xref: /openbmc/linux/kernel/module/main.c (revision 766c5a3ecb319cff62612568d05756c85a759998)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  */
6 
7 #define INCLUDE_VERMAGIC
8 
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/buildid.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/elf.h>
23 #include <linux/seq_file.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/rcupdate.h>
27 #include <linux/capability.h>
28 #include <linux/cpu.h>
29 #include <linux/moduleparam.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/vermagic.h>
33 #include <linux/notifier.h>
34 #include <linux/sched.h>
35 #include <linux/device.h>
36 #include <linux/string.h>
37 #include <linux/mutex.h>
38 #include <linux/rculist.h>
39 #include <linux/uaccess.h>
40 #include <asm/cacheflush.h>
41 #include <linux/set_memory.h>
42 #include <asm/mmu_context.h>
43 #include <linux/license.h>
44 #include <asm/sections.h>
45 #include <linux/tracepoint.h>
46 #include <linux/ftrace.h>
47 #include <linux/livepatch.h>
48 #include <linux/async.h>
49 #include <linux/percpu.h>
50 #include <linux/kmemleak.h>
51 #include <linux/jump_label.h>
52 #include <linux/pfn.h>
53 #include <linux/bsearch.h>
54 #include <linux/dynamic_debug.h>
55 #include <linux/audit.h>
56 #include <uapi/linux/module.h>
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/module.h>
61 
62 /*
63  * Mutex protects:
64  * 1) List of modules (also safely readable with preempt_disable),
65  * 2) module_use links,
66  * 3) mod_tree.addr_min/mod_tree.addr_max.
67  * (delete and add uses RCU list operations).
68  */
69 DEFINE_MUTEX(module_mutex);
70 LIST_HEAD(modules);
71 
72 /* Work queue for freeing init sections in success case */
73 static void do_free_init(struct work_struct *w);
74 static DECLARE_WORK(init_free_wq, do_free_init);
75 static LLIST_HEAD(init_free_list);
76 
77 struct mod_tree_root mod_tree __cacheline_aligned = {
78 	.addr_min = -1UL,
79 };
80 
81 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
82 struct mod_tree_root mod_data_tree __cacheline_aligned = {
83 	.addr_min = -1UL,
84 };
85 #endif
86 
87 #define module_addr_min mod_tree.addr_min
88 #define module_addr_max mod_tree.addr_max
89 
90 struct symsearch {
91 	const struct kernel_symbol *start, *stop;
92 	const s32 *crcs;
93 	enum mod_license license;
94 };
95 
96 /*
97  * Bounds of module text, for speeding up __module_address.
98  * Protected by module_mutex.
99  */
100 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree)
101 {
102 	unsigned long min = (unsigned long)base;
103 	unsigned long max = min + size;
104 
105 	if (min < tree->addr_min)
106 		tree->addr_min = min;
107 	if (max > tree->addr_max)
108 		tree->addr_max = max;
109 }
110 
111 static void mod_update_bounds(struct module *mod)
112 {
113 	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree);
114 	if (mod->init_layout.size)
115 		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree);
116 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
117 	__mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree);
118 #endif
119 }
120 
121 /* Block module loading/unloading? */
122 int modules_disabled;
123 core_param(nomodule, modules_disabled, bint, 0);
124 
125 /* Waiting for a module to finish initializing? */
126 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
127 
128 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
129 
130 int register_module_notifier(struct notifier_block *nb)
131 {
132 	return blocking_notifier_chain_register(&module_notify_list, nb);
133 }
134 EXPORT_SYMBOL(register_module_notifier);
135 
136 int unregister_module_notifier(struct notifier_block *nb)
137 {
138 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
139 }
140 EXPORT_SYMBOL(unregister_module_notifier);
141 
142 /*
143  * We require a truly strong try_module_get(): 0 means success.
144  * Otherwise an error is returned due to ongoing or failed
145  * initialization etc.
146  */
147 static inline int strong_try_module_get(struct module *mod)
148 {
149 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
150 	if (mod && mod->state == MODULE_STATE_COMING)
151 		return -EBUSY;
152 	if (try_module_get(mod))
153 		return 0;
154 	else
155 		return -ENOENT;
156 }
157 
158 static inline void add_taint_module(struct module *mod, unsigned flag,
159 				    enum lockdep_ok lockdep_ok)
160 {
161 	add_taint(flag, lockdep_ok);
162 	set_bit(flag, &mod->taints);
163 }
164 
165 /*
166  * A thread that wants to hold a reference to a module only while it
167  * is running can call this to safely exit.
168  */
169 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
170 {
171 	module_put(mod);
172 	kthread_exit(code);
173 }
174 EXPORT_SYMBOL(__module_put_and_kthread_exit);
175 
176 /* Find a module section: 0 means not found. */
177 static unsigned int find_sec(const struct load_info *info, const char *name)
178 {
179 	unsigned int i;
180 
181 	for (i = 1; i < info->hdr->e_shnum; i++) {
182 		Elf_Shdr *shdr = &info->sechdrs[i];
183 		/* Alloc bit cleared means "ignore it." */
184 		if ((shdr->sh_flags & SHF_ALLOC)
185 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
186 			return i;
187 	}
188 	return 0;
189 }
190 
191 /* Find a module section, or NULL. */
192 static void *section_addr(const struct load_info *info, const char *name)
193 {
194 	/* Section 0 has sh_addr 0. */
195 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
196 }
197 
198 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
199 static void *section_objs(const struct load_info *info,
200 			  const char *name,
201 			  size_t object_size,
202 			  unsigned int *num)
203 {
204 	unsigned int sec = find_sec(info, name);
205 
206 	/* Section 0 has sh_addr 0 and sh_size 0. */
207 	*num = info->sechdrs[sec].sh_size / object_size;
208 	return (void *)info->sechdrs[sec].sh_addr;
209 }
210 
211 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
212 static unsigned int find_any_sec(const struct load_info *info, const char *name)
213 {
214 	unsigned int i;
215 
216 	for (i = 1; i < info->hdr->e_shnum; i++) {
217 		Elf_Shdr *shdr = &info->sechdrs[i];
218 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
219 			return i;
220 	}
221 	return 0;
222 }
223 
224 /*
225  * Find a module section, or NULL. Fill in number of "objects" in section.
226  * Ignores SHF_ALLOC flag.
227  */
228 static __maybe_unused void *any_section_objs(const struct load_info *info,
229 					     const char *name,
230 					     size_t object_size,
231 					     unsigned int *num)
232 {
233 	unsigned int sec = find_any_sec(info, name);
234 
235 	/* Section 0 has sh_addr 0 and sh_size 0. */
236 	*num = info->sechdrs[sec].sh_size / object_size;
237 	return (void *)info->sechdrs[sec].sh_addr;
238 }
239 
240 #ifndef CONFIG_MODVERSIONS
241 #define symversion(base, idx) NULL
242 #else
243 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
244 #endif
245 
246 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
247 {
248 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
249 	return offset_to_ptr(&sym->name_offset);
250 #else
251 	return sym->name;
252 #endif
253 }
254 
255 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
256 {
257 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
258 	if (!sym->namespace_offset)
259 		return NULL;
260 	return offset_to_ptr(&sym->namespace_offset);
261 #else
262 	return sym->namespace;
263 #endif
264 }
265 
266 int cmp_name(const void *name, const void *sym)
267 {
268 	return strcmp(name, kernel_symbol_name(sym));
269 }
270 
271 static bool find_exported_symbol_in_section(const struct symsearch *syms,
272 					    struct module *owner,
273 					    struct find_symbol_arg *fsa)
274 {
275 	struct kernel_symbol *sym;
276 
277 	if (!fsa->gplok && syms->license == GPL_ONLY)
278 		return false;
279 
280 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
281 			sizeof(struct kernel_symbol), cmp_name);
282 	if (!sym)
283 		return false;
284 
285 	fsa->owner = owner;
286 	fsa->crc = symversion(syms->crcs, sym - syms->start);
287 	fsa->sym = sym;
288 	fsa->license = syms->license;
289 
290 	return true;
291 }
292 
293 /*
294  * Find an exported symbol and return it, along with, (optional) crc and
295  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
296  */
297 bool find_symbol(struct find_symbol_arg *fsa)
298 {
299 	static const struct symsearch arr[] = {
300 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
301 		  NOT_GPL_ONLY },
302 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
303 		  __start___kcrctab_gpl,
304 		  GPL_ONLY },
305 	};
306 	struct module *mod;
307 	unsigned int i;
308 
309 	module_assert_mutex_or_preempt();
310 
311 	for (i = 0; i < ARRAY_SIZE(arr); i++)
312 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
313 			return true;
314 
315 	list_for_each_entry_rcu(mod, &modules, list,
316 				lockdep_is_held(&module_mutex)) {
317 		struct symsearch arr[] = {
318 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
319 			  NOT_GPL_ONLY },
320 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
321 			  mod->gpl_crcs,
322 			  GPL_ONLY },
323 		};
324 
325 		if (mod->state == MODULE_STATE_UNFORMED)
326 			continue;
327 
328 		for (i = 0; i < ARRAY_SIZE(arr); i++)
329 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
330 				return true;
331 	}
332 
333 	pr_debug("Failed to find symbol %s\n", fsa->name);
334 	return false;
335 }
336 
337 /*
338  * Search for module by name: must hold module_mutex (or preempt disabled
339  * for read-only access).
340  */
341 struct module *find_module_all(const char *name, size_t len,
342 			       bool even_unformed)
343 {
344 	struct module *mod;
345 
346 	module_assert_mutex_or_preempt();
347 
348 	list_for_each_entry_rcu(mod, &modules, list,
349 				lockdep_is_held(&module_mutex)) {
350 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
351 			continue;
352 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
353 			return mod;
354 	}
355 	return NULL;
356 }
357 
358 struct module *find_module(const char *name)
359 {
360 	return find_module_all(name, strlen(name), false);
361 }
362 
363 #ifdef CONFIG_SMP
364 
365 static inline void __percpu *mod_percpu(struct module *mod)
366 {
367 	return mod->percpu;
368 }
369 
370 static int percpu_modalloc(struct module *mod, struct load_info *info)
371 {
372 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
373 	unsigned long align = pcpusec->sh_addralign;
374 
375 	if (!pcpusec->sh_size)
376 		return 0;
377 
378 	if (align > PAGE_SIZE) {
379 		pr_warn("%s: per-cpu alignment %li > %li\n",
380 			mod->name, align, PAGE_SIZE);
381 		align = PAGE_SIZE;
382 	}
383 
384 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
385 	if (!mod->percpu) {
386 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
387 			mod->name, (unsigned long)pcpusec->sh_size);
388 		return -ENOMEM;
389 	}
390 	mod->percpu_size = pcpusec->sh_size;
391 	return 0;
392 }
393 
394 static void percpu_modfree(struct module *mod)
395 {
396 	free_percpu(mod->percpu);
397 }
398 
399 static unsigned int find_pcpusec(struct load_info *info)
400 {
401 	return find_sec(info, ".data..percpu");
402 }
403 
404 static void percpu_modcopy(struct module *mod,
405 			   const void *from, unsigned long size)
406 {
407 	int cpu;
408 
409 	for_each_possible_cpu(cpu)
410 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
411 }
412 
413 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
414 {
415 	struct module *mod;
416 	unsigned int cpu;
417 
418 	preempt_disable();
419 
420 	list_for_each_entry_rcu(mod, &modules, list) {
421 		if (mod->state == MODULE_STATE_UNFORMED)
422 			continue;
423 		if (!mod->percpu_size)
424 			continue;
425 		for_each_possible_cpu(cpu) {
426 			void *start = per_cpu_ptr(mod->percpu, cpu);
427 			void *va = (void *)addr;
428 
429 			if (va >= start && va < start + mod->percpu_size) {
430 				if (can_addr) {
431 					*can_addr = (unsigned long) (va - start);
432 					*can_addr += (unsigned long)
433 						per_cpu_ptr(mod->percpu,
434 							    get_boot_cpu_id());
435 				}
436 				preempt_enable();
437 				return true;
438 			}
439 		}
440 	}
441 
442 	preempt_enable();
443 	return false;
444 }
445 
446 /**
447  * is_module_percpu_address() - test whether address is from module static percpu
448  * @addr: address to test
449  *
450  * Test whether @addr belongs to module static percpu area.
