ 1178 list_del_rcu(&mod->list); 1179 mod_tree_remove(mod); 1180 /* Remove this module from bug list, this uses list_del_rcu */ 1181 module_bug_cleanup(mod); 1182 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1183 synchronize_rcu(); 1184 if (try_add_tainted_module(mod)) 1185 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1186 mod->name); 1187 mutex_unlock(&module_mutex); 1188 1189 /* This may be empty, but that's OK */ 1190 module_arch_freeing_init(mod); 1191 module_memfree(mod->init_layout.base); 1192 kfree(mod->args); 1193 percpu_modfree(mod); 1194 1195 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1196 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size); 1197 1198 /* Finally, free the core (containing the module structure) */ 1199 module_memfree(mod->core_layout.base); 1200 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1201 vfree(mod->data_layout.base); 1202 #endif 1203 } 1204 1205 void *__symbol_get(const char *symbol) 1206 { 1207 struct find_symbol_arg fsa = { 1208 .name = symbol, 1209 .gplok = true, 1210 .warn = true, 1211 }; 1212 1213 preempt_disable(); 1214 if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) { 1215 preempt_enable(); 1216 return NULL; 1217 } 1218 preempt_enable(); 1219 return (void *)kernel_symbol_value(fsa.sym); 1220 } 1221 EXPORT_SYMBOL_GPL(__symbol_get); 1222 1223 /* 1224 * Ensure that an exported symbol [global namespace] does not already exist 1225 * in the kernel or in some other module's exported symbol table. 1226 * 1227 * You must hold the module_mutex. 1228 */ 1229 static int verify_exported_symbols(struct module *mod) 1230 { 1231 unsigned int i; 1232 const struct kernel_symbol *s; 1233 struct { 1234 const struct kernel_symbol *sym; 1235 unsigned int num; 1236 } arr[] = { 1237 { mod->syms, mod->num_syms }, 1238 { mod->gpl_syms, mod->num_gpl_syms }, 1239 }; 1240 1241 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1242 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1243 struct find_symbol_arg fsa = { 1244 .name = kernel_symbol_name(s), 1245 .gplok = true, 1246 }; 1247 if (find_symbol(&fsa)) { 1248 pr_err("%s: exports duplicate symbol %s" 1249 " (owned by %s)\n", 1250 mod->name, kernel_symbol_name(s), 1251 module_name(fsa.owner)); 1252 return -ENOEXEC; 1253 } 1254 } 1255 } 1256 return 0; 1257 } 1258 1259 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1260 { 1261 /* 1262 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1263 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1264 * i386 has a similar problem but may not deserve a fix. 1265 * 1266 * If we ever have to ignore many symbols, consider refactoring the code to 1267 * only warn if referenced by a relocation. 1268 */ 1269 if (emachine == EM_386 || emachine == EM_X86_64) 1270 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1271 return false; 1272 } 1273 1274 /* Change all symbols so that st_value encodes the pointer directly. */ 1275 static int simplify_symbols(struct module *mod, const struct load_info *info) 1276 { 1277 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1278 Elf_Sym *sym = (void *)symsec->sh_addr; 1279 unsigned long secbase; 1280 unsigned int i; 1281 int ret = 0; 1282 const struct kernel_symbol *ksym; 1283 1284 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1285 const char *name = info->strtab + sym[i].st_name; 1286 1287 switch (sym[i].st_shndx) { 1288 case SHN_COMMON: 1289 /* Ignore common symbols */ 1290 if (!strncmp(name, "__gnu_lto", 9)) 1291 break; 1292 1293 /* 1294 * We compiled with -fno-common. These are not 1295 * supposed to happen. 1296 */ 1297 pr_debug("Common symbol: %s\n", name); 1298 pr_warn("%s: please compile with -fno-common\n", 1299 mod->name); 1300 ret = -ENOEXEC; 1301 break; 1302 1303 case SHN_ABS: 1304 /* Don't need to do anything */ 1305 pr_debug("Absolute symbol: 0x%08lx\n", 1306 (long)sym[i].st_value); 1307 break; 1308 1309 case SHN_LIVEPATCH: 1310 /* Livepatch symbols are resolved by livepatch */ 1311 break; 1312 1313 case SHN_UNDEF: 1314 ksym = resolve_symbol_wait(mod, info, name); 1315 /* Ok if resolved. */ 1316 if (ksym && !IS_ERR(ksym)) { 1317 sym[i].st_value = kernel_symbol_value(ksym); 1318 break; 1319 } 1320 1321 /* Ok if weak or ignored. */ 1322 if (!ksym && 1323 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1324 ignore_undef_symbol(info->hdr->e_machine, name))) 1325 break; 1326 1327 ret = PTR_ERR(ksym) ?: -ENOENT; 1328 pr_warn("%s: Unknown symbol %s (err %d)\n", 1329 mod->name, name, ret); 1330 break; 1331 1332 default: 1333 /* Divert to percpu allocation if a percpu var. */ 1334 if (sym[i].st_shndx == info->index.pcpu) 1335 secbase = (unsigned long)mod_percpu(mod); 1336 else 1337 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1338 sym[i].st_value += secbase; 1339 break; 1340 } 1341 } 1342 1343 return ret; 1344 } 1345 1346 static int apply_relocations(struct module *mod, const struct load_info *info) 1347 { 1348 unsigned int i; 1349 int err = 0; 1350 1351 /* Now do relocations. */ 1352 for (i = 1; i < info->hdr->e_shnum; i++) { 1353 unsigned int infosec = info->sechdrs[i].sh_info; 1354 1355 /* Not a valid relocation section? */ 1356 if (infosec >= info->hdr->e_shnum) 1357 continue; 1358 1359 /* Don't bother with non-allocated sections */ 1360 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1361 continue; 1362 1363 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1364 err = klp_apply_section_relocs(mod, info->sechdrs, 1365 info->secstrings, 1366 info->strtab, 1367 info->index.sym, i, 1368 NULL); 1369 else if (info->sechdrs[i].sh_type == SHT_REL) 1370 err = apply_relocate(info->sechdrs, info->strtab, 1371 info->index.sym, i, mod); 1372 else if (info->sechdrs[i].sh_type == SHT_RELA) 1373 err = apply_relocate_add(info->sechdrs, info->strtab, 1374 info->index.sym, i, mod); 1375 if (err < 0) 1376 break; 1377 } 1378 return err; 1379 } 1380 1381 /* Additional bytes needed by arch in front of individual sections */ 1382 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1383 unsigned int section) 1384 { 1385 /* default implementation just returns zero */ 1386 return 0; 1387 } 1388 1389 /* Update size with this section: return offset. */ 1390 long module_get_offset(struct module *mod, unsigned int *size, 1391 Elf_Shdr *sechdr, unsigned int section) 1392 { 1393 long ret; 1394 1395 *size += arch_mod_section_prepend(mod, section); 1396 ret = ALIGN(*size, sechdr->sh_addralign ?: 1); 1397 *size = ret + sechdr->sh_size; 1398 return ret; 1399 } 1400 1401 static bool module_init_layout_section(const char *sname) 1402 { 1403 #ifndef CONFIG_MODULE_UNLOAD 1404 if (module_exit_section(sname)) 1405 return true; 1406 #endif 1407 return module_init_section(sname); 1408 } 1409 1410 /* 1411 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1412 * might -- code, read-only data, read-write data, small data. Tally 1413 * sizes, and place the offsets into sh_entsize fields: high bit means it 1414 * belongs in init. 1415 */ 1416 static void layout_sections(struct module *mod, struct load_info *info) 1417 { 1418 static unsigned long const masks[][2] = { 1419 /* 1420 * NOTE: all executable code must be the first section 1421 * in this array; otherwise modify the text_size 1422 * finder in the