1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/debugfs.h> 60 #include <uapi/linux/module.h> 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/module.h> 65 66 /* 67 * Mutex protects: 68 * 1) List of modules (also safely readable with preempt_disable), 69 * 2) module_use links, 70 * 3) mod_tree.addr_min/mod_tree.addr_max. 71 * (delete and add uses RCU list operations). 72 */ 73 DEFINE_MUTEX(module_mutex); 74 LIST_HEAD(modules); 75 76 /* Work queue for freeing init sections in success case */ 77 static void do_free_init(struct work_struct *w); 78 static DECLARE_WORK(init_free_wq, do_free_init); 79 static LLIST_HEAD(init_free_list); 80 81 struct mod_tree_root mod_tree __cacheline_aligned = { 82 .addr_min = -1UL, 83 }; 84 85 struct symsearch { 86 const struct kernel_symbol *start, *stop; 87 const s32 *crcs; 88 enum mod_license license; 89 }; 90 91 /* 92 * Bounds of module memory, for speeding up __module_address. 93 * Protected by module_mutex. 94 */ 95 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 96 unsigned int size, struct mod_tree_root *tree) 97 { 98 unsigned long min = (unsigned long)base; 99 unsigned long max = min + size; 100 101 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 102 if (mod_mem_type_is_core_data(type)) { 103 if (min < tree->data_addr_min) 104 tree->data_addr_min = min; 105 if (max > tree->data_addr_max) 106 tree->data_addr_max = max; 107 return; 108 } 109 #endif 110 if (min < tree->addr_min) 111 tree->addr_min = min; 112 if (max > tree->addr_max) 113 tree->addr_max = max; 114 } 115 116 static void mod_update_bounds(struct module *mod) 117 { 118 for_each_mod_mem_type(type) { 119 struct module_memory *mod_mem = &mod->mem[type]; 120 121 if (mod_mem->size) 122 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 123 } 124 } 125 126 /* Block module loading/unloading? */ 127 int modules_disabled; 128 core_param(nomodule, modules_disabled, bint, 0); 129 130 /* Waiting for a module to finish initializing? */ 131 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 132 133 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 134 135 int register_module_notifier(struct notifier_block *nb) 136 { 137 return blocking_notifier_chain_register(&module_notify_list, nb); 138 } 139 EXPORT_SYMBOL(register_module_notifier); 140 141 int unregister_module_notifier(struct notifier_block *nb) 142 { 143 return blocking_notifier_chain_unregister(&module_notify_list, nb); 144 } 145 EXPORT_SYMBOL(unregister_module_notifier); 146 147 /* 148 * We require a truly strong try_module_get(): 0 means success. 149 * Otherwise an error is returned due to ongoing or failed 150 * initialization etc. 151 */ 152 static inline int strong_try_module_get(struct module *mod) 153 { 154 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 155 if (mod && mod->state == MODULE_STATE_COMING) 156 return -EBUSY; 157 if (try_module_get(mod)) 158 return 0; 159 else 160 return -ENOENT; 161 } 162 163 static inline void add_taint_module(struct module *mod, unsigned flag, 164 enum lockdep_ok lockdep_ok) 165 { 166 add_taint(flag, lockdep_ok); 167 set_bit(flag, &mod->taints); 168 } 169 170 /* 171 * A thread that wants to hold a reference to a module only while it 172 * is running can call this to safely exit. 173 */ 174 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 175 { 176 module_put(mod); 177 kthread_exit(code); 178 } 179 EXPORT_SYMBOL(__module_put_and_kthread_exit); 180 181 /* Find a module section: 0 means not found. */ 182 static unsigned int find_sec(const struct load_info *info, const char *name) 183 { 184 unsigned int i; 185 186 for (i = 1; i < info->hdr->e_shnum; i++) { 187 Elf_Shdr *shdr = &info->sechdrs[i]; 188 /* Alloc bit cleared means "ignore it." */ 189 if ((shdr->sh_flags & SHF_ALLOC) 190 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 191 return i; 192 } 193 return 0; 194 } 195 196 /* Find a module section, or NULL. */ 197 static void *section_addr(const struct load_info *info, const char *name) 198 { 199 /* Section 0 has sh_addr 0. */ 200 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 201 } 202 203 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 204 static void *section_objs(const struct load_info *info, 205 const char *name, 206 size_t object_size, 207 unsigned int *num) 208 { 209 unsigned int sec = find_sec(info, name); 210 211 /* Section 0 has sh_addr 0 and sh_size 0. */ 212 *num = info->sechdrs[sec].sh_size / object_size; 213 return (void *)info->sechdrs[sec].sh_addr; 214 } 215 216 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 217 static unsigned int find_any_sec(const struct load_info *info, const char *name) 218 { 219 unsigned int i; 220 221 for (i = 1; i < info->hdr->e_shnum; i++) { 222 Elf_Shdr *shdr = &info->sechdrs[i]; 223 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 224 return i; 225 } 226 return 0; 227 } 228 229 /* 230 * Find a module section, or NULL. Fill in number of "objects" in section. 