451  *
452  * Return: %true if @addr is from module static percpu area
453  */
454 bool is_module_percpu_address(unsigned long addr)
455 {
456 	return __is_module_percpu_address(addr, NULL);
457 }
458 
459 #else /* ... !CONFIG_SMP */
460 
461 static inline void __percpu *mod_percpu(struct module *mod)
462 {
463 	return NULL;
464 }
465 static int percpu_modalloc(struct module *mod, struct load_info *info)
466 {
467 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
468 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
469 		return -ENOMEM;
470 	return 0;
471 }
472 static inline void percpu_modfree(struct module *mod)
473 {
474 }
475 static unsigned int find_pcpusec(struct load_info *info)
476 {
477 	return 0;
478 }
479 static inline void percpu_modcopy(struct module *mod,
480 				  const void *from, unsigned long size)
481 {
482 	/* pcpusec should be 0, and size of that section should be 0. */
483 	BUG_ON(size != 0);
484 }
485 bool is_module_percpu_address(unsigned long addr)
486 {
487 	return false;
488 }
489 
490 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
491 {
492 	return false;
493 }
494 
495 #endif /* CONFIG_SMP */
496 
497 #define MODINFO_ATTR(field)	\
498 static void setup_modinfo_##field(struct module *mod, const char *s)  \
499 {                                                                     \
500 	mod->field = kstrdup(s, GFP_KERNEL);                          \
501 }                                                                     \
502 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
503 			struct module_kobject *mk, char *buffer)      \
504 {                                                                     \
505 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
506 }                                                                     \
507 static int modinfo_##field##_exists(struct module *mod)               \
508 {                                                                     \
509 	return mod->field != NULL;                                    \
510 }                                                                     \
511 static void free_modinfo_##field(struct module *mod)                  \
512 {                                                                     \
513 	kfree(mod->field);                                            \
514 	mod->field = NULL;                                            \
515 }                                                                     \
516 static struct module_attribute modinfo_##field = {                    \
517 	.attr = { .name = __stringify(field), .mode = 0444 },         \
518 	.show = show_modinfo_##field,                                 \
519 	.setup = setup_modinfo_##field,                               \
520 	.test = modinfo_##field##_exists,                             \
521 	.free = free_modinfo_##field,                                 \
522 };
523 
524 MODINFO_ATTR(version);
525 MODINFO_ATTR(srcversion);
526 
527 static struct {
528 	char name[MODULE_NAME_LEN + 1];
529 	char taints[MODULE_FLAGS_BUF_SIZE];
530 } last_unloaded_module;
531 
532 #ifdef CONFIG_MODULE_UNLOAD
533 
534 EXPORT_TRACEPOINT_SYMBOL(module_get);
535 
536 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
537 #define MODULE_REF_BASE	1
538 
539 /* Init the unload section of the module. */
540 static int module_unload_init(struct module *mod)
541 {
542 	/*
543 	 * Initialize reference counter to MODULE_REF_BASE.
544 	 * refcnt == 0 means module is going.
545 	 */
546 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
547 
548 	INIT_LIST_HEAD(&mod->source_list);
549 	INIT_LIST_HEAD(&mod->target_list);
550 
551 	/* Hold reference count during initialization. */
552 	atomic_inc(&mod->refcnt);
553 
554 	return 0;
555 }
556 
557 /* Does a already use b? */
558 static int already_uses(struct module *a, struct module *b)
559 {
560 	struct module_use *use;
561 
562 	list_for_each_entry(use, &b->source_list, source_list) {
563 		if (use->source == a) {
564 			pr_debug("%s uses %s!\n", a->name, b->name);
565 			return 1;
566 		}
567 	}
568 	pr_debug("%s does not use %s!\n", a->name, b->name);
569 	return 0;
570 }
571 
572 /*
573  * Module a uses b
574  *  - we add 'a' as a "source", 'b' as a "target" of module use
575  *  - the module_use is added to the list of 'b' sources (so
576  *    'b' can walk the list to see who sourced them), and of 'a'
577  *    targets (so 'a' can see what modules it targets).
578  */
579 static int add_module_usage(struct module *a, struct module *b)
580 {
581 	struct module_use *use;
582 
583 	pr_debug("Allocating new usage for %s.\n", a->name);
584 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
585 	if (!use)
586 		return -ENOMEM;
587 
588 	use->source = a;
589 	use->target = b;
590 	list_add(&use->source_list, &b->source_list);
591 	list_add(&use->target_list, &a->target_list);
592 	return 0;
593 }
594 
595 /* Module a uses b: caller needs module_mutex() */
596 static int ref_module(struct module *a, struct module *b)
597 {
598 	int err;
599 
600 	if (b == NULL || already_uses(a, b))
601 		return 0;
602 
603 	/* If module isn't available, we fail. */
604 	err = strong_try_module_get(b);
605 	if (err)
606 		return err;
607 
608 	err = add_module_usage(a, b);
609 	if (err) {
610 		module_put(b);
611 		return err;
612 	}
613 	return 0;
614 }
615 
616 /* Clear the unload stuff of the module. */
617 static void module_unload_free(struct module *mod)
618 {
619 	struct module_use *use, *tmp;
620 
621 	mutex_lock(&module_mutex);
622 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
623 		struct module *i = use->target;
624 		pr_debug("%s unusing %s\n", mod->name, i->name);
625 		module_put(i);
626 		list_del(&use->source_list);
627 		list_del(&use->target_list);
628 		kfree(use);
629 	}
630 	mutex_unlock(&module_mutex);
631 }
632 
633 #ifdef CONFIG_MODULE_FORCE_UNLOAD
634 static inline int try_force_unload(unsigned int flags)
635 {
636 	int ret = (flags & O_TRUNC);
637 	if (ret)
638 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
639 	return ret;
640 }
641 #else
642 static inline int try_force_unload(unsigned int flags)
643 {
644 	return 0;
645 }
646 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
647 
648 /* Try to release refcount of module, 0 means success. */
649 static int try_release_module_ref(struct module *mod)
650 {
651 	int ret;
652 
653 	/* Try to decrement refcnt which we set at loading */
654 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
655 	BUG_ON(ret < 0);
656 	if (ret)
657 		/* Someone can put this right now, recover with checking */
658 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
659 
660 	return ret;
661 }
662 
663 static int try_stop_module(struct module *mod, int flags, int *forced)
664 {
665 	/* If it's not unused, quit unless we're forcing. */
666 	if (try_release_module_ref(mod) != 0) {
667 		*forced = try_force_unload(flags);
668 		if (!(*forced))
669 			return -EWOULDBLOCK;
670 	}
671 
672 	/* Mark it as dying. */
673 	mod->state = MODULE_STATE_GOING;
674 
675 	return 0;
676 }
677 
678 /**
679  * module_refcount() - return the refcount or -1 if unloading
680  * @mod:	the module we're checking
681  *
682  * Return:
683  *	-1 if the module is in the process of unloading
684  *	otherwise the number of references in the kernel to the module
685  */
686 int module_refcount(struct module *mod)
687 {
688 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
689 }
690 EXPORT_SYMBOL(module_refcount);
691 
692 /* This exists whether we can unload or not */
693 static void free_module(struct module *mod);
694 
695 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
696 		unsigned int, flags)
697 {
698 	struct module *mod;
699 	char name[MODULE_NAME_LEN];
700 	char buf[MODULE_FLAGS_BUF_SIZE];
701 	int ret, forced = 0;
702 
703 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
704 		return -EPERM;
705 
706 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
707 		return -EFAULT;
708 	name[MODULE_NAME_LEN-1] = '\0';
709 
710 	audit_log_kern_module(name);
711 
712 	if (mutex_lock_interruptible(&module_mutex) != 0)
713 		return -EINTR;
714 
715 	mod = find_module(name);
716 	if (!mod) {
717 		ret = -ENOENT;
718 		goto out;
719 	}
720 
721 	if (!list_empty(&mod->source_list)) {
722 		/* Other modules depend on us: get rid of them first. */
723 		ret = -EWOULDBLOCK;
724 		goto out;
725 	}
726 
727 	/* Doing init or already dying? */
728 	if (mod->state != MODULE_STATE_LIVE) {
729 		/* FIXME: if (force), slam module count damn the torpedoes */
730 		pr_debug("%s already dying\n", mod->name);
731 		ret = -EBUSY;
732 		goto out;
733 	}
734 
735 	/* If it has an init func, it must have an exit func to unload */
736 	if (mod->init && !mod->exit) {
737 		forced = try_force_unload(flags);
738 		if (!forced) {
739 			/* This module can't be removed */
740 			ret = -EBUSY;
741 			goto out;
742 		}
743 	}
744 
745 	ret = try_stop_module(mod, flags, &forced);
746 	if (ret != 0)
747 		goto out;
748 
749 	mutex_unlock(&module_mutex);
750 	/* Final destruction now no one is using it. */
751 	if (mod->exit != NULL)
752 		mod->exit();
753 	blocking_notifier_call_chain(&module_notify_list,
754 				     MODULE_STATE_GOING, mod);
755 	klp_module_going(mod);
756 	ftrace_release_mod(mod);
757 
758 	async_synchronize_full();
759 
760 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
761 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
762 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
763 
764 	free_module(mod);
765 	/* someone could wait for the module in add_unformed_module() */
766 	wake_up_all(&module_wq);
767 	return 0;
768 out:
769 	mutex_unlock(&module_mutex);
770 	return ret;
771 }
772 
773 void __symbol_put(const char *symbol)
774 {
775 	struct find_symbol_arg fsa = {
776 		.name	= symbol,
777 		.gplok	= true,
778 	};
779 
780 	preempt_disable();
781 	BUG_ON(!find_symbol(&fsa));
782 	module_put(fsa.owner);
783 	preempt_enable();
784 }
785 EXPORT_SYMBOL(__symbol_put);
786 
787 /* Note this assumes addr is a function, which it currently always is. */
788 void symbol_put_addr(void *addr)
789 {
790 	struct module *modaddr;
791 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
792 
793 	if (core_kernel_text(a))
794 		return;
795 
796 	/*
797 	 * Even though we hold a reference on the module; we still need to
798 	 * disable preemption in order to safely traverse the data structure.