two loops below 1423 */ 1424 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1425 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1426 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1427 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1428 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1429 }; 1430 unsigned int m, i; 1431 1432 for (i = 0; i < info->hdr->e_shnum; i++) 1433 info->sechdrs[i].sh_entsize = ~0UL; 1434 1435 pr_debug("Core section allocation order:\n"); 1436 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1437 for (i = 0; i < info->hdr->e_shnum; ++i) { 1438 Elf_Shdr *s = &info->sechdrs[i]; 1439 const char *sname = info->secstrings + s->sh_name; 1440 unsigned int *sizep; 1441 1442 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1443 || (s->sh_flags & masks[m][1]) 1444 || s->sh_entsize != ~0UL 1445 || module_init_layout_section(sname)) 1446 continue; 1447 sizep = m ? &mod->data_layout.size : &mod->core_layout.size; 1448 s->sh_entsize = module_get_offset(mod, sizep, s, i); 1449 pr_debug("\t%s\n", sname); 1450 } 1451 switch (m) { 1452 case 0: /* executable */ 1453 mod->core_layout.size = strict_align(mod->core_layout.size); 1454 mod->core_layout.text_size = mod->core_layout.size; 1455 break; 1456 case 1: /* RO: text and ro-data */ 1457 mod->data_layout.size = strict_align(mod->data_layout.size); 1458 mod->data_layout.ro_size = mod->data_layout.size; 1459 break; 1460 case 2: /* RO after init */ 1461 mod->data_layout.size = strict_align(mod->data_layout.size); 1462 mod->data_layout.ro_after_init_size = mod->data_layout.size; 1463 break; 1464 case 4: /* whole core */ 1465 mod->data_layout.size = strict_align(mod->data_layout.size); 1466 break; 1467 } 1468 } 1469 1470 pr_debug("Init section allocation order:\n"); 1471 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1472 for (i = 0; i < info->hdr->e_shnum; ++i) { 1473 Elf_Shdr *s = &info->sechdrs[i]; 1474 const char *sname = info->secstrings + s->sh_name; 1475 1476 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1477 || (s->sh_flags & masks[m][1]) 1478 || s->sh_entsize != ~0UL 1479 || !module_init_layout_section(sname)) 1480 continue; 1481 s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i) 1482 | INIT_OFFSET_MASK); 1483 pr_debug("\t%s\n", sname); 1484 } 1485 switch (m) { 1486 case 0: /* executable */ 1487 mod->init_layout.size = strict_align(mod->init_layout.size); 1488 mod->init_layout.text_size = mod->init_layout.size; 1489 break; 1490 case 1: /* RO: text and ro-data */ 1491 mod->init_layout.size = strict_align(mod->init_layout.size); 1492 mod->init_layout.ro_size = mod->init_layout.size; 1493 break; 1494 case 2: 1495 /* 1496 * RO after init doesn't apply to init_layout (only 1497 * core_layout), so it just takes the value of ro_size. 1498 */ 1499 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size; 1500 break; 1501 case 4: /* whole init */ 1502 mod->init_layout.size = strict_align(mod->init_layout.size); 1503 break; 1504 } 1505 } 1506 } 1507 1508 static void set_license(struct module *mod, const char *license) 1509 { 1510 if (!license) 1511 license = "unspecified"; 1512 1513 if (!license_is_gpl_compatible(license)) { 1514 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1515 pr_warn("%s: module license '%s' taints kernel.\n", 1516 mod->name, license); 1517 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1518 LOCKDEP_NOW_UNRELIABLE); 1519 } 1520 } 1521 1522 /* Parse tag=value strings from .modinfo section */ 1523 static char *next_string(char *string, unsigned long *secsize) 1524 { 1525 /* Skip non-zero chars */ 1526 while (string[0]) { 1527 string++; 1528 if ((*secsize)-- <= 1) 1529 return NULL; 1530 } 1531 1532 /* Skip any zero padding. */ 1533 while (!string[0]) { 1534 string++; 1535 if ((*secsize)-- <= 1) 1536 return NULL; 1537 } 1538 return string; 1539 } 1540 1541 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1542 char *prev) 1543 { 1544 char *p; 1545 unsigned int taglen = strlen(tag); 1546 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1547 unsigned long size = infosec->sh_size; 1548 1549 /* 1550 * get_modinfo() calls made before rewrite_section_headers() 1551 * must use sh_offset, as sh_addr isn't set! 1552 */ 1553 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1554 1555 if (prev) { 1556 size -= prev - modinfo; 1557 modinfo = next_string(prev, &size); 1558 } 1559 1560 for (p = modinfo; p; p = next_string(p, &size)) { 1561 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1562 return p + taglen + 1; 1563 } 1564 return NULL; 1565 } 1566 1567 static char *get_modinfo(const struct load_info *info, const char *tag) 1568 { 1569 return get_next_modinfo(info, tag, NULL); 1570 } 1571 1572 static void setup_modinfo(struct module *mod, struct load_info *info) 1573 { 1574 struct module_attribute *attr; 1575 int i; 1576 1577 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1578 if (attr->setup) 1579 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1580 } 1581 } 1582 1583 static void free_modinfo(struct module *mod) 1584 { 1585 struct module_attribute *attr; 1586 int i; 1587 1588 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1589 if (attr->free) 1590 attr->free(mod); 1591 } 1592 } 1593 1594 static void dynamic_debug_setup(struct module *mod, struct _ddebug_info *dyndbg) 1595 { 1596 if (!dyndbg->num_descs) 1597 return; 1598 ddebug_add_module(dyndbg, mod->name); 1599 } 1600 1601 static void dynamic_debug_remove(struct module *mod, struct _ddebug_info *dyndbg) 1602 { 1603 if (dyndbg->num_descs) 1604 ddebug_remove_module(mod->name); 1605 } 1606 1607 void * __weak module_alloc(unsigned long size) 1608 { 1609 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 1610 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 1611 NUMA_NO_NODE, __builtin_return_address(0)); 1612 } 1613 1614 bool __weak module_init_section(const char *name) 1615 { 1616 return strstarts(name, ".init"); 1617 } 1618 1619 bool __weak module_exit_section(const char *name) 1620 { 1621 return strstarts(name, ".exit"); 1622 } 1623 1624 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr) 1625 { 1626 #if defined(CONFIG_64BIT) 1627 unsigned long long secend; 1628 #else 1629 unsigned long secend; 1630 #endif 1631 1632 /* 1633 * Check for both overflow and offset/size being 1634 * too large. 1635 */ 1636 secend = shdr->sh_offset + shdr->sh_size; 1637 if (secend < shdr->sh_offset || secend > info->len) 1638 return -ENOEXEC; 1639 1640 return 0; 1641 } 1642 1643 /* 1644 * Sanity checks against invalid binaries, wrong arch, weird elf version. 1645 * 1646 * Also do basic validity checks against section offsets and sizes, the 1647 * section name string table, and the indices used for it (sh_name). 