231 * Ignores SHF_ALLOC flag. 232 */ 233 static __maybe_unused void *any_section_objs(const struct load_info *info, 234 const char *name, 235 size_t object_size, 236 unsigned int *num) 237 { 238 unsigned int sec = find_any_sec(info, name); 239 240 /* Section 0 has sh_addr 0 and sh_size 0. */ 241 *num = info->sechdrs[sec].sh_size / object_size; 242 return (void *)info->sechdrs[sec].sh_addr; 243 } 244 245 #ifndef CONFIG_MODVERSIONS 246 #define symversion(base, idx) NULL 247 #else 248 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 249 #endif 250 251 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 252 { 253 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 254 return offset_to_ptr(&sym->name_offset); 255 #else 256 return sym->name; 257 #endif 258 } 259 260 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 261 { 262 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 263 if (!sym->namespace_offset) 264 return NULL; 265 return offset_to_ptr(&sym->namespace_offset); 266 #else 267 return sym->namespace; 268 #endif 269 } 270 271 int cmp_name(const void *name, const void *sym) 272 { 273 return strcmp(name, kernel_symbol_name(sym)); 274 } 275 276 static bool find_exported_symbol_in_section(const struct symsearch *syms, 277 struct module *owner, 278 struct find_symbol_arg *fsa) 279 { 280 struct kernel_symbol *sym; 281 282 if (!fsa->gplok && syms->license == GPL_ONLY) 283 return false; 284 285 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 286 sizeof(struct kernel_symbol), cmp_name); 287 if (!sym) 288 return false; 289 290 fsa->owner = owner; 291 fsa->crc = symversion(syms->crcs, sym - syms->start); 292 fsa->sym = sym; 293 fsa->license = syms->license; 294 295 return true; 296 } 297 298 /* 299 * Find an exported symbol and return it, along with, (optional) crc and 300 * (optional) module which owns it. Needs preempt disabled or module_mutex. 301 */ 302 bool find_symbol(struct find_symbol_arg *fsa) 303 { 304 static const struct symsearch arr[] = { 305 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 306 NOT_GPL_ONLY }, 307 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 308 __start___kcrctab_gpl, 309 GPL_ONLY }, 310 }; 311 struct module *mod; 312 unsigned int i; 313 314 module_assert_mutex_or_preempt(); 315 316 for (i = 0; i < ARRAY_SIZE(arr); i++) 317 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 318 return true; 319 320 list_for_each_entry_rcu(mod, &modules, list, 321 lockdep_is_held(&module_mutex)) { 322 struct symsearch arr[] = { 323 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 324 NOT_GPL_ONLY }, 325 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 326 mod->gpl_crcs, 327 GPL_ONLY }, 328 }; 329 330 if (mod->state == MODULE_STATE_UNFORMED) 331 continue; 332 333 for (i = 0; i < ARRAY_SIZE(arr); i++) 334 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 335 return true; 336 } 337 338 pr_debug("Failed to find symbol %s\n", fsa->name); 339 return false; 340 } 341 342 /* 343 * Search for module by name: must hold module_mutex (or preempt disabled 344 * for read-only access). 345 */ 346 struct module *find_module_all(const char *name, size_t len, 347 bool even_unformed) 348 { 349 struct module *mod; 350 351 module_assert_mutex_or_preempt(); 352 353 list_for_each_entry_rcu(mod, &modules, list, 354 lockdep_is_held(&module_mutex)) { 355 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 356 continue; 357 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 358 return mod; 359 } 360 return NULL; 361 } 362 363 struct module *find_module(const char *name) 364 { 365 return find_module_all(name, strlen(name), false); 366 } 367 368 #ifdef CONFIG_SMP 369 370 static inline void __percpu *mod_percpu(struct module *mod) 371 { 372 return mod->percpu; 373 } 374 375 static int percpu_modalloc(struct module *mod, struct load_info *info) 376 { 377 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 378 unsigned long align = pcpusec->sh_addralign; 379 380 if (!pcpusec->sh_size) 381 return 0; 382 383 if (align > PAGE_SIZE) { 384 pr_warn("%s: per-cpu alignment %li > %li\n", 385 mod->name, align, PAGE_SIZE); 386 align = PAGE_SIZE; 387 } 388 389 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 390 if (!mod->percpu) { 391 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 392 mod->name, (unsigned long)pcpusec->sh_size); 393 return -ENOMEM; 394 } 395 mod->percpu_size = pcpusec->sh_size; 396 return 0; 397 } 398 399 static void percpu_modfree(struct module *mod) 400 { 401 free_percpu(mod->percpu); 402 } 403 404 static unsigned int find_pcpusec(struct load_info *info) 405 { 406 return find_sec(info, ".data..percpu"); 407 } 408 409 static void percpu_modcopy(struct module *mod, 410 const void *from, unsigned long size) 411 { 412 int cpu; 413 414 for_each_possible_cpu(cpu) 415 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 416 } 417 418 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 419 { 420 struct module *mod; 421 unsigned int cpu; 422 423 preempt_disable(); 424 425 list_for_each_entry_rcu(mod, &modules, list) { 426 if (mod->state == MODULE_STATE_UNFORMED) 427 continue; 428 if (!mod->percpu_size) 429 continue; 430 for_each_possible_cpu(cpu) { 431 void *start = per_cpu_ptr(mod->percpu, cpu); 432 void *va = (void *)addr; 433 434 if (va >= start && va < start + mod->percpu_size) { 435 if (can_addr) { 436 *can_addr = (unsigned long) (va - start); 437 *can_addr += (unsigned long) 438 per_cpu_ptr(mod->percpu, 439 get_boot_cpu_id()); 440 } 441 preempt_enable(); 442 return true; 443 } 444 } 445 } 446 447 preempt_enable(); 448 return false; 449 } 450 451 /** 452 * is_module_percpu_address() - test whether address is from module static percpu 453 * @addr: address to test 454 * 455 * Test whether @addr belongs to module static percpu area. 456 * 457 * Return: %true if @addr is from module static percpu area 458 */ 459 bool is_module_percpu_address(unsigned long addr) 460 { 461 return __is_module_percpu_address(addr, NULL); 462 } 463 464 #else /* ... !CONFIG_SMP */ 465 466 static inline void __percpu *mod_percpu(struct module *mod) 467 { 468 return NULL; 469 } 470 static int percpu_modalloc(struct module *mod, struct load_info *info) 471 { 472 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 473 if (info->sechdrs[info->index.pcpu].sh_size != 0) 474 return -ENOMEM; 475 return 0; 476 } 477 static inline void percpu_modfree(struct module *mod) 478 { 479 } 480 static unsigned int find_pcpusec(struct load_info *info) 481 { 482 return 0; 483 } 484 static inline void percpu_modcopy(struct module *mod, 485 const void *from, unsigned long size) 486 { 487 /* pcpusec should be 0, and size of that section should be 0. */ 488 BUG_ON(size != 0); 489 } 490 bool is_module_percpu_address(unsigned long addr) 491 { 492 return false; 493 } 494 495 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 496 { 497 return false; 498 } 499 500 #endif /* CONFIG_SMP */ 501 502 #define MODINFO_ATTR(field) \ 503 static void setup_modinfo_##field(struct module *mod, const char *s) \ 504 { \ 505 mod->field = kstrdup(s, GFP_KERNEL); \ 506 } \ 507 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \ 508 struct module_kobject *mk, char *buffer) \ 509 { \ 510 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 511 } \ 512 static int modinfo_##field##_exists(struct module *mod) \ 513 { \ 514 return mod->field != NULL; \ 515 } \ 516 static void free_modinfo_##field(struct module *mod) \ 517 { \ 518 kfree(mod->field); \ 519 mod->field = NULL; \ 520 } \ 521 static struct module_attribute modinfo_##field = { \ 522 .attr = { .name = __stringify(field), .mode = 0444 }, \ 523 .show = show_modinfo_##field, \ 524 .setup = setup_modinfo_##field, \ 525 .test = modinfo_##field##_exists, \ 526 .free = free_modinfo_##field, \ 527 }; 528 529 MODINFO_ATTR(version); 530 MODINFO_ATTR(srcversion); 531 532 static struct { 533 char name[MODULE_NAME_LEN + 1]; 534 char taints[MODULE_FLAGS_BUF_SIZE]; 535 } last_unloaded_module; 536 537 #ifdef CONFIG_MODULE_UNLOAD 538 539 EXPORT_TRACEPOINT_SYMBOL(module_get); 540 541 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 542 #define MODULE_REF_BASE 1 543 544 /* Init the unload section of the module. */ 545 static int module_unload_init(struct module *mod) 546 { 547 /* 548 * Initialize reference counter to MODULE_REF_BASE. 549 * refcnt == 0 means module is going. 