799 	 */
800 	preempt_disable();
801 	modaddr = __module_text_address(a);
802 	BUG_ON(!modaddr);
803 	module_put(modaddr);
804 	preempt_enable();
805 }
806 EXPORT_SYMBOL_GPL(symbol_put_addr);
807 
808 static ssize_t show_refcnt(struct module_attribute *mattr,
809 			   struct module_kobject *mk, char *buffer)
810 {
811 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
812 }
813 
814 static struct module_attribute modinfo_refcnt =
815 	__ATTR(refcnt, 0444, show_refcnt, NULL);
816 
817 void __module_get(struct module *module)
818 {
819 	if (module) {
820 		preempt_disable();
821 		atomic_inc(&module->refcnt);
822 		trace_module_get(module, _RET_IP_);
823 		preempt_enable();
824 	}
825 }
826 EXPORT_SYMBOL(__module_get);
827 
828 bool try_module_get(struct module *module)
829 {
830 	bool ret = true;
831 
832 	if (module) {
833 		preempt_disable();
834 		/* Note: here, we can fail to get a reference */
835 		if (likely(module_is_live(module) &&
836 			   atomic_inc_not_zero(&module->refcnt) != 0))
837 			trace_module_get(module, _RET_IP_);
838 		else
839 			ret = false;
840 
841 		preempt_enable();
842 	}
843 	return ret;
844 }
845 EXPORT_SYMBOL(try_module_get);
846 
847 void module_put(struct module *module)
848 {
849 	int ret;
850 
851 	if (module) {
852 		preempt_disable();
853 		ret = atomic_dec_if_positive(&module->refcnt);
854 		WARN_ON(ret < 0);	/* Failed to put refcount */
855 		trace_module_put(module, _RET_IP_);
856 		preempt_enable();
857 	}
858 }
859 EXPORT_SYMBOL(module_put);
860 
861 #else /* !CONFIG_MODULE_UNLOAD */
862 static inline void module_unload_free(struct module *mod)
863 {
864 }
865 
866 static int ref_module(struct module *a, struct module *b)
867 {
868 	return strong_try_module_get(b);
869 }
870 
871 static inline int module_unload_init(struct module *mod)
872 {
873 	return 0;
874 }
875 #endif /* CONFIG_MODULE_UNLOAD */
876 
877 size_t module_flags_taint(unsigned long taints, char *buf)
878 {
879 	size_t l = 0;
880 	int i;
881 
882 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
883 		if (taint_flags[i].module && test_bit(i, &taints))
884 			buf[l++] = taint_flags[i].c_true;
885 	}
886 
887 	return l;
888 }
889 
890 static ssize_t show_initstate(struct module_attribute *mattr,
891 			      struct module_kobject *mk, char *buffer)
892 {
893 	const char *state = "unknown";
894 
895 	switch (mk->mod->state) {
896 	case MODULE_STATE_LIVE:
897 		state = "live";
898 		break;
899 	case MODULE_STATE_COMING:
900 		state = "coming";
901 		break;
902 	case MODULE_STATE_GOING:
903 		state = "going";
904 		break;
905 	default:
906 		BUG();
907 	}
908 	return sprintf(buffer, "%s\n", state);
909 }
910 
911 static struct module_attribute modinfo_initstate =
912 	__ATTR(initstate, 0444, show_initstate, NULL);
913 
914 static ssize_t store_uevent(struct module_attribute *mattr,
915 			    struct module_kobject *mk,
916 			    const char *buffer, size_t count)
917 {
918 	int rc;
919 
920 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
921 	return rc ? rc : count;
922 }
923 
924 struct module_attribute module_uevent =
925 	__ATTR(uevent, 0200, NULL, store_uevent);
926 
927 static ssize_t show_coresize(struct module_attribute *mattr,
928 			     struct module_kobject *mk, char *buffer)
929 {
930 	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
931 }
932 
933 static struct module_attribute modinfo_coresize =
934 	__ATTR(coresize, 0444, show_coresize, NULL);
935 
936 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
937 static ssize_t show_datasize(struct module_attribute *mattr,
938 			     struct module_kobject *mk, char *buffer)
939 {
940 	return sprintf(buffer, "%u\n", mk->mod->data_layout.size);
941 }
942 
943 static struct module_attribute modinfo_datasize =
944 	__ATTR(datasize, 0444, show_datasize, NULL);
945 #endif
946 
947 static ssize_t show_initsize(struct module_attribute *mattr,
948 			     struct module_kobject *mk, char *buffer)
949 {
950 	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
951 }
952 
953 static struct module_attribute modinfo_initsize =
954 	__ATTR(initsize, 0444, show_initsize, NULL);
955 
956 static ssize_t show_taint(struct module_attribute *mattr,
957 			  struct module_kobject *mk, char *buffer)
958 {
959 	size_t l;
960 
961 	l = module_flags_taint(mk->mod->taints, buffer);
962 	buffer[l++] = '\n';
963 	return l;
964 }
965 
966 static struct module_attribute modinfo_taint =
967 	__ATTR(taint, 0444, show_taint, NULL);
968 
969 struct module_attribute *modinfo_attrs[] = {
970 	&module_uevent,
971 	&modinfo_version,
972 	&modinfo_srcversion,
973 	&modinfo_initstate,
974 	&modinfo_coresize,
975 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
976 	&modinfo_datasize,
977 #endif
978 	&modinfo_initsize,
979 	&modinfo_taint,
980 #ifdef CONFIG_MODULE_UNLOAD
981 	&modinfo_refcnt,
982 #endif
983 	NULL,
984 };
985 
986 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
987 
988 static const char vermagic[] = VERMAGIC_STRING;
989 
990 int try_to_force_load(struct module *mod, const char *reason)
991 {
992 #ifdef CONFIG_MODULE_FORCE_LOAD
993 	if (!test_taint(TAINT_FORCED_MODULE))
994 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
995 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
996 	return 0;
997 #else
998 	return -ENOEXEC;
999 #endif
1000 }
1001 
1002 static char *get_modinfo(const struct load_info *info, const char *tag);
1003 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1004 			      char *prev);
1005 
1006 static int verify_namespace_is_imported(const struct load_info *info,
1007 					const struct kernel_symbol *sym,
1008 					struct module *mod)
1009 {
1010 	const char *namespace;
1011 	char *imported_namespace;
1012 
1013 	namespace = kernel_symbol_namespace(sym);
1014 	if (namespace && namespace[0]) {
1015 		imported_namespace = get_modinfo(info, "import_ns");
1016 		while (imported_namespace) {
1017 			if (strcmp(namespace, imported_namespace) == 0)
1018 				return 0;
1019 			imported_namespace = get_next_modinfo(
1020 				info, "import_ns", imported_namespace);
1021 		}
1022 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1023 		pr_warn(
1024 #else
1025 		pr_err(
1026 #endif
1027 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1028 			mod->name, kernel_symbol_name(sym), namespace);
1029 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1030 		return -EINVAL;
1031 #endif
1032 	}
1033 	return 0;
1034 }
1035 
1036 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1037 {
1038 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1039 		return true;
1040 
1041 	if (mod->using_gplonly_symbols) {
1042 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1043 			mod->name, name, owner->name);
1044 		return false;
1045 	}
1046 
1047 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1048 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1049 			mod->name, name, owner->name);
1050 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1051 	}
1052 	return true;
1053 }
1054 
1055 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1056 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1057 						  const struct load_info *info,
1058 						  const char *name,
1059 						  char ownername[])
1060 {
1061 	struct find_symbol_arg fsa = {
1062 		.name	= name,
1063 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1064 		.warn	= true,
1065 	};
1066 	int err;
1067 
1068 	/*
1069 	 * The module_mutex should not be a heavily contended lock;
1070 	 * if we get the occasional sleep here, we'll go an extra iteration
1071 	 * in the wait_event_interruptible(), which is harmless.
1072 	 */
1073 	sched_annotate_sleep();
1074 	mutex_lock(&module_mutex);
1075 	if (!find_symbol(&fsa))
1076 		goto unlock;
1077 
1078 	if (fsa.license == GPL_ONLY)
1079 		mod->using_gplonly_symbols = true;
1080 
1081 	if (!inherit_taint(mod, fsa.owner, name)) {
1082 		fsa.sym = NULL;
1083 		goto getname;
1084 	}
1085 
1086 	if (!check_version(info, name, mod, fsa.crc)) {
1087 		fsa.sym = ERR_PTR(-EINVAL);
1088 		goto getname;
1089 	}
1090 
1091 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1092 	if (err) {
1093 		fsa.sym = ERR_PTR(err);
1094 		goto getname;
1095 	}
1096 
1097 	err = ref_module(mod, fsa.owner);
1098 	if (err) {
1099 		fsa.sym = ERR_PTR(err);
1100 		goto getname;
1101 	}
1102 
1103 getname:
1104 	/* We must make copy under the lock if we failed to get ref. */
1105 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1106 unlock:
1107 	mutex_unlock(&module_mutex);
1108 	return fsa.sym;
1109 }
1110 
1111 static const struct kernel_symbol *
1112 resolve_symbol_wait(struct module *mod,
1113 		    const struct load_info *info,
1114 		    const char *name)
1115 {
1116 	const struct kernel_symbol *ksym;
1117 	char owner[MODULE_NAME_LEN];
1118 
1119 	if (wait_event_interruptible_timeout(module_wq,
1120 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1121 			|| PTR_ERR(ksym) != -EBUSY,
1122 					     30 * HZ) <= 0) {
1123 		pr_warn("%s: gave up waiting for init of module %s.\n",
1124 			mod->name, owner);
1125 	}
1126 	return ksym;
1127 }
1128 
1129 void __weak module_memfree(void *module_region)
1130 {
1131 	/*
1132 	 * This memory may be RO, and freeing RO memory in an interrupt is not
1133 	 * supported by vmalloc.
1134 	 */
1135 	WARN_ON(in_interrupt());
1136 	vfree(module_region);
1137 }
1138 
1139 void __weak module_arch_cleanup(struct module *mod)
1140 {
1141 }
1142 
1143 void __weak module_arch_freeing_init(struct module *mod)
1144 {
1145 }
1146 
1147 static void cfi_cleanup(struct module *mod);
1148 
1149 /* Free a module, remove from lists, etc. */
1150 static void free_module(struct module *mod)
1151 {
1152 	trace_module_free(mod);
1153 
1154 	mod_sysfs_teardown(mod);
1155 
1156 	/*
1157 	 * We leave it in list to prevent duplicate loads, but make sure
1158 	 * that noone uses it while it's being deconstructed.
1159 	 */
1160 	mutex_lock(&module_mutex);
1161 	mod->state = MODULE_STATE_UNFORMED;
1162 	mutex_unlock(&module_mutex);
1163 
1164 	/* Remove dynamic debug info */
1165 	ddebug_remove_module(mod->name);
1166 
1167 	/* Arch-specific cleanup. */
1168 	module_arch_cleanup(mod);
1169 
1170 	/* Module unload stuff */
1171 	module_unload_free(mod);
1172 
1173 	/* Free any allocated parameters. */
1174 	destroy_params(mod->kp, mod->num_kp);
1175 
1176 	if (is_livepatch_module(mod))
1177 		free_module_elf(mod);
1178 
1179 	/* Now we can delete it from the lists */
1180 	mutex_lock(&module_mutex);
1181 	/* Unlink carefully: kallsyms could be walking list. */
1182 	list_del_rcu(&mod->list);
1183 	mod_tree_remove(mod);
1184 	/* Remove this module from bug list, this uses list_del_rcu */
1185 	module_bug_cleanup(mod);
1186 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1187 	synchronize_rcu();
1188 	if (try_add_tainted_module(mod))
1189 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1190 		       mod->name);
1191 	mutex_unlock(&module_mutex);
1192 
1193 	/* Clean up CFI for the module. */
1194 	cfi_cleanup(mod);
1195 
1196 	/* This may be empty, but that's OK */
1197 	module_arch_freeing_init(mod);
1198 	module_memfree(mod->init_layout.base);
1199 	kfree(mod->args);
1200 	percpu_modfree(mod);
1201 
1202 	/* Free lock-classes; relies on the preceding sync_rcu(). */
1203 	lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
1204 
1205 	/* Finally, free the core (containing the module structure) */
1206 	module_memfree(mod->core_layout.base);
1207 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1208 	vfree(mod->data_layout.base);
1209 #endif
1210 }
1211 
1212 void *__symbol_get(const char *symbol)
1213 {
1214 	struct find_symbol_arg fsa = {
1215 		.name	= symbol,
1216 		.gplok	= true,
1217 		.warn	= true,
1218 	};
1219 
1220 	preempt_disable();
1221 	if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
1222 		preempt_enable();
1223 		return NULL;
1224 	}
1225 	preempt_enable();
1226 	return (void *)kernel_symbol_value(fsa.sym);
1227 }
1228 EXPORT_SYMBOL_GPL(__symbol_get);
1229 
1230 /*
1231  * Ensure that an exported symbol [global namespace] does not already exist
1232  * in the kernel or in some other module's exported symbol table.
1233  *
1234  * You must hold the module_mutex.
1235  */
1236 static int verify_exported_symbols(struct module *mod)
1237 {
1238 	unsigned int i;
1239 	const struct kernel_symbol *s;
1240 	struct {
1241 		const struct kernel_symbol *sym;
1242 		unsigned int num;
1243 	} arr[] = {
1244 		{ mod->syms, mod->num_syms },
1245 		{ mod->gpl_syms, mod->num_gpl_syms },
1246 	};
1247 
1248 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1249 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1250 			struct find_symbol_arg fsa = {
1251 				.name	= kernel_symbol_name(s),
1252 				.gplok	= true,
1253 			};
1254 			if (find_symbol(&fsa)) {
1255 				pr_err("%s: exports duplicate symbol %s"
1256 				       " (owned by %s)\n",
1257 				       mod->name, kernel_symbol_name(s),
1258 				       module_name(fsa.owner));
1259 				return -ENOEXEC;
1260 			}
1261 		}
1262 	}
1263 	return 0;
1264 }
1265 
1266 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1267 {
1268 	/*
1269 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1270 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1271 	 * i386 has a similar problem but may not deserve a fix.