1648 */ 1649 static int elf_validity_check(struct load_info *info) 1650 { 1651 unsigned int i; 1652 Elf_Shdr *shdr, *strhdr; 1653 int err; 1654 1655 if (info->len < sizeof(*(info->hdr))) { 1656 pr_err("Invalid ELF header len %lu\n", info->len); 1657 goto no_exec; 1658 } 1659 1660 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1661 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1662 goto no_exec; 1663 } 1664 if (info->hdr->e_type != ET_REL) { 1665 pr_err("Invalid ELF header type: %u != %u\n", 1666 info->hdr->e_type, ET_REL); 1667 goto no_exec; 1668 } 1669 if (!elf_check_arch(info->hdr)) { 1670 pr_err("Invalid architecture in ELF header: %u\n", 1671 info->hdr->e_machine); 1672 goto no_exec; 1673 } 1674 if (!module_elf_check_arch(info->hdr)) { 1675 pr_err("Invalid module architecture in ELF header: %u\n", 1676 info->hdr->e_machine); 1677 goto no_exec; 1678 } 1679 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1680 pr_err("Invalid ELF section header size\n"); 1681 goto no_exec; 1682 } 1683 1684 /* 1685 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1686 * known and small. So e_shnum * sizeof(Elf_Shdr) 1687 * will not overflow unsigned long on any platform. 1688 */ 1689 if (info->hdr->e_shoff >= info->len 1690 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1691 info->len - info->hdr->e_shoff)) { 1692 pr_err("Invalid ELF section header overflow\n"); 1693 goto no_exec; 1694 } 1695 1696 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1697 1698 /* 1699 * Verify if the section name table index is valid. 1700 */ 1701 if (info->hdr->e_shstrndx == SHN_UNDEF 1702 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1703 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1704 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1705 info->hdr->e_shnum); 1706 goto no_exec; 1707 } 1708 1709 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1710 err = validate_section_offset(info, strhdr); 1711 if (err < 0) { 1712 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type); 1713 return err; 1714 } 1715 1716 /* 1717 * The section name table must be NUL-terminated, as required 1718 * by the spec. This makes strcmp and pr_* calls that access 1719 * strings in the section safe. 1720 */ 1721 info->secstrings = (void *)info->hdr + strhdr->sh_offset; 1722 if (strhdr->sh_size == 0) { 1723 pr_err("empty section name table\n"); 1724 goto no_exec; 1725 } 1726 if (info->secstrings[strhdr->sh_size - 1] != '\0') { 1727 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1728 goto no_exec; 1729 } 1730 1731 /* 1732 * The code assumes that section 0 has a length of zero and 1733 * an addr of zero, so check for it. 1734 */ 1735 if (info->sechdrs[0].sh_type != SHT_NULL 1736 || info->sechdrs[0].sh_size != 0 1737 || info->sechdrs[0].sh_addr != 0) { 1738 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1739 info->sechdrs[0].sh_type); 1740 goto no_exec; 1741 } 1742 1743 for (i = 1; i < info->hdr->e_shnum; i++) { 1744 shdr = &info->sechdrs[i]; 1745 switch (shdr->sh_type) { 1746 case SHT_NULL: 1747 case SHT_NOBITS: 1748 continue; 1749 case SHT_SYMTAB: 1750 if (shdr->sh_link == SHN_UNDEF 1751 || shdr->sh_link >= info->hdr->e_shnum) { 1752 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 1753 shdr->sh_link, shdr->sh_link, 1754 info->hdr->e_shnum); 1755 goto no_exec; 1756 } 1757 fallthrough; 1758 default: 1759 err = validate_section_offset(info, shdr); 1760 if (err < 0) { 1761 pr_err("Invalid ELF section in module (section %u type %u)\n", 1762 i, shdr->sh_type); 1763 return err; 1764 } 1765 1766 if (shdr->sh_flags & SHF_ALLOC) { 1767 if (shdr->sh_name >= strhdr->sh_size) { 1768 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1769 i, shdr->sh_type); 1770 return -ENOEXEC; 1771 } 1772 } 1773 break; 1774 } 1775 } 1776 1777 return 0; 1778 1779 no_exec: 1780 return -ENOEXEC; 1781 } 1782 1783 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 1784 1785 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 1786 { 1787 do { 1788 unsigned long n = min(len, COPY_CHUNK_SIZE); 1789 1790 if (copy_from_user(dst, usrc, n) != 0) 1791 return -EFAULT; 1792 cond_resched(); 1793 dst += n; 1794 usrc += n; 1795 len -= n; 1796 } while (len); 1797 return 0; 1798 } 1799 1800 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 1801 { 1802 if (!get_modinfo(info, "livepatch")) 1803 /* Nothing more to do */ 1804 return 0; 1805 1806 if (set_livepatch_module(mod)) { 1807 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 1808 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 1809 mod->name); 1810 return 0; 1811 } 1812 1813 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 1814 mod->name); 1815 return -ENOEXEC; 1816 } 1817 1818 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 1819 { 1820 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 1821 return; 1822 1823 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 1824 mod->name); 1825 } 1826 1827 /* Sets info->hdr and info->len. */ 1828 static int copy_module_from_user(const void __user *umod, unsigned long len, 1829 struct load_info *info) 1830 { 1831 int err; 1832 1833 info->len = len; 1834 if (info->len < sizeof(*(info->hdr))) 1835 return -ENOEXEC; 1836 1837 err = security_kernel_load_data(LOADING_MODULE, true); 1838 if (err) 1839 return err; 1840 1841 /* Suck in entire file: we'll want most of it. */ 1842 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 1843 if (!info->hdr) 1844 return -ENOMEM; 1845 1846 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 1847 err = -EFAULT; 1848 goto out; 1849 } 1850 1851 err = security_kernel_post_load_data((char *)info->hdr, info->len, 1852 LOADING_MODULE, "init_module"); 1853 out: 1854 if (err) 1855 vfree(info->hdr); 1856 1857 return err; 1858 } 1859 1860 static void free_copy(struct load_info *info, int flags) 1861 { 1862 if (flags & MODULE_INIT_COMPRESSED_FILE) 1863 module_decompress_cleanup(info); 1864 else 1865 vfree(info->hdr); 1866 } 1867 1868 static int rewrite_section_headers(struct load_info *info, int flags) 1869 { 1870 unsigned int i; 1871 1872 /* This should always be true, but let's be sure. */ 1873 info->sechdrs[0].sh_addr = 0; 1874 1875 for (i = 1; i < info->hdr->e_shnum; i++) { 1876 Elf_Shdr *shdr = &info->sechdrs[i]; 1877 1878 /* 1879 * Mark all sections sh_addr with their address in the 1880 * temporary image. 1881 */ 1882 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 1883 1884 } 1885 1886 /* Track but don't keep modinfo and version sections. */ 1887 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 1888 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 1889 1890 return 0; 1891 } 1892 1893 /* 1894 * Set up our basic convenience variables (pointers to section headers, 1895 * search for module section index etc), and do some basic section 1896 * verification. 1897 * 1898 * Set info->mod to the temporary copy of the module in info->hdr. The final one 1899 * will be allocated in move_module(). 1900 */ 1901 static int setup_load_info(struct load_info *info, int flags) 1902 { 1903 unsigned int i; 1904 1905 /* Try to find a name early so we can log errors with a module name */ 1906 info->index.info = find_sec(info, ".modinfo"); 1907 if (info->index.info) 1908 info->name = get_modinfo(info, "name"); 1909 1910 /* Find internal symbols and strings. */ 1911 for (i = 1; i < info->hdr->e_shnum; i++) { 1912 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 1913 info->index.sym = i; 1914 info->index.str = info->sechdrs[i].sh_link; 1915 info->strtab = (char *)info->hdr 1916 + info->sechdrs[info->index.str].sh_offset; 1917 break; 1918 } 1919 } 1920 1921 if (info->index.sym == 0) { 1922 pr_warn("%s: module has no symbols (stripped?)