1272 	 *
1273 	 * If we ever have to ignore many symbols, consider refactoring the code to
1274 	 * only warn if referenced by a relocation.
1275 	 */
1276 	if (emachine == EM_386 || emachine == EM_X86_64)
1277 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1278 	return false;
1279 }
1280 
1281 /* Change all symbols so that st_value encodes the pointer directly. */
1282 static int simplify_symbols(struct module *mod, const struct load_info *info)
1283 {
1284 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1285 	Elf_Sym *sym = (void *)symsec->sh_addr;
1286 	unsigned long secbase;
1287 	unsigned int i;
1288 	int ret = 0;
1289 	const struct kernel_symbol *ksym;
1290 
1291 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1292 		const char *name = info->strtab + sym[i].st_name;
1293 
1294 		switch (sym[i].st_shndx) {
1295 		case SHN_COMMON:
1296 			/* Ignore common symbols */
1297 			if (!strncmp(name, "__gnu_lto", 9))
1298 				break;
1299 
1300 			/*
1301 			 * We compiled with -fno-common.  These are not
1302 			 * supposed to happen.
1303 			 */
1304 			pr_debug("Common symbol: %s\n", name);
1305 			pr_warn("%s: please compile with -fno-common\n",
1306 			       mod->name);
1307 			ret = -ENOEXEC;
1308 			break;
1309 
1310 		case SHN_ABS:
1311 			/* Don't need to do anything */
1312 			pr_debug("Absolute symbol: 0x%08lx\n",
1313 			       (long)sym[i].st_value);
1314 			break;
1315 
1316 		case SHN_LIVEPATCH:
1317 			/* Livepatch symbols are resolved by livepatch */
1318 			break;
1319 
1320 		case SHN_UNDEF:
1321 			ksym = resolve_symbol_wait(mod, info, name);
1322 			/* Ok if resolved.  */
1323 			if (ksym && !IS_ERR(ksym)) {
1324 				sym[i].st_value = kernel_symbol_value(ksym);
1325 				break;
1326 			}
1327 
1328 			/* Ok if weak or ignored.  */
1329 			if (!ksym &&
1330 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1331 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1332 				break;
1333 
1334 			ret = PTR_ERR(ksym) ?: -ENOENT;
1335 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1336 				mod->name, name, ret);
1337 			break;
1338 
1339 		default:
1340 			/* Divert to percpu allocation if a percpu var. */
1341 			if (sym[i].st_shndx == info->index.pcpu)
1342 				secbase = (unsigned long)mod_percpu(mod);
1343 			else
1344 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1345 			sym[i].st_value += secbase;
1346 			break;
1347 		}
1348 	}
1349 
1350 	return ret;
1351 }
1352 
1353 static int apply_relocations(struct module *mod, const struct load_info *info)
1354 {
1355 	unsigned int i;
1356 	int err = 0;
1357 
1358 	/* Now do relocations. */
1359 	for (i = 1; i < info->hdr->e_shnum; i++) {
1360 		unsigned int infosec = info->sechdrs[i].sh_info;
1361 
1362 		/* Not a valid relocation section? */
1363 		if (infosec >= info->hdr->e_shnum)
1364 			continue;
1365 
1366 		/* Don't bother with non-allocated sections */
1367 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1368 			continue;
1369 
1370 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1371 			err = klp_apply_section_relocs(mod, info->sechdrs,
1372 						       info->secstrings,
1373 						       info->strtab,
1374 						       info->index.sym, i,
1375 						       NULL);
1376 		else if (info->sechdrs[i].sh_type == SHT_REL)
1377 			err = apply_relocate(info->sechdrs, info->strtab,
1378 					     info->index.sym, i, mod);
1379 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1380 			err = apply_relocate_add(info->sechdrs, info->strtab,
1381 						 info->index.sym, i, mod);
1382 		if (err < 0)
1383 			break;
1384 	}
1385 	return err;
1386 }
1387 
1388 /* Additional bytes needed by arch in front of individual sections */
1389 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1390 					     unsigned int section)
1391 {
1392 	/* default implementation just returns zero */
1393 	return 0;
1394 }
1395 
1396 /* Update size with this section: return offset. */
1397 long module_get_offset(struct module *mod, unsigned int *size,
1398 		       Elf_Shdr *sechdr, unsigned int section)
1399 {
1400 	long ret;
1401 
1402 	*size += arch_mod_section_prepend(mod, section);
1403 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1404 	*size = ret + sechdr->sh_size;
1405 	return ret;
1406 }
1407 
1408 static bool module_init_layout_section(const char *sname)
1409 {
1410 #ifndef CONFIG_MODULE_UNLOAD
1411 	if (module_exit_section(sname))
1412 		return true;
1413 #endif
1414 	return module_init_section(sname);
1415 }
1416 
1417 /*
1418  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1419  * might -- code, read-only data, read-write data, small data.  Tally
1420  * sizes, and place the offsets into sh_entsize fields: high bit means it
1421  * belongs in init.
1422  */
1423 static void layout_sections(struct module *mod, struct load_info *info)
1424 {
1425 	static unsigned long const masks[][2] = {
1426 		/*
1427 		 * NOTE: all executable code must be the first section
1428 		 * in this array; otherwise modify the text_size
1429 		 * finder in the two loops below
1430 		 */
1431 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1432 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1433 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1434 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1435 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1436 	};
1437 	unsigned int m, i;
1438 
1439 	for (i = 0; i < info->hdr->e_shnum; i++)
1440 		info->sechdrs[i].sh_entsize = ~0UL;
1441 
1442 	pr_debug("Core section allocation order:\n");
1443 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1444 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1445 			Elf_Shdr *s = &info->sechdrs[i];
1446 			const char *sname = info->secstrings + s->sh_name;
1447 			unsigned int *sizep;
1448 
1449 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1450 			    || (s->sh_flags & masks[m][1])
1451 			    || s->sh_entsize != ~0UL
1452 			    || module_init_layout_section(sname))
1453 				continue;
1454 			sizep = m ? &mod->data_layout.size : &mod->core_layout.size;
1455 			s->sh_entsize = module_get_offset(mod, sizep, s, i);
1456 			pr_debug("\t%s\n", sname);
1457 		}
1458 		switch (m) {
1459 		case 0: /* executable */
1460 			mod->core_layout.size = strict_align(mod->core_layout.size);
1461 			mod->core_layout.text_size = mod->core_layout.size;
1462 			break;
1463 		case 1: /* RO: text and ro-data */
1464 			mod->data_layout.size = strict_align(mod->data_layout.size);
1465 			mod->data_layout.ro_size = mod->data_layout.size;
1466 			break;
1467 		case 2: /* RO after init */
1468 			mod->data_layout.size = strict_align(mod->data_layout.size);
1469 			mod->data_layout.ro_after_init_size = mod->data_layout.size;
1470 			break;
1471 		case 4: /* whole core */
1472 			mod->data_layout.size = strict_align(mod->data_layout.size);
1473 			break;
1474 		}
1475 	}
1476 
1477 	pr_debug("Init section allocation order:\n");
1478 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1479 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1480 			Elf_Shdr *s = &info->sechdrs[i];
1481 			const char *sname = info->secstrings + s->sh_name;
1482 
1483 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1484 			    || (s->sh_flags & masks[m][1])
1485 			    || s->sh_entsize != ~0UL
1486 			    || !module_init_layout_section(sname))
1487 				continue;
1488 			s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i)
1489 					 | INIT_OFFSET_MASK);
1490 			pr_debug("\t%s\n", sname);
1491 		}
1492 		switch (m) {
1493 		case 0: /* executable */
1494 			mod->init_layout.size = strict_align(mod->init_layout.size);
1495 			mod->init_layout.text_size = mod->init_layout.size;
1496 			break;
1497 		case 1: /* RO: text and ro-data */
1498 			mod->init_layout.size = strict_align(mod->init_layout.size);
1499 			mod->init_layout.ro_size = mod->init_layout.size;
1500 			break;
1501 		case 2:
1502 			/*
1503 			 * RO after init doesn't apply to init_layout (only
1504 			 * core_layout), so it just takes the value of ro_size.
1505 			 */
1506 			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
1507 			break;
1508 		case 4: /* whole init */
1509 			mod->init_layout.size = strict_align(mod->init_layout.size);
1510 			break;
1511 		}
1512 	}
1513 }
1514 
1515 static void set_license(struct module *mod, const char *license)
1516 {
1517 	if (!license)
1518 		license = "unspecified";
1519 
1520 	if (!license_is_gpl_compatible(license)) {
1521 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1522 			pr_warn("%s: module license '%s' taints kernel.\n",
1523 				mod->name, license);
1524 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1525 				 LOCKDEP_NOW_UNRELIABLE);
1526 	}
1527 }
1528 
1529 /* Parse tag=value strings from .modinfo section */
1530 static char *next_string(char *string, unsigned long *secsize)
1531 {
1532 	/* Skip non-zero chars */
1533 	while (string[0]) {
1534 		string++;
1535 		if ((*secsize)-- <= 1)
1536 			return NULL;
1537 	}
1538 
1539 	/* Skip any zero padding. */
1540 	while (!string[0]) {
1541 		string++;
1542 		if ((*secsize)-- <= 1)
1543 			return NULL;
1544 	}
1545 	return string;
1546 }
1547 
1548 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1549 			      char *prev)
1550 {
1551 	char *p;
1552 	unsigned int taglen = strlen(tag);
1553 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1554 	unsigned long size = infosec->sh_size;
1555 
1556 	/*
1557 	 * get_modinfo() calls made before rewrite_section_headers()
1558 	 * must use sh_offset, as sh_addr isn't set!
1559 	 */
1560 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1561 
1562 	if (prev) {
1563 		size -= prev - modinfo;
1564 		modinfo = next_string(prev, &size);
1565 	}
1566 
1567 	for (p = modinfo; p; p = next_string(p, &size)) {
1568 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1569 			return p + taglen + 1;
1570 	}
1571 	return NULL;
1572 }
1573 
1574 static char *get_modinfo(const struct load_info *info, const char *tag)
1575 {
1576 	return get_next_modinfo(info, tag, NULL);
1577 }
1578 
1579 static void setup_modinfo(struct module *mod, struct load_info *info)
1580 {
1581 	struct module_attribute *attr;
1582 	int i;
1583 
1584 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1585 		if (attr->setup)
1586 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1587 	}
1588 }
1589 
1590 static void free_modinfo(struct module *mod)
1591 {
1592 	struct module_attribute *attr;
1593 	int i;
1594 
1595 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1596 		if (attr->free)
1597 			attr->free(mod);
1598 	}
1599 }
1600 
1601 static void dynamic_debug_setup(struct module *mod, struct _ddebug_info *dyndbg)
1602 {
1603 	if (!dyndbg->num_descs)
1604 		return;
1605 	ddebug_add_module(dyndbg, mod->name);
1606 }
1607 
1608 static void dynamic_debug_remove(struct module *mod, struct _ddebug_info *dyndbg)
1609 {
1610 	if (dyndbg->num_descs)
1611 		ddebug_remove_module(mod->name);
1612 }
1613 
1614 void * __weak module_alloc(unsigned long size)
1615 {
1616 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
1617 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
1618 			NUMA_NO_NODE, __builtin_return_address(0));
1619 }
1620 
1621 bool __weak module_init_section(const char *name)
1622 {
1623 	return strstarts(name, ".init");
1624 }
1625 
1626 bool __weak module_exit_section(const char *name)
1627 {
1628 	return strstarts(name, ".exit");
1629 }
1630 
1631 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1632 {
1633 #if defined(CONFIG_64BIT)
1634 	unsigned long long secend;
1635 #else
1636 	unsigned long secend;
1637 #endif
1638 
1639 	/*
1640 	 * Check for both overflow and offset/size being
1641 	 * too large.
1642 	 */
1643 	secend = shdr->sh_offset + shdr->sh_size;
1644 	if (secend < shdr->sh_offset || secend > info->len)
1645 		return -ENOEXEC;
1646 
1647 	return 0;
1648 }
1649 
1650 /*
1651  * Sanity checks against invalid binaries, wrong arch, weird elf version.