\n", 1923 info->name ?: "(missing .modinfo section or name field)"); 1924 return -ENOEXEC; 1925 } 1926 1927 info->index.mod = find_sec(info, ".gnu.linkonce.this_module"); 1928 if (!info->index.mod) { 1929 pr_warn("%s: No module found in object\n", 1930 info->name ?: "(missing .modinfo section or name field)"); 1931 return -ENOEXEC; 1932 } 1933 /* This is temporary: point mod into copy of data. */ 1934 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 1935 1936 /* 1937 * If we didn't load the .modinfo 'name' field earlier, fall back to 1938 * on-disk struct mod 'name' field. 1939 */ 1940 if (!info->name) 1941 info->name = info->mod->name; 1942 1943 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) 1944 info->index.vers = 0; /* Pretend no __versions section! */ 1945 else 1946 info->index.vers = find_sec(info, "__versions"); 1947 1948 info->index.pcpu = find_pcpusec(info); 1949 1950 return 0; 1951 } 1952 1953 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 1954 { 1955 const char *modmagic = get_modinfo(info, "vermagic"); 1956 int err; 1957 1958 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 1959 modmagic = NULL; 1960 1961 /* This is allowed: modprobe --force will invalidate it. */ 1962 if (!modmagic) { 1963 err = try_to_force_load(mod, "bad vermagic"); 1964 if (err) 1965 return err; 1966 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 1967 pr_err("%s: version magic '%s' should be '%s'\n", 1968 info->name, modmagic, vermagic); 1969 return -ENOEXEC; 1970 } 1971 1972 if (!get_modinfo(info, "intree")) { 1973 if (!test_taint(TAINT_OOT_MODULE)) 1974 pr_warn("%s: loading out-of-tree module taints kernel.\n", 1975 mod->name); 1976 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 1977 } 1978 1979 check_modinfo_retpoline(mod, info); 1980 1981 if (get_modinfo(info, "staging")) { 1982 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 1983 pr_warn("%s: module is from the staging directory, the quality " 1984 "is unknown, you have been warned.\n", mod->name); 1985 } 1986 1987 err = check_modinfo_livepatch(mod, info); 1988 if (err) 1989 return err; 1990 1991 /* Set up license info based on the info section */ 1992 set_license(mod, get_modinfo(info, "license")); 1993 1994 if (get_modinfo(info, "test")) { 1995 if (!test_taint(TAINT_TEST)) 1996 pr_warn("%s: loading test module taints kernel.\n", 1997 mod->name); 1998 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 1999 } 2000 2001 return 0; 2002 } 2003 2004 static int find_module_sections(struct module *mod, struct load_info *info) 2005 { 2006 mod->kp = section_objs(info, "__param", 2007 sizeof(*mod->kp), &mod->num_kp); 2008 mod->syms = section_objs(info, "__ksymtab", 2009 sizeof(*mod->syms), &mod->num_syms); 2010 mod->crcs = section_addr(info, "__kcrctab"); 2011 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2012 sizeof(*mod->gpl_syms), 2013 &mod->num_gpl_syms); 2014 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2015 2016 #ifdef CONFIG_CONSTRUCTORS 2017 mod->ctors = section_objs(info, ".ctors", 2018 sizeof(*mod->ctors), &mod->num_ctors); 2019 if (!mod->ctors) 2020 mod->ctors = section_objs(info, ".init_array", 2021 sizeof(*mod->ctors), &mod->num_ctors); 2022 else if (find_sec(info, ".init_array")) { 2023 /* 2024 * This shouldn't happen with same compiler and binutils 2025 * building all parts of the module. 2026 */ 2027 pr_warn("%s: has both .ctors and .init_array.\n", 2028 mod->name); 2029 return -EINVAL; 2030 } 2031 #endif 2032 2033 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2034 &mod->noinstr_text_size); 2035 2036 #ifdef CONFIG_TRACEPOINTS 2037 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2038 sizeof(*mod->tracepoints_ptrs), 2039 &mod->num_tracepoints); 2040 #endif 2041 #ifdef CONFIG_TREE_SRCU 2042 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2043 sizeof(*mod->srcu_struct_ptrs), 2044 &mod->num_srcu_structs); 2045 #endif 2046 #ifdef CONFIG_BPF_EVENTS 2047 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2048 sizeof(*mod->bpf_raw_events), 2049 &mod->num_bpf_raw_events); 2050 #endif 2051 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2052 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2053 #endif 2054 #ifdef CONFIG_JUMP_LABEL 2055 mod->jump_entries = section_objs(info, "__jump_table", 2056 sizeof(*mod->jump_entries), 2057 &mod->num_jump_entries); 2058 #endif 2059 #ifdef CONFIG_EVENT_TRACING 2060 mod->trace_events = section_objs(info, "_ftrace_events", 2061 sizeof(*mod->trace_events), 2062 &mod->num_trace_events); 2063 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2064 sizeof(*mod->trace_evals), 2065 &mod->num_trace_evals); 2066 #endif 2067 #ifdef CONFIG_TRACING 2068 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2069 sizeof(*mod->trace_bprintk_fmt_start), 2070 &mod->num_trace_bprintk_fmt); 2071 #endif 2072 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2073 /* sechdrs[0].sh_size is always zero */ 2074 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2075 sizeof(*mod->ftrace_callsites), 2076 &mod->num_ftrace_callsites); 2077 #endif 2078 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2079 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2080 sizeof(*mod->ei_funcs), 2081 &mod->num_ei_funcs); 2082 #endif 2083 #ifdef CONFIG_KPROBES 2084 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2085 &mod->kprobes_text_size); 2086 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2087 sizeof(unsigned long), 2088 &mod->num_kprobe_blacklist); 2089 #endif 2090 #ifdef CONFIG_PRINTK_INDEX 2091 mod->printk_index_start = section_objs(info, ".printk_index", 2092 sizeof(*mod->printk_index_start), 2093 &mod->printk_index_size); 2094 #endif 2095 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2096 mod->static_call_sites = section_objs(info, ".static_call_sites", 2097 sizeof(*mod->static_call_sites), 2098 &mod->num_static_call_sites); 2099 #endif 2100 #if IS_ENABLED(CONFIG_KUNIT) 2101 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2102 sizeof(*mod->kunit_suites), 2103 &mod->num_kunit_suites); 2104 #endif 2105 2106 mod->extable = section_objs(info, "__ex_table", 2107 sizeof(*mod->extable), &mod->num_exentries); 2108 2109 if (section_addr(info, "__obsparm")) 2110 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2111 2112 info->dyndbg.descs = section_objs(info, "__dyndbg", 2113 sizeof(*info->dyndbg.descs), &info->dyndbg.num_descs); 2114 info->dyndbg.classes = section_objs(info, "__dyndbg_classes", 2115 sizeof(*info->dyndbg.classes), &info->dyndbg.num_classes); 2116 2117 return 0; 2118 } 2119 2120 static int move_module(struct module *mod, struct load_info *info) 2121 { 2122 int i; 2123 void *ptr; 2124 2125 /* Do the allocs. */ 2126 ptr = module_alloc(mod->core_layout.size); 2127 /* 2128 * The pointer to this block is stored in the module structure 2129 * which is inside the block. Just mark it as not being a 2130 * leak. 2131 */ 2132 kmemleak_not_leak(ptr); 2133 if (!ptr) 2134 return -ENOMEM; 2135 2136 memset(ptr, 0, mod->core_layout.size); 2137 mod->core_layout.base = ptr; 2138 2139 if (mod->init_layout.size) { 2140 ptr = module_alloc(mod->init_layout.size); 2141 /* 2142 * The pointer to this block is stored in the module structure 2143 * which is inside the block. This block doesn't need to be 2144 * scanned as it contains data and code that will be freed 2145 * after the module is initialized. 