1652  *
1653  * Also do basic validity checks against section offsets and sizes, the
1654  * section name string table, and the indices used for it (sh_name).
1655  */
1656 static int elf_validity_check(struct load_info *info)
1657 {
1658 	unsigned int i;
1659 	Elf_Shdr *shdr, *strhdr;
1660 	int err;
1661 
1662 	if (info->len < sizeof(*(info->hdr))) {
1663 		pr_err("Invalid ELF header len %lu\n", info->len);
1664 		goto no_exec;
1665 	}
1666 
1667 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1668 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1669 		goto no_exec;
1670 	}
1671 	if (info->hdr->e_type != ET_REL) {
1672 		pr_err("Invalid ELF header type: %u != %u\n",
1673 		       info->hdr->e_type, ET_REL);
1674 		goto no_exec;
1675 	}
1676 	if (!elf_check_arch(info->hdr)) {
1677 		pr_err("Invalid architecture in ELF header: %u\n",
1678 		       info->hdr->e_machine);
1679 		goto no_exec;
1680 	}
1681 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1682 		pr_err("Invalid ELF section header size\n");
1683 		goto no_exec;
1684 	}
1685 
1686 	/*
1687 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1688 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1689 	 * will not overflow unsigned long on any platform.
1690 	 */
1691 	if (info->hdr->e_shoff >= info->len
1692 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1693 		info->len - info->hdr->e_shoff)) {
1694 		pr_err("Invalid ELF section header overflow\n");
1695 		goto no_exec;
1696 	}
1697 
1698 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1699 
1700 	/*
1701 	 * Verify if the section name table index is valid.
1702 	 */
1703 	if (info->hdr->e_shstrndx == SHN_UNDEF
1704 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1705 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1706 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1707 		       info->hdr->e_shnum);
1708 		goto no_exec;
1709 	}
1710 
1711 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1712 	err = validate_section_offset(info, strhdr);
1713 	if (err < 0) {
1714 		pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1715 		return err;
1716 	}
1717 
1718 	/*
1719 	 * The section name table must be NUL-terminated, as required
1720 	 * by the spec. This makes strcmp and pr_* calls that access
1721 	 * strings in the section safe.
1722 	 */
1723 	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1724 	if (strhdr->sh_size == 0) {
1725 		pr_err("empty section name table\n");
1726 		goto no_exec;
1727 	}
1728 	if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1729 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1730 		goto no_exec;
1731 	}
1732 
1733 	/*
1734 	 * The code assumes that section 0 has a length of zero and
1735 	 * an addr of zero, so check for it.
1736 	 */
1737 	if (info->sechdrs[0].sh_type != SHT_NULL
1738 	    || info->sechdrs[0].sh_size != 0
1739 	    || info->sechdrs[0].sh_addr != 0) {
1740 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1741 		       info->sechdrs[0].sh_type);
1742 		goto no_exec;
1743 	}
1744 
1745 	for (i = 1; i < info->hdr->e_shnum; i++) {
1746 		shdr = &info->sechdrs[i];
1747 		switch (shdr->sh_type) {
1748 		case SHT_NULL:
1749 		case SHT_NOBITS:
1750 			continue;
1751 		case SHT_SYMTAB:
1752 			if (shdr->sh_link == SHN_UNDEF
1753 			    || shdr->sh_link >= info->hdr->e_shnum) {
1754 				pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1755 				       shdr->sh_link, shdr->sh_link,
1756 				       info->hdr->e_shnum);
1757 				goto no_exec;
1758 			}
1759 			fallthrough;
1760 		default:
1761 			err = validate_section_offset(info, shdr);
1762 			if (err < 0) {
1763 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1764 					i, shdr->sh_type);
1765 				return err;
1766 			}
1767 
1768 			if (shdr->sh_flags & SHF_ALLOC) {
1769 				if (shdr->sh_name >= strhdr->sh_size) {
1770 					pr_err("Invalid ELF section name in module (section %u type %u)\n",
1771 					       i, shdr->sh_type);
1772 					return -ENOEXEC;
1773 				}
1774 			}
1775 			break;
1776 		}
1777 	}
1778 
1779 	return 0;
1780 
1781 no_exec:
1782 	return -ENOEXEC;
1783 }
1784 
1785 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1786 
1787 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1788 {
1789 	do {
1790 		unsigned long n = min(len, COPY_CHUNK_SIZE);
1791 
1792 		if (copy_from_user(dst, usrc, n) != 0)
1793 			return -EFAULT;
1794 		cond_resched();
1795 		dst += n;
1796 		usrc += n;
1797 		len -= n;
1798 	} while (len);
1799 	return 0;
1800 }
1801 
1802 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1803 {
1804 	if (!get_modinfo(info, "livepatch"))
1805 		/* Nothing more to do */
1806 		return 0;
1807 
1808 	if (set_livepatch_module(mod)) {
1809 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
1810 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
1811 				mod->name);
1812 		return 0;
1813 	}
1814 
1815 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1816 	       mod->name);
1817 	return -ENOEXEC;
1818 }
1819 
1820 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1821 {
1822 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1823 		return;
1824 
1825 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1826 		mod->name);
1827 }
1828 
1829 /* Sets info->hdr and info->len. */
1830 static int copy_module_from_user(const void __user *umod, unsigned long len,
1831 				  struct load_info *info)
1832 {
1833 	int err;
1834 
1835 	info->len = len;
1836 	if (info->len < sizeof(*(info->hdr)))
1837 		return -ENOEXEC;
1838 
1839 	err = security_kernel_load_data(LOADING_MODULE, true);
1840 	if (err)
1841 		return err;
1842 
1843 	/* Suck in entire file: we'll want most of it. */
1844 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
1845 	if (!info->hdr)
1846 		return -ENOMEM;
1847 
1848 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
1849 		err = -EFAULT;
1850 		goto out;
1851 	}
1852 
1853 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
1854 					     LOADING_MODULE, "init_module");
1855 out:
1856 	if (err)
1857 		vfree(info->hdr);
1858 
1859 	return err;
1860 }
1861 
1862 static void free_copy(struct load_info *info, int flags)
1863 {
1864 	if (flags & MODULE_INIT_COMPRESSED_FILE)
1865 		module_decompress_cleanup(info);
1866 	else
1867 		vfree(info->hdr);
1868 }
1869 
1870 static int rewrite_section_headers(struct load_info *info, int flags)
1871 {
1872 	unsigned int i;
1873 
1874 	/* This should always be true, but let's be sure. */
1875 	info->sechdrs[0].sh_addr = 0;
1876 
1877 	for (i = 1; i < info->hdr->e_shnum; i++) {
1878 		Elf_Shdr *shdr = &info->sechdrs[i];
1879 
1880 		/*
1881 		 * Mark all sections sh_addr with their address in the
1882 		 * temporary image.
1883 		 */
1884 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
1885 
1886 	}
1887 
1888 	/* Track but don't keep modinfo and version sections. */
1889 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
1890 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
1891 
1892 	return 0;
1893 }
1894 
1895 /*
1896  * Set up our basic convenience variables (pointers to section headers,
1897  * search for module section index etc), and do some basic section
1898  * verification.
1899  *
1900  * Set info->mod to the temporary copy of the module in info->hdr. The final one
1901  * will be allocated in move_module().
1902  */
1903 static int setup_load_info(struct load_info *info, int flags)
1904 {
1905 	unsigned int i;
1906 
1907 	/* Try to find a name early so we can log errors with a module name */
1908 	info->index.info = find_sec(info, ".modinfo");
1909 	if (info->index.info)
1910 		info->name = get_modinfo(info, "name");
1911 
1912 	/* Find internal symbols and strings. */
1913 	for (i = 1; i < info->hdr->e_shnum; i++) {
1914 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
1915 			info->index.sym = i;
1916 			info->index.str = info->sechdrs[i].sh_link;
1917 			info->strtab = (char *)info->hdr
1918 				+ info->sechdrs[info->index.str].sh_offset;
1919 			break;
1920 		}
1921 	}
1922 
1923 	if (info->index.sym == 0) {
1924 		pr_warn("%s: module has no symbols (stripped?)\n",
1925 			info->name ?: "(missing .modinfo section or name field)");
1926 		return -ENOEXEC;
1927 	}
1928 
1929 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
1930 	if (!info->index.mod) {
1931 		pr_warn("%s: No module found in object\n",
1932 			info->name ?: "(missing .modinfo section or name field)");
1933 		return -ENOEXEC;
1934 	}
1935 	/* This is temporary: point mod into copy of data. */
1936 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
1937 
1938 	/*
1939 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
1940 	 * on-disk struct mod 'name' field.
1941 	 */
1942 	if (!info->name)
1943 		info->name = info->mod->name;
1944 
1945 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1946 		info->index.vers = 0; /* Pretend no __versions section! */
1947 	else
1948 		info->index.vers = find_sec(info, "__versions");
1949 
1950 	info->index.pcpu = find_pcpusec(info);
1951 
1952 	return 0;
1953 }
1954 
1955 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
1956 {
1957 	const char *modmagic = get_modinfo(info, "vermagic");
1958 	int err;
1959 
1960 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
1961 		modmagic = NULL;
1962 
1963 	/* This is allowed: modprobe --force will invalidate it. */
1964 	if (!modmagic) {
1965 		err = try_to_force_load(mod, "bad vermagic");
1966 		if (err)
1967 			return err;
1968 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
1969 		pr_err("%s: version magic '%s' should be '%s'\n",
1970 		       info->name, modmagic, vermagic);
1971 		return -ENOEXEC;
1972 	}
1973 
1974 	if (!get_modinfo(info, "intree")) {
1975 		if (!test_taint(TAINT_OOT_MODULE))
1976 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
1977 				mod->name);
1978 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
1979 	}
1980 
1981 	check_modinfo_retpoline(mod, info);
1982 
1983 	if (get_modinfo(info, "staging")) {
1984 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
1985 		pr_warn("%s: module is from the staging directory, the quality "
1986 			"is unknown, you have been warned.\n", mod->name);
1987 	}
1988 
1989 	err = check_modinfo_livepatch(mod, info);
1990 	if (err)
1991 		return err;
1992 
1993 	/* Set up license info based on the info section */
1994 	set_license(mod, get_modinfo(info, "license"));
1995 
1996 	if (get_modinfo(info, "test")) {
1997 		if (!test_taint(TAINT_TEST))
1998 			pr_warn("%s: loading test module taints kernel.\n",
1999 				mod->name);
2000 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 static int find_module_sections(struct module *mod, struct load_info *info)
2007 {
2008 	mod->kp = section_objs(info, "__param",
2009 			       sizeof(*mod->kp), &mod->num_kp);
2010 	mod->syms = section_objs(info, "__ksymtab",
2011 				 sizeof(*mod->syms), &mod->num_syms);
2012 	mod->crcs = section_addr(info, "__kcrctab");
2013 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2014 				     sizeof(*mod->gpl_syms),
2015 				     &mod->num_gpl_syms);
2016 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2017 
2018 #ifdef CONFIG_CONSTRUCTORS
2019 	mod->ctors = section_objs(info, ".ctors",
2020 				  sizeof(*mod->ctors), &mod->num_ctors);
2021 	if (!mod->ctors)
2022 		mod->ctors = section_objs(info, ".init_array",
2023 				sizeof(*mod->ctors), &mod->num_ctors);
2024 	else if (find_sec(info, ".init_array")) {
2025 		/*
2026 		 * This shouldn't happen with same compiler and binutils
2027 		 * building all parts of the module.
2028 		 */
2029 		pr_warn("%s: has both .ctors and .init_array.\n",
2030 		       mod->name);
2031 		return -EINVAL;
2032 	}
2033 #endif
2034 
2035 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2036 						&mod->noinstr_text_size);
2037 
2038 #ifdef CONFIG_TRACEPOINTS
2039 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2040 					     sizeof(*mod->tracepoints_ptrs),
2041 					     &mod->num_tracepoints);
2042 #endif
2043 #ifdef CONFIG_TREE_SRCU
2044 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2045 					     sizeof(*mod->srcu_struct_ptrs),
2046 					     &mod->num_srcu_structs);
2047 #endif
2048 #ifdef CONFIG_BPF_EVENTS
2049 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2050 					   sizeof(*mod->bpf_raw_events),
2051 					   &mod->num_bpf_raw_events);
2052 #endif
2053 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2054 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2055 #endif
2056 #ifdef CONFIG_JUMP_LABEL
2057 	mod->jump_entries = section_objs(info, "__jump_table",
2058 					sizeof(*mod->jump_entries),
2059 					&mod->num_jump_entries);
2060 #endif
2061 #ifdef CONFIG_EVENT_TRACING
2062 	mod->trace_events = section_objs(info, "_ftrace_events",
2063 					 sizeof(*mod->trace_events),
2064 					 &mod->num_trace_events);
2065 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2066 					sizeof(*mod->trace_evals),
2067 					&mod->num_trace_evals);
2068 #endif
2069 #ifdef CONFIG_TRACING
2070 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2071 					 sizeof(*mod->trace_bprintk_fmt_start),
2072 					 &mod->num_trace_bprintk_fmt);
2073 #endif
2074 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2075 	/* sechdrs[0].sh_size is always zero */
2076 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2077 					     sizeof(*mod->ftrace_callsites),
2078 					     &mod->num_ftrace_callsites);
2079 #endif
2080 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2081 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2082 					    sizeof(*mod->ei_funcs),
2083 					    &mod->num_ei_funcs);
2084 #endif
2085 #ifdef CONFIG_KPROBES
2086 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2087 						&mod->kprobes_text_size);
2088 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2089 						sizeof(unsigned long),
2090 						&mod->num_kprobe_blacklist);
2091 #endif
2092 #ifdef CONFIG_PRINTK_INDEX
2093 	mod->printk_index_start = section_objs(info, ".printk_index",
2094 					       sizeof(*mod->printk_index_start),
2095 					       &mod->printk_index_size);
2096 #endif
2097 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2098 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2099 					      sizeof(*mod->static_call_sites),
2100 					      &mod->num_static_call_sites);
2101 #endif
2102 #if IS_ENABLED(CONFIG_KUNIT)
2103 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2104 					      sizeof(*mod->kunit_suites),
2105 					      &mod->num_kunit_suites);
2106 #endif
2107 
2108 	mod->extable = section_objs(info, "__ex_table",
2109 				    sizeof(*mod->extable), &mod->num_exentries);
2110 
2111 	if (section_addr(info, "__obsparm"))
2112 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2113 
2114 	info->dyndbg.descs = section_objs(info, "__dyndbg",
2115 					sizeof(*info->dyndbg.descs), &info->dyndbg.num_descs);
2116 	info->dyndbg.classes = section_objs(info, "__dyndbg_classes",
2117 					sizeof(*info->dyndbg.classes), &info->dyndbg.num_classes);
2118 
2119 	return 0;
2120 }
2121 
2122 static int move_module(struct module *mod, struct load_info *info)
2123 {
2124 	int i;
2125 	void *ptr;
2126 
2127 	/* Do the allocs. */
2128 	ptr = module_alloc(mod->core_layout.size);
2129 	/*
2130 	 * The pointer to this block is stored in the module structure
2131 	 * which is inside the block. Just mark it as not being a
2132 	 * leak.
2133 	 */
2134 	kmemleak_not_leak(ptr);
2135 	if (!ptr)
2136 		return -ENOMEM;
2137 
2138 	memset(ptr, 0, mod->core_layout.size);
2139 	mod->core_layout.base = ptr;
2140 
2141 	if (mod->init_layout.size) {
2142 		ptr = module_alloc(mod->init_layout.size);
2143 		/*
2144 		 * The pointer to this block is stored in the module structure
2145 		 * which is inside the block. This block doesn't need to be
2146 		 * scanned as it contains data and code that will be freed
2147 		 * after the module is initialized.
2148 		 */
2149 		kmemleak_ignore(ptr);
2150 		if (!ptr) {
2151 			module_memfree(mod->core_layout.base);
2152 			return -ENOMEM;
2153 		}
2154 		memset(ptr, 0, mod->init_layout.size);
2155 		mod->init_layout.base = ptr;
2156 	} else
2157 		mod->init_layout.base = NULL;
2158 
2159 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2160 	/* Do the allocs. */
2161 	ptr = vzalloc(mod->data_layout.size);
2162 	/*
2163 	 * The pointer to this block is stored in the module structure
2164 	 * which is inside the block. Just mark it as not being a
2165 	 * leak.
2166 	 */
2167 	kmemleak_not_leak(ptr);
2168 	if (!ptr) {
2169 		module_memfree(mod->core_layout.base);
2170 		module_memfree(mod->init_layout.base);
2171 		return -ENOMEM;
2172 	}
2173 
2174 	mod->data_layout.base = ptr;
2175 #endif
2176 	/* Transfer each section which specifies SHF_ALLOC */
2177 	pr_debug("final section addresses:\n");
2178 	for (i = 0; i < info->hdr->e_shnum; i++) {
2179 		void *dest;
2180 		Elf_Shdr *shdr = &info->sechdrs[i];
2181 
2182 		if (!(shdr->sh_flags & SHF_ALLOC))
2183 			continue;
2184 
2185 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2186 			dest = mod->init_layout.base
2187 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2188 		else if (!(shdr->sh_flags & SHF_EXECINSTR))
2189 			dest = mod->data_layout.base + shdr->sh_entsize;
2190 		else
2191 			dest = mod->core_layout.base + shdr->sh_entsize;
2192 
2193 		if (shdr->sh_type != SHT_NOBITS)
2194 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2195 		/* Update sh_addr to point to copy in image. */
2196 		shdr->sh_addr = (unsigned long)dest;
2197 		pr_debug("\t0x%lx %s\n",
2198 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2199 	}
2200 
2201 	return 0;
2202 }
2203 
2204 static int check_module_license_and_versions(struct module *mod)
2205 {
2206 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2207 
2208 	/*
2209 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2210 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2211 	 * using GPL-only symbols it needs.
2212 	 */
2213 	if (strcmp(mod->name, "ndiswrapper") == 0)
2214 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2215 
2216 	/* driverloader was caught wrongly pretending to be under GPL */
2217 	if (strcmp(mod->name, "driverloader") == 0)
2218 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2219 				 LOCKDEP_NOW_UNRELIABLE);
2220 
2221 	/* lve claims to be GPL but upstream won't provide source */
2222 	if (strcmp(mod->name, "lve") == 0)
2223 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2224 				 LOCKDEP_NOW_UNRELIABLE);
2225 
2226 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2227 		pr_warn("%s: module license taints kernel.\n", mod->name);
2228 
2229 #ifdef CONFIG_MODVERSIONS
2230 	if ((mod->num_syms && !mod->crcs) ||
2231 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2232 		return try_to_force_load(mod,
2233 					 "no versions for exported symbols");
2234 	}
2235 #endif
2236 	return 0;
2237 }
2238 
2239 static void flush_module_icache(const struct module *mod)
2240 {
2241 	/*
2242 	 * Flush the instruction cache, since we've played with text.
2243 	 * Do it before processing of module parameters, so the module
2244 	 * can provide parameter accessor functions of its own.
2245 	 */
2246 	if (mod->init_layout.base)
2247 		flush_icache_range((unsigned long)mod->init_layout.base,
2248 				   (unsigned long)mod->init_layout.base
2249 				   + mod->init_layout.size);
2250 	flush_icache_range((unsigned long)mod->core_layout.base,
2251 			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
2252 }
2253 
2254 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2255 				     Elf_Shdr *sechdrs,
2256 				     char *secstrings,
2257 				     struct module *mod)
2258 {
2259 	return 0;
2260 }
2261 
2262 /* module_blacklist is a comma-separated list of module names */
2263 static char *module_blacklist;
2264 static bool blacklisted(const char *module_name)
2265 {
2266 	const char *p;
2267 	size_t len;
2268 
2269 	if (!module_blacklist)
2270 		return false;
2271 
2272 	for (p = module_blacklist; *p; p += len) {
2273 		len = strcspn(p, ",");
2274 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2275 			return true;
2276 		if (p[len] == ',')
2277 			len++;
2278 	}
2279 	return false;
2280 }
2281 core_param(module_blacklist, module_blacklist, charp, 0400);
2282 
2283 static struct module *layout_and_allocate(struct load_info *info, int flags)
2284 {
2285 	struct module *mod;
2286 	unsigned int ndx;
2287 	int err;
2288 
2289 	err = check_modinfo(info->mod, info, flags);
2290 	if (err)
2291 		return ERR_PTR(err);
2292 
2293 	/* Allow arches to frob section contents and sizes.  */
2294 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2295 					info->secstrings, info->mod);
2296 	if (err < 0)
2297 		return ERR_PTR(err);
2298 
2299 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2300 					  info->secstrings, info->mod);
2301 	if (err < 0)
2302 		return ERR_PTR(err);
2303 
2304 	/* We will do a special allocation for per-cpu sections later. */
2305 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2306 
2307 	/*
2308 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2309 	 * layout_sections() can put it in the right place.
2310 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2311 	 */
2312 	ndx = find_sec(info, ".data..ro_after_init");
2313 	if (ndx)
2314 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2315 	/*
2316 	 * Mark the __jump_table section as ro_after_init as well: these data
2317 	 * structures are never modified, with the exception of entries that
2318 	 * refer to code in the __init section, which are annotated as such
2319 	 * at module load time.
2320 	 */
2321 	ndx = find_sec(info, "__jump_table");
2322 	if (ndx)
2323 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2324 
2325 	/*
2326 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2327 	 * this is done generically; there doesn't appear to be any
2328 	 * special cases for the architectures.
2329 	 */
2330 	layout_sections(info->mod, info);
2331 	layout_symtab(info->mod, info);
2332 
2333 	/* Allocate and move to the final place */
2334 	err = move_module(info->mod, info);
2335 	if (err)
2336 		return ERR_PTR(err);
2337 
2338 	/* Module has been copied to its final place now: return it. */
2339 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2340 	kmemleak_load_module(mod, info);
2341 	return mod;
2342 }
2343 
2344 /* mod is no longer valid after this! */
2345 static void module_deallocate(struct module *mod, struct load_info *info)
2346 {
2347 	percpu_modfree(mod);
2348 	module_arch_freeing_init(mod);
2349 	module_memfree(mod->init_layout.base);
2350 	module_memfree(mod->core_layout.base);
2351 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2352 	vfree(mod->data_layout.base);
2353 #endif
2354 }
2355 
2356 int __weak module_finalize(const Elf_Ehdr *hdr,
2357 			   const Elf_Shdr *sechdrs,
2358 			   struct module *me)
2359 {
2360 	return 0;
2361 }
2362 
2363 static int post_relocation(struct module *mod, const struct load_info *info)
2364 {
2365 	/* Sort exception table now relocations are done. */
2366 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2367 
2368 	/* Copy relocated percpu area over. */
2369 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2370 		       info->sechdrs[info->index.pcpu].sh_size);
2371 
2372 	/* Setup kallsyms-specific fields. */
2373 	add_kallsyms(mod, info);
2374 
2375 	/* Arch-specific module finalizing. */
2376 	return module_finalize(info->hdr, info->sechdrs, mod);
2377 }
2378 
2379 /* Is this module of this name done loading?  No locks held. */
2380 static bool finished_loading(const char *name)
2381 {
2382 	struct module *mod;
2383 	bool ret;
2384 
2385 	/*
2386 	 * The module_mutex should not be a heavily contended lock;
2387 	 * if we get the occasional sleep here, we'll go an extra iteration
2388 	 * in the wait_event_interruptible(), which is harmless.