2146 */ 2147 kmemleak_ignore(ptr); 2148 if (!ptr) { 2149 module_memfree(mod->core_layout.base); 2150 return -ENOMEM; 2151 } 2152 memset(ptr, 0, mod->init_layout.size); 2153 mod->init_layout.base = ptr; 2154 } else 2155 mod->init_layout.base = NULL; 2156 2157 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 2158 /* Do the allocs. */ 2159 ptr = vzalloc(mod->data_layout.size); 2160 /* 2161 * The pointer to this block is stored in the module structure 2162 * which is inside the block. Just mark it as not being a 2163 * leak. 2164 */ 2165 kmemleak_not_leak(ptr); 2166 if (!ptr) { 2167 module_memfree(mod->core_layout.base); 2168 module_memfree(mod->init_layout.base); 2169 return -ENOMEM; 2170 } 2171 2172 mod->data_layout.base = ptr; 2173 #endif 2174 /* Transfer each section which specifies SHF_ALLOC */ 2175 pr_debug("final section addresses:\n"); 2176 for (i = 0; i < info->hdr->e_shnum; i++) { 2177 void *dest; 2178 Elf_Shdr *shdr = &info->sechdrs[i]; 2179 2180 if (!(shdr->sh_flags & SHF_ALLOC)) 2181 continue; 2182 2183 if (shdr->sh_entsize & INIT_OFFSET_MASK) 2184 dest = mod->init_layout.base 2185 + (shdr->sh_entsize & ~INIT_OFFSET_MASK); 2186 else if (!(shdr->sh_flags & SHF_EXECINSTR)) 2187 dest = mod->data_layout.base + shdr->sh_entsize; 2188 else 2189 dest = mod->core_layout.base + shdr->sh_entsize; 2190 2191 if (shdr->sh_type != SHT_NOBITS) 2192 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2193 /* Update sh_addr to point to copy in image. */ 2194 shdr->sh_addr = (unsigned long)dest; 2195 pr_debug("\t0x%lx %s\n", 2196 (long)shdr->sh_addr, info->secstrings + shdr->sh_name); 2197 } 2198 2199 return 0; 2200 } 2201 2202 static int check_module_license_and_versions(struct module *mod) 2203 { 2204 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2205 2206 /* 2207 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2208 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2209 * using GPL-only symbols it needs. 2210 */ 2211 if (strcmp(mod->name, "ndiswrapper") == 0) 2212 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2213 2214 /* driverloader was caught wrongly pretending to be under GPL */ 2215 if (strcmp(mod->name, "driverloader") == 0) 2216 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2217 LOCKDEP_NOW_UNRELIABLE); 2218 2219 /* lve claims to be GPL but upstream won't provide source */ 2220 if (strcmp(mod->name, "lve") == 0) 2221 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2222 LOCKDEP_NOW_UNRELIABLE); 2223 2224 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2225 pr_warn("%s: module license taints kernel.\n", mod->name); 2226 2227 #ifdef CONFIG_MODVERSIONS 2228 if ((mod->num_syms && !mod->crcs) || 2229 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2230 return try_to_force_load(mod, 2231 "no versions for exported symbols"); 2232 } 2233 #endif 2234 return 0; 2235 } 2236 2237 static void flush_module_icache(const struct module *mod) 2238 { 2239 /* 2240 * Flush the instruction cache, since we've played with text. 2241 * Do it before processing of module parameters, so the module 2242 * can provide parameter accessor functions of its own. 2243 */ 2244 if (mod->init_layout.base) 2245 flush_icache_range((unsigned long)mod->init_layout.base, 2246 (unsigned long)mod->init_layout.base 2247 + mod->init_layout.size); 2248 flush_icache_range((unsigned long)mod->core_layout.base, 2249 (unsigned long)mod->core_layout.base + mod->core_layout.size); 2250 } 2251 2252 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2253 { 2254 return true; 2255 } 2256 2257 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2258 Elf_Shdr *sechdrs, 2259 char *secstrings, 2260 struct module *mod) 2261 { 2262 return 0; 2263 } 2264 2265 /* module_blacklist is a comma-separated list of module names */ 2266 static char *module_blacklist; 2267 static bool blacklisted(const char *module_name) 2268 { 2269 const char *p; 2270 size_t len; 2271 2272 if (!module_blacklist) 2273 return false; 2274 2275 for (p = module_blacklist; *p; p += len) { 2276 len = strcspn(p, ","); 2277 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2278 return true; 2279 if (p[len] == ',') 2280 len++; 2281 } 2282 return false; 2283 } 2284 core_param(module_blacklist, module_blacklist, charp, 0400); 2285 2286 static struct module *layout_and_allocate(struct load_info *info, int flags) 2287 { 2288 struct module *mod; 2289 unsigned int ndx; 2290 int err; 2291 2292 err = check_modinfo(info->mod, info, flags); 2293 if (err) 2294 return ERR_PTR(err); 2295 2296 /* Allow arches to frob section contents and sizes. */ 2297 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2298 info->secstrings, info->mod); 2299 if (err < 0) 2300 return ERR_PTR(err); 2301 2302 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2303 info->secstrings, info->mod); 2304 if (err < 0) 2305 return ERR_PTR(err); 2306 2307 /* We will do a special allocation for per-cpu sections later. */ 2308 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2309 2310 /* 2311 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2312 * layout_sections() can put it in the right place. 2313 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2314 */ 2315 ndx = find_sec(info, ".data..ro_after_init"); 2316 if (ndx) 2317 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2318 /* 2319 * Mark the __jump_table section as ro_after_init as well: these data 2320 * structures are never modified, with the exception of entries that 2321 * refer to code in the __init section, which are annotated as such 2322 * at module load time. 2323 */ 2324 ndx = find_sec(info, "__jump_table"); 2325 if (ndx) 2326 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2327 2328 /* 2329 * Determine total sizes, and put offsets in sh_entsize. For now 2330 * this is done generically; there doesn't appear to be any 2331 * special cases for the architectures. 2332 */ 2333 layout_sections(info->mod, info); 2334 layout_symtab(info->mod, info); 2335 2336 /* Allocate and move to the final place */ 2337 err = move_module(info->mod, info); 2338 if (err) 2339 return ERR_PTR(err); 2340 2341 /* Module has been copied to its final place now: return it. */ 2342 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2343 kmemleak_load_module(mod, info); 2344 return mod; 2345 } 2346 2347 /* mod is no longer valid after this! */ 2348 static void module_deallocate(struct module *mod, struct load_info *info) 2349 { 2350 percpu_modfree(mod); 2351 module_arch_freeing_init(mod); 2352 module_memfree(mod->init_layout.base); 2353 module_memfree(mod->core_layout.base); 2354 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 2355 vfree(mod->data_layout.base); 2356 #endif 2357 } 2358 2359 int __weak module_finalize(const Elf_Ehdr *hdr, 2360 const Elf_Shdr *sechdrs, 2361 struct module *me) 2362 { 2363 return 0; 2364 } 2365 2366 static int post_relocation(struct module *mod, const struct load_info *info) 2367 { 2368 /* Sort exception table now relocations are done. */ 2369 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2370 2371 /* Copy relocated percpu area over. */ 2372 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2373 info->sechdrs[info->index.pcpu].sh_size); 2374 2375 /* Setup kallsyms-specific fields. */ 2376 add_kallsyms(mod, info); 2377 2378 /* Arch-specific module finalizing. */ 2379 return module_finalize(info->hdr, info->sechdrs, mod); 2380 } 2381 2382 /* Is this module of this name done loading? No locks held. */ 2383 static bool finished_loading(const char *name) 2384 { 2385 struct module *mod; 2386 bool ret; 2387 2388 /* 2389 * The module_mutex should not be a heavily contended lock; 2390 * if we get the occasional sleep here, we'll go an extra iteration 2391 * in the wait_event_interruptible(), which is harmless. 