2389 	 */
2390 	sched_annotate_sleep();
2391 	mutex_lock(&module_mutex);
2392 	mod = find_module_all(name, strlen(name), true);
2393 	ret = !mod || mod->state == MODULE_STATE_LIVE;
2394 	mutex_unlock(&module_mutex);
2395 
2396 	return ret;
2397 }
2398 
2399 /* Call module constructors. */
2400 static void do_mod_ctors(struct module *mod)
2401 {
2402 #ifdef CONFIG_CONSTRUCTORS
2403 	unsigned long i;
2404 
2405 	for (i = 0; i < mod->num_ctors; i++)
2406 		mod->ctors[i]();
2407 #endif
2408 }
2409 
2410 /* For freeing module_init on success, in case kallsyms traversing */
2411 struct mod_initfree {
2412 	struct llist_node node;
2413 	void *module_init;
2414 };
2415 
2416 static void do_free_init(struct work_struct *w)
2417 {
2418 	struct llist_node *pos, *n, *list;
2419 	struct mod_initfree *initfree;
2420 
2421 	list = llist_del_all(&init_free_list);
2422 
2423 	synchronize_rcu();
2424 
2425 	llist_for_each_safe(pos, n, list) {
2426 		initfree = container_of(pos, struct mod_initfree, node);
2427 		module_memfree(initfree->module_init);
2428 		kfree(initfree);
2429 	}
2430 }
2431 
2432 #undef MODULE_PARAM_PREFIX
2433 #define MODULE_PARAM_PREFIX "module."
2434 /* Default value for module->async_probe_requested */
2435 static bool async_probe;
2436 module_param(async_probe, bool, 0644);
2437 
2438 /*
2439  * This is where the real work happens.
2440  *
2441  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2442  * helper command 'lx-symbols'.
2443  */
2444 static noinline int do_init_module(struct module *mod)
2445 {
2446 	int ret = 0;
2447 	struct mod_initfree *freeinit;
2448 
2449 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2450 	if (!freeinit) {
2451 		ret = -ENOMEM;
2452 		goto fail;
2453 	}
2454 	freeinit->module_init = mod->init_layout.base;
2455 
2456 	do_mod_ctors(mod);
2457 	/* Start the module */
2458 	if (mod->init != NULL)
2459 		ret = do_one_initcall(mod->init);
2460 	if (ret < 0) {
2461 		goto fail_free_freeinit;
2462 	}
2463 	if (ret > 0) {
2464 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2465 			"follow 0/-E convention\n"
2466 			"%s: loading module anyway...\n",
2467 			__func__, mod->name, ret, __func__);
2468 		dump_stack();
2469 	}
2470 
2471 	/* Now it's a first class citizen! */
2472 	mod->state = MODULE_STATE_LIVE;
2473 	blocking_notifier_call_chain(&module_notify_list,
2474 				     MODULE_STATE_LIVE, mod);
2475 
2476 	/* Delay uevent until module has finished its init routine */
2477 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2478 
2479 	/*
2480 	 * We need to finish all async code before the module init sequence
2481 	 * is done. This has potential to deadlock if synchronous module
2482 	 * loading is requested from async (which is not allowed!).
2483 	 *
2484 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2485 	 * request_module() from async workers") for more details.
2486 	 */
2487 	if (!mod->async_probe_requested)
2488 		async_synchronize_full();
2489 
2490 	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
2491 			mod->init_layout.size);
2492 	mutex_lock(&module_mutex);
2493 	/* Drop initial reference. */
2494 	module_put(mod);
2495 	trim_init_extable(mod);
2496 #ifdef CONFIG_KALLSYMS
2497 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
2498 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2499 #endif
2500 	module_enable_ro(mod, true);
2501 	mod_tree_remove_init(mod);
2502 	module_arch_freeing_init(mod);
2503 	mod->init_layout.base = NULL;
2504 	mod->init_layout.size = 0;
2505 	mod->init_layout.ro_size = 0;
2506 	mod->init_layout.ro_after_init_size = 0;
2507 	mod->init_layout.text_size = 0;
2508 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2509 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
2510 	mod->btf_data = NULL;
2511 #endif
2512 	/*
2513 	 * We want to free module_init, but be aware that kallsyms may be
2514 	 * walking this with preempt disabled.  In all the failure paths, we
2515 	 * call synchronize_rcu(), but we don't want to slow down the success
2516 	 * path. module_memfree() cannot be called in an interrupt, so do the
2517 	 * work and call synchronize_rcu() in a work queue.
2518 	 *
2519 	 * Note that module_alloc() on most architectures creates W+X page
2520 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
2521 	 * code such as mark_rodata_ro() which depends on those mappings to
2522 	 * be cleaned up needs to sync with the queued work - ie
2523 	 * rcu_barrier()
2524 	 */
2525 	if (llist_add(&freeinit->node, &init_free_list))
2526 		schedule_work(&init_free_wq);
2527 
2528 	mutex_unlock(&module_mutex);
2529 	wake_up_all(&module_wq);
2530 
2531 	return 0;
2532 
2533 fail_free_freeinit:
2534 	kfree(freeinit);
2535 fail:
2536 	/* Try to protect us from buggy refcounters. */
2537 	mod->state = MODULE_STATE_GOING;
2538 	synchronize_rcu();
2539 	module_put(mod);
2540 	blocking_notifier_call_chain(&module_notify_list,
2541 				     MODULE_STATE_GOING, mod);
2542 	klp_module_going(mod);
2543 	ftrace_release_mod(mod);
2544 	free_module(mod);
2545 	wake_up_all(&module_wq);
2546 	return ret;
2547 }
2548 
2549 static int may_init_module(void)
2550 {
2551 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
2552 		return -EPERM;
2553 
2554 	return 0;
2555 }
2556 
2557 /*
2558  * We try to place it in the list now to make sure it's unique before
2559  * we dedicate too many resources.  In particular, temporary percpu
2560  * memory exhaustion.
2561  */
2562 static int add_unformed_module(struct module *mod)
2563 {
2564 	int err;
2565 	struct module *old;
2566 
2567 	mod->state = MODULE_STATE_UNFORMED;
2568 
2569 again:
2570 	mutex_lock(&module_mutex);
2571 	old = find_module_all(mod->name, strlen(mod->name), true);
2572 	if (old != NULL) {
2573 		if (old->state != MODULE_STATE_LIVE) {
2574 			/* Wait in case it fails to load. */
2575 			mutex_unlock(&module_mutex);
2576 			err = wait_event_interruptible(module_wq,
2577 					       finished_loading(mod->name));
2578 			if (err)
2579 				goto out_unlocked;
2580 			goto again;
2581 		}
2582 		err = -EEXIST;
2583 		goto out;
2584 	}
2585 	mod_update_bounds(mod);
2586 	list_add_rcu(&mod->list, &modules);
2587 	mod_tree_insert(mod);
2588 	err = 0;
2589 
2590 out:
2591 	mutex_unlock(&module_mutex);
2592 out_unlocked:
2593 	return err;
2594 }
2595 
2596 static int complete_formation(struct module *mod, struct load_info *info)
2597 {
2598 	int err;
2599 
2600 	mutex_lock(&module_mutex);
2601 
2602 	/* Find duplicate symbols (must be called under lock). */
2603 	err = verify_exported_symbols(mod);
2604 	if (err < 0)
2605 		goto out;
2606 
2607 	/* This relies on module_mutex for list integrity. */
2608 	module_bug_finalize(info->hdr, info->sechdrs, mod);
2609 
2610 	if (module_check_misalignment(mod))
2611 		goto out_misaligned;
2612 
2613 	module_enable_ro(mod, false);
2614 	module_enable_nx(mod);
2615 	module_enable_x(mod);
2616 
2617 	/*
2618 	 * Mark state as coming so strong_try_module_get() ignores us,
2619 	 * but kallsyms etc. can see us.
2620 	 */
2621 	mod->state = MODULE_STATE_COMING;
2622 	mutex_unlock(&module_mutex);
2623 
2624 	return 0;
2625 
2626 out_misaligned:
2627 	err = -EINVAL;
2628 out:
2629 	mutex_unlock(&module_mutex);
2630 	return err;
2631 }
2632 
2633 static int prepare_coming_module(struct module *mod)
2634 {
2635 	int err;
2636 
2637 	ftrace_module_enable(mod);
2638 	err = klp_module_coming(mod);
2639 	if (err)
2640 		return err;
2641 
2642 	err = blocking_notifier_call_chain_robust(&module_notify_list,
2643 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2644 	err = notifier_to_errno(err);
2645 	if (err)
2646 		klp_module_going(mod);
2647 
2648 	return err;
2649 }
2650 
2651 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2652 				   void *arg)
2653 {
2654 	struct module *mod = arg;
2655 	int ret;
2656 
2657 	if (strcmp(param, "async_probe") == 0) {
2658 		if (strtobool(val, &mod->async_probe_requested))
2659 			mod->async_probe_requested = true;
2660 		return 0;
2661 	}
2662 
2663 	/* Check for magic 'dyndbg' arg */
2664 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2665 	if (ret != 0)
2666 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2667 	return 0;
2668 }
2669 
2670 static void cfi_init(struct module *mod);
2671 
2672 /*
2673  * Allocate and load the module: note that size of section 0 is always
2674  * zero, and we rely on this for optional sections.
2675  */
2676 static int load_module(struct load_info *info, const char __user *uargs,
2677 		       int flags)
2678 {
2679 	struct module *mod;
2680 	long err = 0;
2681 	char *after_dashes;
2682 
2683 	/*
2684 	 * Do the signature check (if any) first. All that
2685 	 * the signature check needs is info->len, it does
2686 	 * not need any of the section info. That can be
2687 	 * set up later. This will minimize the chances
2688 	 * of a corrupt module causing problems before
2689 	 * we even get to the signature check.
2690 	 *
2691 	 * The check will also adjust info->len by stripping
2692 	 * off the sig length at the end of the module, making
2693 	 * checks against info->len more correct.
2694 	 */
2695 	err = module_sig_check(info, flags);
2696 	if (err)
2697 		goto free_copy;
2698 
2699 	/*
2700 	 * Do basic sanity checks against the ELF header and
2701 	 * sections.
2702 	 */
2703 	err = elf_validity_check(info);
2704 	if (err)
2705 		goto free_copy;
2706 
2707 	/*
2708 	 * Everything checks out, so set up the section info
2709 	 * in the info structure.
2710 	 */
2711 	err = setup_load_info(info, flags);
2712 	if (err)
2713 		goto free_copy;
2714 
2715 	/*
2716 	 * Now that we know we have the correct module name, check
2717 	 * if it's blacklisted.
2718 	 */
2719 	if (blacklisted(info->name)) {
2720 		err = -EPERM;
2721 		pr_err("Module %s is blacklisted\n", info->name);
2722 		goto free_copy;
2723 	}
2724 
2725 	err = rewrite_section_headers(info, flags);
2726 	if (err)
2727 		goto free_copy;
2728 
2729 	/* Check module struct version now, before we try to use module. */
2730 	if (!check_modstruct_version(info, info->mod)) {
2731 		err = -ENOEXEC;
2732 		goto free_copy;
2733 	}
2734 
2735 	/* Figure out module layout, and allocate all the memory. */
2736 	mod = layout_and_allocate(info, flags);
2737 	if (IS_ERR(mod)) {
2738 		err = PTR_ERR(mod);
2739 		goto free_copy;
2740 	}
2741 
2742 	audit_log_kern_module(mod->name);
2743 
2744 	/* Reserve our place in the list. */
2745 	err = add_unformed_module(mod);
2746 	if (err)
2747 		goto free_module;
2748 
2749 #ifdef CONFIG_MODULE_SIG
2750 	mod->sig_ok = info->sig_ok;
2751 	if (!mod->sig_ok) {
2752 		pr_notice_once("%s: module verification failed: signature "
2753 			       "and/or required key missing - tainting "
2754 			       "kernel\n", mod->name);
2755 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2756 	}
2757 #endif
2758 
2759 	/* To avoid stressing percpu allocator, do this once we're unique. */
2760 	err = percpu_modalloc(mod, info);
2761 	if (err)
2762 		goto unlink_mod;
2763 
2764 	/* Now module is in final location, initialize linked lists, etc. */
2765 	err = module_unload_init(mod);
2766 	if (err)
2767 		goto unlink_mod;
2768 
2769 	init_param_lock(mod);
2770 
2771 	/*
2772 	 * Now we've got everything in the final locations, we can
2773 	 * find optional sections.