2392 */ 2393 sched_annotate_sleep(); 2394 mutex_lock(&module_mutex); 2395 mod = find_module_all(name, strlen(name), true); 2396 ret = !mod || mod->state == MODULE_STATE_LIVE 2397 || mod->state == MODULE_STATE_GOING; 2398 mutex_unlock(&module_mutex); 2399 2400 return ret; 2401 } 2402 2403 /* Call module constructors. */ 2404 static void do_mod_ctors(struct module *mod) 2405 { 2406 #ifdef CONFIG_CONSTRUCTORS 2407 unsigned long i; 2408 2409 for (i = 0; i < mod->num_ctors; i++) 2410 mod->ctors[i](); 2411 #endif 2412 } 2413 2414 /* For freeing module_init on success, in case kallsyms traversing */ 2415 struct mod_initfree { 2416 struct llist_node node; 2417 void *module_init; 2418 }; 2419 2420 static void do_free_init(struct work_struct *w) 2421 { 2422 struct llist_node *pos, *n, *list; 2423 struct mod_initfree *initfree; 2424 2425 list = llist_del_all(&init_free_list); 2426 2427 synchronize_rcu(); 2428 2429 llist_for_each_safe(pos, n, list) { 2430 initfree = container_of(pos, struct mod_initfree, node); 2431 module_memfree(initfree->module_init); 2432 kfree(initfree); 2433 } 2434 } 2435 2436 #undef MODULE_PARAM_PREFIX 2437 #define MODULE_PARAM_PREFIX "module." 2438 /* Default value for module->async_probe_requested */ 2439 static bool async_probe; 2440 module_param(async_probe, bool, 0644); 2441 2442 /* 2443 * This is where the real work happens. 2444 * 2445 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2446 * helper command 'lx-symbols'. 2447 */ 2448 static noinline int do_init_module(struct module *mod) 2449 { 2450 int ret = 0; 2451 struct mod_initfree *freeinit; 2452 2453 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2454 if (!freeinit) { 2455 ret = -ENOMEM; 2456 goto fail; 2457 } 2458 freeinit->module_init = mod->init_layout.base; 2459 2460 do_mod_ctors(mod); 2461 /* Start the module */ 2462 if (mod->init != NULL) 2463 ret = do_one_initcall(mod->init); 2464 if (ret < 0) { 2465 goto fail_free_freeinit; 2466 } 2467 if (ret > 0) { 2468 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2469 "follow 0/-E convention\n" 2470 "%s: loading module anyway...\n", 2471 __func__, mod->name, ret, __func__); 2472 dump_stack(); 2473 } 2474 2475 /* Now it's a first class citizen! */ 2476 mod->state = MODULE_STATE_LIVE; 2477 blocking_notifier_call_chain(&module_notify_list, 2478 MODULE_STATE_LIVE, mod); 2479 2480 /* Delay uevent until module has finished its init routine */ 2481 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2482 2483 /* 2484 * We need to finish all async code before the module init sequence 2485 * is done. This has potential to deadlock if synchronous module 2486 * loading is requested from async (which is not allowed!). 2487 * 2488 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2489 * request_module() from async workers") for more details. 2490 */ 2491 if (!mod->async_probe_requested) 2492 async_synchronize_full(); 2493 2494 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base + 2495 mod->init_layout.size); 2496 mutex_lock(&module_mutex); 2497 /* Drop initial reference. */ 2498 module_put(mod); 2499 trim_init_extable(mod); 2500 #ifdef CONFIG_KALLSYMS 2501 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2502 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2503 #endif 2504 module_enable_ro(mod, true); 2505 mod_tree_remove_init(mod); 2506 module_arch_freeing_init(mod); 2507 mod->init_layout.base = NULL; 2508 mod->init_layout.size = 0; 2509 mod->init_layout.ro_size = 0; 2510 mod->init_layout.ro_after_init_size = 0; 2511 mod->init_layout.text_size = 0; 2512 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2513 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */ 2514 mod->btf_data = NULL; 2515 #endif 2516 /* 2517 * We want to free module_init, but be aware that kallsyms may be 2518 * walking this with preempt disabled. In all the failure paths, we 2519 * call synchronize_rcu(), but we don't want to slow down the success 2520 * path. module_memfree() cannot be called in an interrupt, so do the 2521 * work and call synchronize_rcu() in a work queue. 2522 * 2523 * Note that module_alloc() on most architectures creates W+X page 2524 * mappings which won't be cleaned up until do_free_init() runs. Any 2525 * code such as mark_rodata_ro() which depends on those mappings to 2526 * be cleaned up needs to sync with the queued work - ie 2527 * rcu_barrier() 2528 */ 2529 if (llist_add(&freeinit->node, &init_free_list)) 2530 schedule_work(&init_free_wq); 2531 2532 mutex_unlock(&module_mutex); 2533 wake_up_all(&module_wq); 2534 2535 return 0; 2536 2537 fail_free_freeinit: 2538 kfree(freeinit); 2539 fail: 2540 /* Try to protect us from buggy refcounters. */ 2541 mod->state = MODULE_STATE_GOING; 2542 synchronize_rcu(); 2543 module_put(mod); 2544 blocking_notifier_call_chain(&module_notify_list, 2545 MODULE_STATE_GOING, mod); 2546 klp_module_going(mod); 2547 ftrace_release_mod(mod); 2548 free_module(mod); 2549 wake_up_all(&module_wq); 2550 return ret; 2551 } 2552 2553 static int may_init_module(void) 2554 { 2555 if (!capable(CAP_SYS_MODULE) || modules_disabled) 2556 return -EPERM; 2557 2558 return 0; 2559 } 2560 2561 /* 2562 * We try to place it in the list now to make sure it's unique before 2563 * we dedicate too many resources. In particular, temporary percpu 2564 * memory exhaustion. 2565 */ 2566 static int add_unformed_module(struct module *mod) 2567 { 2568 int err; 2569 struct module *old; 2570 2571 mod->state = MODULE_STATE_UNFORMED; 2572 2573 mutex_lock(&module_mutex); 2574 old = find_module_all(mod->name, strlen(mod->name), true); 2575 if (old != NULL) { 2576 if (old->state == MODULE_STATE_COMING 2577 || old->state == MODULE_STATE_UNFORMED) { 2578 /* Wait in case it fails to load. */ 2579 mutex_unlock(&module_mutex); 2580 err = wait_event_interruptible(module_wq, 2581 finished_loading(mod->name)); 2582 if (err) 2583 goto out_unlocked; 2584 2585 /* The module might have gone in the meantime. */ 2586 mutex_lock(&module_mutex); 2587 old = find_module_all(mod->name, strlen(mod->name), 2588 true); 2589 } 2590 2591 /* 2592 * We are here only when the same module was being loaded. Do 2593 * not try to load it again right now. It prevents long delays 2594 * caused by serialized module load failures. It might happen 2595 * when more devices of the same type trigger load of 2596 * a particular module. 2597 */ 2598 if (old && old->state == MODULE_STATE_LIVE) 2599 err = -EEXIST; 2600 else 2601 err = -EBUSY; 2602 goto out; 2603 } 2604 mod_update_bounds(mod); 2605 list_add_rcu(&mod->list, &modules); 2606 mod_tree_insert(mod); 2607 err = 0; 2608 2609 out: 2610 mutex_unlock(&module_mutex); 2611 out_unlocked: 2612 return err; 2613 } 2614 2615 static int complete_formation(struct module *mod, struct load_info *info) 2616 { 2617 int err; 2618 2619 mutex_lock(&module_mutex); 2620 2621 /* Find duplicate symbols (must be called under lock). */ 2622 err = verify_exported_symbols(mod); 2623 if (err < 0) 2624 goto out; 2625 2626 /* These rely on module_mutex for list integrity. */ 2627 module_bug_finalize(info->hdr, info->sechdrs, mod); 2628 module_cfi_finalize(info->hdr, info->sechdrs, mod); 2629 2630 if (module_check_misalignment(mod)) 2631 goto out_misaligned; 2632 2633 module_enable_ro(mod, false); 2634 module_enable_nx(mod); 2635 module_enable_x(mod); 2636 2637 /* 2638 * Mark state as coming so strong_try_module_get() ignores us, 2639 * but kallsyms etc. can see us. 2640 */ 2641 mod->state = MODULE_STATE_COMING; 2642 mutex_unlock(&module_mutex); 2643 2644 return 0; 2645 2646 out_misaligned: 2647 err = -EINVAL; 2648 out: 2649 mutex_unlock(&module_mutex); 2650 return err; 2651 } 2652 2653 static int prepare_coming_module(struct module *mod) 2654 { 2655 int err; 2656 2657 ftrace_module_enable(mod); 2658 err = klp_module_coming(mod); 2659 if (err) 2660 return err; 2661 2662 err = blocking_notifier_call_chain_robust(&module_notify_list, 2663 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 2664 err = notifier_to_errno(err); 2665 if (err) 2666 klp_module_going(mod); 2667 2668 return err; 2669 } 2670 2671 static int unknown_module_param_cb(char *param, char *val, const char *modname, 2672 void *arg) 2673 { 2674 struct module *mod = arg; 2675 int ret; 2676 2677 if (strcmp(param, "async_probe") == 0) { 2678 if (strtobool(val, &mod->async_probe_requested)) 2679 mod->async_probe_requested = true; 2680 return 0; 2681 } 2682 2683 /* Check for magic 'dyndbg' arg */ 2684 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 2685 if (ret != 0) 2686 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 2687 return 0; 2688 } 2689 2690 /* 2691 * Allocate and load the module: note that size of section 0 is always 2692 * zero, and we rely on this for optional sections. 2693 */ 2694 static int load_module(struct load_info *info, const char __user *uargs, 2695 int flags) 2696 { 2697 struct module *mod; 2698 long err = 0; 2699 char *after_dashes; 2700 2701 /* 2702 * Do the signature check (if any) first. All that 2703 * the signature check needs is info->len, it does 2704 * not need any of the section info. That can be 2705 * set up later. This will minimize the chances 2706 * of a corrupt module causing problems before 2707 * we even get to the signature check. 2708 * 2709 * The check will also adjust info->len by stripping 2710 * off the sig length at the end of the module, making 2711 * checks against info->len more correct. 2712 */ 2713 err = module_sig_check(info, flags); 2714 if (err) 2715 goto free_copy; 2716 2717 /* 2718 * Do basic sanity checks against the ELF header and 2719 * sections. 2720 */ 2721 err = elf_validity_check(info); 2722 if (err) 2723 goto free_copy; 2724 2725 /* 2726 * Everything checks out, so set up the section info 2727 * in the info structure. 2728 */ 2729 err = setup_load_info(info, flags); 2730 if (err) 2731 goto free_copy; 2732 2733 /* 2734 * Now that we know we have the correct module name, check 2735 * if it's blacklisted. 2736 */ 2737 if (blacklisted(info->name)) { 2738 err = -EPERM; 2739 pr_err("Module %s is blacklisted\n", info->name); 2740 goto free_copy; 2741 } 2742 2743 err = rewrite_section_headers(info, flags); 2744 if (err) 2745 goto free_copy; 2746 2747 /* Check module struct version now, before we try to use module. */ 2748 if (!check_modstruct_version(info, info->mod)) { 2749 err = -ENOEXEC; 2750 goto free_copy; 2751 } 2752 2753 /* Figure out module layout, and allocate all the memory. */ 2754 mod = layout_and_allocate(info, flags); 2755 if (IS_ERR(mod)) { 2756 err = PTR_ERR(mod); 2757 goto free_copy; 2758 } 2759 2760 audit_log_kern_module(mod->name); 2761 2762 /* Reserve our place in the list. */ 2763 err = add_unformed_module(mod); 2764 if (err) 2765 goto free_module; 2766 2767 #ifdef CONFIG_MODULE_SIG 2768 mod->sig_ok = info->sig_ok; 2769 if (!mod->sig_ok) { 2770 pr_notice_once("%s: module verification failed: signature " 2771 "and/or required key missing - tainting " 2772 "kernel\n", mod->name); 2773 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2774 } 2775 #endif 2776 2777 /* To avoid stressing percpu allocator, do this once we're unique. */ 2778 err = percpu_modalloc(mod, info); 2779 if (err) 2780 goto unlink_mod; 2781 2782 /* Now module is in final location, initialize linked lists, etc. */ 2783 err = module_unload_init(mod); 2784 if (err) 2785 goto unlink_mod; 2786 2787 init_param_lock(mod); 2788 2789 /* 2790 * Now we've got everything in the final locations, we can 2791 * find optional sections. 2792 */ 2793 err = find_module_sections(mod, info); 2794 if (err) 2795 goto free_unload; 2796 2797 err = check_module_license_and_versions(mod); 2798 if (err) 2799 goto free_unload; 2800 2801 /* Set up MODINFO_ATTR fields */ 2802 setup_modinfo(mod, info); 2803 2804 /* Fix up syms, so that st_value is a pointer to location. */ 2805 err = simplify_symbols(mod, info); 2806 if (err < 0) 2807 goto free_modinfo; 2808 2809 err = apply_relocations(mod, info); 2810 if (err < 0) 2811 goto free_modinfo; 2812 2813 err = post_relocation(mod, info); 2814 if (err < 0) 2815 goto free_modinfo; 2816 2817 flush_module_icache(mod); 2818 2819 /* Now copy in args */ 2820 mod->args = strndup_user(uargs, ~0UL >> 1); 2821 if (IS_ERR(mod->args)) { 2822 err = PTR_ERR(mod->args); 2823 goto free_arch_cleanup; 2824 } 2825 2826 init_build_id(mod, info); 2827 dynamic_debug_setup(mod, &info->dyndbg); 2828 2829 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 2830 ftrace_module_init(mod); 2831 2832 /* Finally it's fully formed, ready to start executing. */ 2833 err = complete_formation(mod, info); 2834 if (err) 2835 goto ddebug_cleanup; 2836 2837 err = prepare_coming_module(mod); 2838 if (err) 2839 goto bug_cleanup; 2840 2841 mod->async_probe_requested = async_probe; 2842 2843 /* Module is ready to execute: parsing args may do that. */ 2844 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 2845 -32768, 32767, mod, 2846 unknown_module_param_cb); 2847 if (IS_ERR(after_dashes)) { 2848 err = PTR_ERR(after_dashes); 2849 goto coming_cleanup; 2850 } else if (after_dashes) { 2851 pr_warn("%s: parameters '%s' after `--' ignored\n", 2852 mod->name, after_dashes); 2853 } 2854 2855 /* Link in to sysfs. */ 2856 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 2857 if (err < 0) 2858 goto coming_cleanup; 2859 2860 if (is_livepatch_module(mod)) { 2861 err = copy_module_elf(mod, info); 2862 if (err < 0) 2863 goto sysfs_cleanup; 2864 } 2865 2866 /* Get rid of temporary copy. */ 2867 free_copy(info, flags); 2868 2869 /* Done! */ 2870 trace_module_load(mod); 2871 2872 return do_init_module(mod); 2873 2874 sysfs_cleanup: 2875 mod_sysfs_teardown(mod); 2876 coming_cleanup: 2877 mod->state = MODULE_STATE_GOING; 2878 destroy_params(mod->kp, mod->num_kp); 2879 blocking_notifier_call_chain(&module_notify_list, 2880 MODULE_STATE_GOING, mod); 2881 klp_module_going(mod); 2882 