2774 	 */
2775 	err = find_module_sections(mod, info);
2776 	if (err)
2777 		goto free_unload;
2778 
2779 	err = check_module_license_and_versions(mod);
2780 	if (err)
2781 		goto free_unload;
2782 
2783 	/* Set up MODINFO_ATTR fields */
2784 	setup_modinfo(mod, info);
2785 
2786 	/* Fix up syms, so that st_value is a pointer to location. */
2787 	err = simplify_symbols(mod, info);
2788 	if (err < 0)
2789 		goto free_modinfo;
2790 
2791 	err = apply_relocations(mod, info);
2792 	if (err < 0)
2793 		goto free_modinfo;
2794 
2795 	err = post_relocation(mod, info);
2796 	if (err < 0)
2797 		goto free_modinfo;
2798 
2799 	flush_module_icache(mod);
2800 
2801 	/* Setup CFI for the module. */
2802 	cfi_init(mod);
2803 
2804 	/* Now copy in args */
2805 	mod->args = strndup_user(uargs, ~0UL >> 1);
2806 	if (IS_ERR(mod->args)) {
2807 		err = PTR_ERR(mod->args);
2808 		goto free_arch_cleanup;
2809 	}
2810 
2811 	init_build_id(mod, info);
2812 	dynamic_debug_setup(mod, &info->dyndbg);
2813 
2814 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2815 	ftrace_module_init(mod);
2816 
2817 	/* Finally it's fully formed, ready to start executing. */
2818 	err = complete_formation(mod, info);
2819 	if (err)
2820 		goto ddebug_cleanup;
2821 
2822 	err = prepare_coming_module(mod);
2823 	if (err)
2824 		goto bug_cleanup;
2825 
2826 	mod->async_probe_requested = async_probe;
2827 
2828 	/* Module is ready to execute: parsing args may do that. */
2829 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2830 				  -32768, 32767, mod,
2831 				  unknown_module_param_cb);
2832 	if (IS_ERR(after_dashes)) {
2833 		err = PTR_ERR(after_dashes);
2834 		goto coming_cleanup;
2835 	} else if (after_dashes) {
2836 		pr_warn("%s: parameters '%s' after `--' ignored\n",
2837 		       mod->name, after_dashes);
2838 	}
2839 
2840 	/* Link in to sysfs. */
2841 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
2842 	if (err < 0)
2843 		goto coming_cleanup;
2844 
2845 	if (is_livepatch_module(mod)) {
2846 		err = copy_module_elf(mod, info);
2847 		if (err < 0)
2848 			goto sysfs_cleanup;
2849 	}
2850 
2851 	/* Get rid of temporary copy. */
2852 	free_copy(info, flags);
2853 
2854 	/* Done! */
2855 	trace_module_load(mod);
2856 
2857 	return do_init_module(mod);
2858 
2859  sysfs_cleanup:
2860 	mod_sysfs_teardown(mod);
2861  coming_cleanup:
2862 	mod->state = MODULE_STATE_GOING;
2863 	destroy_params(mod->kp, mod->num_kp);
2864 	blocking_notifier_call_chain(&module_notify_list,
2865 				     MODULE_STATE_GOING, mod);
2866 	klp_module_going(mod);
2867  bug_cleanup:
2868 	mod->state = MODULE_STATE_GOING;
2869 	/* module_bug_cleanup needs module_mutex protection */
2870 	mutex_lock(&module_mutex);
2871 	module_bug_cleanup(mod);
2872 	mutex_unlock(&module_mutex);
2873 
2874  ddebug_cleanup:
2875 	ftrace_release_mod(mod);
2876 	dynamic_debug_remove(mod, &info->dyndbg);
2877 	synchronize_rcu();
2878 	kfree(mod->args);
2879  free_arch_cleanup:
2880 	cfi_cleanup(mod);
2881 	module_arch_cleanup(mod);
2882  free_modinfo:
2883 	free_modinfo(mod);
2884  free_unload:
2885 	module_unload_free(mod);
2886  unlink_mod:
2887 	mutex_lock(&module_mutex);
2888 	/* Unlink carefully: kallsyms could be walking list. */
2889 	list_del_rcu(&mod->list);
2890 	mod_tree_remove(mod);
2891 	wake_up_all(&module_wq);
2892 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
2893 	synchronize_rcu();
2894 	mutex_unlock(&module_mutex);
2895  free_module:
2896 	/* Free lock-classes; relies on the preceding sync_rcu() */
2897 	lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
2898 
2899 	module_deallocate(mod, info);
2900  free_copy:
2901 	free_copy(info, flags);
2902 	return err;
2903 }
2904 
2905 SYSCALL_DEFINE3(init_module, void __user *, umod,
2906 		unsigned long, len, const char __user *, uargs)
2907 {
2908 	int err;
2909 	struct load_info info = { };
2910 
2911 	err = may_init_module();
2912 	if (err)
2913 		return err;
2914 
2915 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
2916 	       umod, len, uargs);
2917 
2918 	err = copy_module_from_user(umod, len, &info);
2919 	if (err)
2920 		return err;
2921 
2922 	return load_module(&info, uargs, 0);
2923 }
2924 
2925 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
2926 {
2927 	struct load_info info = { };
2928 	void *buf = NULL;
2929 	int len;
2930 	int err;
2931 
2932 	err = may_init_module();
2933 	if (err)
2934 		return err;
2935 
2936 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
2937 
2938 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
2939 		      |MODULE_INIT_IGNORE_VERMAGIC
2940 		      |MODULE_INIT_COMPRESSED_FILE))
2941 		return -EINVAL;
2942 
2943 	len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL,
2944 				       READING_MODULE);
2945 	if (len < 0)
2946 		return len;
2947 
2948 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
2949 		err = module_decompress(&info, buf, len);
2950 		vfree(buf); /* compressed data is no longer needed */
2951 		if (err)
2952 			return err;
2953 	} else {
2954 		info.hdr = buf;
2955 		info.len = len;
2956 	}
2957 
2958 	return load_module(&info, uargs, flags);
2959 }
2960 
2961 static inline int within(unsigned long addr, void *start, unsigned long size)
2962 {
2963 	return ((void *)addr >= start && (void *)addr < start + size);
2964 }
2965 
2966 static void cfi_init(struct module *mod)
2967 {
2968 #ifdef CONFIG_CFI_CLANG
2969 	initcall_t *init;
2970 #ifdef CONFIG_MODULE_UNLOAD
2971 	exitcall_t *exit;
2972 #endif
2973 
2974 	rcu_read_lock_sched();
2975 	mod->cfi_check = (cfi_check_fn)
2976 		find_kallsyms_symbol_value(mod, "__cfi_check");
2977 	init = (initcall_t *)
2978 		find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
2979 	/* Fix init/exit functions to point to the CFI jump table */
2980 	if (init)
2981 		mod->init = *init;
2982 #ifdef CONFIG_MODULE_UNLOAD
2983 	exit = (exitcall_t *)
2984 		find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
2985 	if (exit)
2986 		mod->exit = *exit;
2987 #endif
2988 	rcu_read_unlock_sched();
2989 
2990 	cfi_module_add(mod, mod_tree.addr_min);
2991 #endif
2992 }
2993 
2994 static void cfi_cleanup(struct module *mod)
2995 {
2996 #ifdef CONFIG_CFI_CLANG
2997 	cfi_module_remove(mod, mod_tree.addr_min);
2998 #endif
2999 }
3000 
3001 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
3002 char *module_flags(struct module *mod, char *buf, bool show_state)
3003 {
3004 	int bx = 0;
3005 
3006 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3007 	if (!mod->taints && !show_state)
3008 		goto out;
3009 	if (mod->taints ||
3010 	    mod->state == MODULE_STATE_GOING ||
3011 	    mod->state == MODULE_STATE_COMING) {
3012 		buf[bx++] = '(';
3013 		bx += module_flags_taint(mod->taints, buf + bx);
3014 		/* Show a - for module-is-being-unloaded */
3015 		if (mod->state == MODULE_STATE_GOING && show_state)
3016 			buf[bx++] = '-';
3017 		/* Show a + for module-is-being-loaded */
3018 		if (mod->state == MODULE_STATE_COMING && show_state)
3019 			buf[bx++] = '+';
3020 		buf[bx++] = ')';
3021 	}
3022 out:
3023 	buf[bx] = '\0';
3024 
3025 	return buf;
3026 }
3027 
3028 /* Given an address, look for it in the module exception tables. */
3029 const struct exception_table_entry *search_module_extables(unsigned long addr)
3030 {
3031 	const struct exception_table_entry *e = NULL;
3032 	struct module *mod;
3033 
3034 	preempt_disable();
3035 	mod = __module_address(addr);
3036 	if (!mod)
3037 		goto out;
3038 
3039 	if (!mod->num_exentries)
3040 		goto out;
3041 
3042 	e = search_extable(mod->extable,
3043 			   mod->num_exentries,
3044 			   addr);
3045 out:
3046 	preempt_enable();
3047 
3048 	/*
3049 	 * Now, if we found one, we are running inside it now, hence
3050 	 * we cannot unload the module, hence no refcnt needed.
3051 	 */
3052 	return e;
3053 }
3054 
3055 /**
3056  * is_module_address() - is this address inside a module?
3057  * @addr: the address to check.
3058  *
3059  * See is_module_text_address() if you simply want to see if the address
3060  * is code (not data).
3061  */
3062 bool is_module_address(unsigned long addr)
3063 {
3064 	bool ret;
3065 
3066 	preempt_disable();
3067 	ret = __module_address(addr) != NULL;
3068 	preempt_enable();
3069 
3070 	return ret;
3071 }
3072 
3073 /**
3074  * __module_address() - get the module which contains an address.
3075  * @addr: the address.
3076  *
3077  * Must be called with preempt disabled or module mutex held so that
3078  * module doesn't get freed during this.
3079  */
3080 struct module *__module_address(unsigned long addr)
3081 {
3082 	struct module *mod;
3083 	struct mod_tree_root *tree;
3084 
3085 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3086 		tree = &mod_tree;
3087 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3088 	else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max)
3089 		tree = &mod_data_tree;
3090 #endif
3091 	else
3092 		return NULL;
3093 
3094 	module_assert_mutex_or_preempt();
3095 
3096 	mod = mod_find(addr, tree);
3097 	if (mod) {
3098 		BUG_ON(!within_module(addr, mod));
3099 		if (mod->state == MODULE_STATE_UNFORMED)
3100 			mod = NULL;
3101 	}
3102 	return mod;
3103 }
3104 
3105 /**
3106  * is_module_text_address() - is this address inside module code?
3107  * @addr: the address to check.
3108  *
3109  * See is_module_address() if you simply want to see if the address is
3110  * anywhere in a module.  See kernel_text_address() for testing if an
3111  * address corresponds to kernel or module code.
3112  */
3113 bool is_module_text_address(unsigned long addr)
3114 {
3115 	bool ret;
3116 
3117 	preempt_disable();
3118 	ret = __module_text_address(addr) != NULL;
3119 	preempt_enable();
3120 
3121 	return ret;
3122 }
3123 
3124 /**
3125  * __module_text_address() - get the module whose code contains an address.
3126  * @addr: the address.
3127  *
3128  * Must be called with preempt disabled or module mutex held so that
3129  * module doesn't get freed during this.
3130  */
3131 struct module *__module_text_address(unsigned long addr)
3132 {
3133 	struct module *mod = __module_address(addr);
3134 	if (mod) {
3135 		/* Make sure it's within the text section. */
3136 		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
3137 		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
3138 			mod = NULL;
3139 	}
3140 	return mod;
3141 }
3142 
3143 /* Don't grab lock, we're oopsing. */
3144 void print_modules(void)
3145 {
3146 	struct module *mod;
3147 	char buf[MODULE_FLAGS_BUF_SIZE];
3148 
3149 	printk(KERN_DEFAULT "Modules linked in:");
3150 	/* Most callers should already have preempt disabled, but make sure */
3151 	preempt_disable();
3152 	list_for_each_entry_rcu(mod, &modules, list) {
3153 		if (mod->state == MODULE_STATE_UNFORMED)
3154 			continue;
3155 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3156 	}
3157 
3158 	print_unloaded_tainted_modules();
3159 	preempt_enable();
3160 	if (last_unloaded_module.name[0])
3161 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3162 			last_unloaded_module.taints);
3163 	pr_cont("\n");
3164 }
3165