bug_cleanup: 2883 mod->state = MODULE_STATE_GOING; 2884 /* module_bug_cleanup needs module_mutex protection */ 2885 mutex_lock(&module_mutex); 2886 module_bug_cleanup(mod); 2887 mutex_unlock(&module_mutex); 2888 2889 ddebug_cleanup: 2890 ftrace_release_mod(mod); 2891 dynamic_debug_remove(mod, &info->dyndbg); 2892 synchronize_rcu(); 2893 kfree(mod->args); 2894 free_arch_cleanup: 2895 module_arch_cleanup(mod); 2896 free_modinfo: 2897 free_modinfo(mod); 2898 free_unload: 2899 module_unload_free(mod); 2900 unlink_mod: 2901 mutex_lock(&module_mutex); 2902 /* Unlink carefully: kallsyms could be walking list. */ 2903 list_del_rcu(&mod->list); 2904 mod_tree_remove(mod); 2905 wake_up_all(&module_wq); 2906 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 2907 synchronize_rcu(); 2908 mutex_unlock(&module_mutex); 2909 free_module: 2910 /* Free lock-classes; relies on the preceding sync_rcu() */ 2911 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size); 2912 2913 module_deallocate(mod, info); 2914 free_copy: 2915 free_copy(info, flags); 2916 return err; 2917 } 2918 2919 SYSCALL_DEFINE3(init_module, void __user *, umod, 2920 unsigned long, len, const char __user *, uargs) 2921 { 2922 int err; 2923 struct load_info info = { }; 2924 2925 err = may_init_module(); 2926 if (err) 2927 return err; 2928 2929 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 2930 umod, len, uargs); 2931 2932 err = copy_module_from_user(umod, len, &info); 2933 if (err) 2934 return err; 2935 2936 return load_module(&info, uargs, 0); 2937 } 2938 2939 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 2940 { 2941 struct load_info info = { }; 2942 void *buf = NULL; 2943 int len; 2944 int err; 2945 2946 err = may_init_module(); 2947 if (err) 2948 return err; 2949 2950 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 2951 2952 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 2953 |MODULE_INIT_IGNORE_VERMAGIC 2954 |MODULE_INIT_COMPRESSED_FILE)) 2955 return -EINVAL; 2956 2957 len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL, 2958 READING_MODULE); 2959 if (len < 0) 2960 return len; 2961 2962 if (flags & MODULE_INIT_COMPRESSED_FILE) { 2963 err = module_decompress(&info, buf, len); 2964 vfree(buf); /* compressed data is no longer needed */ 2965 if (err) 2966 return err; 2967 } else { 2968 info.hdr = buf; 2969 info.len = len; 2970 } 2971 2972 return load_module(&info, uargs, flags); 2973 } 2974 2975 static inline int within(unsigned long addr, void *start, unsigned long size) 2976 { 2977 return ((void *)addr >= start && (void *)addr < start + size); 2978 } 2979 2980 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 2981 char *module_flags(struct module *mod, char *buf, bool show_state) 2982 { 2983 int bx = 0; 2984 2985 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 2986 if (!mod->taints && !show_state) 2987 goto out; 2988 if (mod->taints || 2989 mod->state == MODULE_STATE_GOING || 2990 mod->state == MODULE_STATE_COMING) { 2991 buf[bx++] = '('; 2992 bx += module_flags_taint(mod->taints, buf + bx); 2993 /* Show a - for module-is-being-unloaded */ 2994 if (mod->state == MODULE_STATE_GOING && show_state) 2995 buf[bx++] = '-'; 2996 /* Show a + for module-is-being-loaded */ 2997 if (mod->state == MODULE_STATE_COMING && show_state) 2998 buf[bx++] = '+'; 2999 buf[bx++] = ')'; 3000 } 3001 out: 3002 buf[bx] = '\0'; 3003 3004 return buf; 3005 } 3006 3007 /* Given an address, look for it in the module exception tables. */ 3008 const struct exception_table_entry *search_module_extables(unsigned long addr) 3009 { 3010 const struct exception_table_entry *e = NULL; 3011 struct module *mod; 3012 3013 preempt_disable(); 3014 mod = __module_address(addr); 3015 if (!mod) 3016 goto out; 3017 3018 if (!mod->num_exentries) 3019 goto out; 3020 3021 e = search_extable(mod->extable, 3022 mod->num_exentries, 3023 addr); 3024 out: 3025 preempt_enable(); 3026 3027 /* 3028 * Now, if we found one, we are running inside it now, hence 3029 * we cannot unload the module, hence no refcnt needed. 3030 */ 3031 return e; 3032 } 3033 3034 /** 3035 * is_module_address() - is this address inside a module? 3036 * @addr: the address to check. 3037 * 3038 * See is_module_text_address() if you simply want to see if the address 3039 * is code (not data). 3040 */ 3041 bool is_module_address(unsigned long addr) 3042 { 3043 bool ret; 3044 3045 preempt_disable(); 3046 ret = __module_address(addr) != NULL; 3047 preempt_enable(); 3048 3049 return ret; 3050 } 3051 3052 /** 3053 * __module_address() - get the module which contains an address. 3054 * @addr: the address. 3055 * 3056 * Must be called with preempt disabled or module mutex held so that 3057 * module doesn't get freed during this. 3058 */ 3059 struct module *__module_address(unsigned long addr) 3060 { 3061 struct module *mod; 3062 struct mod_tree_root *tree; 3063 3064 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3065 tree = &mod_tree; 3066 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3067 else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max) 3068 tree = &mod_data_tree; 3069 #endif 3070 else 3071 return NULL; 3072 3073 module_assert_mutex_or_preempt(); 3074 3075 mod = mod_find(addr, tree); 3076 if (mod) { 3077 BUG_ON(!within_module(addr, mod)); 3078 if (mod->state == MODULE_STATE_UNFORMED) 3079 mod = NULL; 3080 } 3081 return mod; 3082 } 3083 3084 /** 3085 * is_module_text_address() - is this address inside module code? 3086 * @addr: the address to check. 3087 * 3088 * See is_module_address() if you simply want to see if the address is 3089 * anywhere in a module. See kernel_text_address() for testing if an 3090 * address corresponds to kernel or module code. 3091 */ 3092 bool is_module_text_address(unsigned long addr) 3093 { 3094 bool ret; 3095 3096 preempt_disable(); 3097 ret = __module_text_address(addr) != NULL; 3098 preempt_enable(); 3099 3100 return ret; 3101 } 3102 3103 /** 3104 * __module_text_address() - get the module whose code contains an address. 3105 * @addr: the address. 3106 * 3107 * Must be called with preempt disabled or module mutex held so that 3108 * module doesn't get freed during this. 3109 */ 3110 struct module *__module_text_address(unsigned long addr) 3111 { 3112 struct module *mod = __module_address(addr); 3113 if (mod) { 3114 /* Make sure it's within the text section. */ 3115 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size) 3116 && !within(addr, mod->core_layout.base, mod->core_layout.text_size)) 3117 mod = NULL; 3118 } 3119 return mod; 3120 } 3121 3122 /* Don't grab lock, we're oopsing. */ 3123 void print_modules(void) 3124 { 3125 struct module *mod; 3126 char buf[MODULE_FLAGS_BUF_SIZE]; 3127 3128 printk(KERN_DEFAULT "Modules linked in:"); 3129 /* Most callers should already have preempt disabled, but make sure */ 3130 preempt_disable(); 3131 list_for_each_entry_rcu(mod, &modules, list) { 3132 if (mod->state == MODULE_STATE_UNFORMED) 3133 continue; 3134 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3135 } 3136 3137 print_unloaded_tainted_modules(); 3138 preempt_enable(); 3139 if (last_unloaded_module.name[0]) 3140 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3141 last_unloaded_module.taints); 3142 pr_cont("\n"); 3143 } 3144