550 */ 551 atomic_set(&mod->refcnt, MODULE_REF_BASE); 552 553 INIT_LIST_HEAD(&mod->source_list); 554 INIT_LIST_HEAD(&mod->target_list); 555 556 /* Hold reference count during initialization. */ 557 atomic_inc(&mod->refcnt); 558 559 return 0; 560 } 561 562 /* Does a already use b? */ 563 static int already_uses(struct module *a, struct module *b) 564 { 565 struct module_use *use; 566 567 list_for_each_entry(use, &b->source_list, source_list) { 568 if (use->source == a) 569 return 1; 570 } 571 pr_debug("%s does not use %s!\n", a->name, b->name); 572 return 0; 573 } 574 575 /* 576 * Module a uses b 577 * - we add 'a' as a "source", 'b' as a "target" of module use 578 * - the module_use is added to the list of 'b' sources (so 579 * 'b' can walk the list to see who sourced them), and of 'a' 580 * targets (so 'a' can see what modules it targets). 581 */ 582 static int add_module_usage(struct module *a, struct module *b) 583 { 584 struct module_use *use; 585 586 pr_debug("Allocating new usage for %s.\n", a->name); 587 use = kmalloc(sizeof(*use), GFP_ATOMIC); 588 if (!use) 589 return -ENOMEM; 590 591 use->source = a; 592 use->target = b; 593 list_add(&use->source_list, &b->source_list); 594 list_add(&use->target_list, &a->target_list); 595 return 0; 596 } 597 598 /* Module a uses b: caller needs module_mutex() */ 599 static int ref_module(struct module *a, struct module *b) 600 { 601 int err; 602 603 if (b == NULL || already_uses(a, b)) 604 return 0; 605 606 /* If module isn't available, we fail. */ 607 err = strong_try_module_get(b); 608 if (err) 609 return err; 610 611 err = add_module_usage(a, b); 612 if (err) { 613 module_put(b); 614 return err; 615 } 616 return 0; 617 } 618 619 /* Clear the unload stuff of the module. */ 620 static void module_unload_free(struct module *mod) 621 { 622 struct module_use *use, *tmp; 623 624 mutex_lock(&module_mutex); 625 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 626 struct module *i = use->target; 627 pr_debug("%s unusing %s\n", mod->name, i->name); 628 module_put(i); 629 list_del(&use->source_list); 630 list_del(&use->target_list); 631 kfree(use); 632 } 633 mutex_unlock(&module_mutex); 634 } 635 636 #ifdef CONFIG_MODULE_FORCE_UNLOAD 637 static inline int try_force_unload(unsigned int flags) 638 { 639 int ret = (flags & O_TRUNC); 640 if (ret) 641 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 642 return ret; 643 } 644 #else 645 static inline int try_force_unload(unsigned int flags) 646 { 647 return 0; 648 } 649 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 650 651 /* Try to release refcount of module, 0 means success. */ 652 static int try_release_module_ref(struct module *mod) 653 { 654 int ret; 655 656 /* Try to decrement refcnt which we set at loading */ 657 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 658 BUG_ON(ret < 0); 659 if (ret) 660 /* Someone can put this right now, recover with checking */ 661 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 662 663 return ret; 664 } 665 666 static int try_stop_module(struct module *mod, int flags, int *forced) 667 { 668 /* If it's not unused, quit unless we're forcing. */ 669 if (try_release_module_ref(mod) != 0) { 670 *forced = try_force_unload(flags); 671 if (!(*forced)) 672 return -EWOULDBLOCK; 673 } 674 675 /* Mark it as dying. */ 676 mod->state = MODULE_STATE_GOING; 677 678 return 0; 679 } 680 681 /** 682 * module_refcount() - return the refcount or -1 if unloading 683 * @mod: the module we're checking 684 * 685 * Return: 686 * -1 if the module is in the process of unloading 687 * otherwise the number of references in the kernel to the module 688 */ 689 int module_refcount(struct module *mod) 690 { 691 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 692 } 693 EXPORT_SYMBOL(module_refcount); 694 695 /* This exists whether we can unload or not */ 696 static void free_module(struct module *mod); 697 698 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 699 unsigned int, flags) 700 { 701 struct module *mod; 702 char name[MODULE_NAME_LEN]; 703 char buf[MODULE_FLAGS_BUF_SIZE]; 704 int ret, forced = 0; 705 706 if (!capable(CAP_SYS_MODULE) || modules_disabled) 707 return -EPERM; 708 709 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 710 return -EFAULT; 711 name[MODULE_NAME_LEN-1] = '\0'; 712 713 audit_log_kern_module(name); 714 715 if (mutex_lock_interruptible(&module_mutex) != 0) 716 return -EINTR; 717 718 mod = find_module(name); 719 if (!mod) { 720 ret = -ENOENT; 721 goto out; 722 } 723 724 if (!list_empty(&mod->source_list)) { 725 /* Other modules depend on us: get rid of them first. */ 726 ret = -EWOULDBLOCK; 727 goto out; 728 } 729 730 /* Doing init or already dying? */ 731 if (mod->state != MODULE_STATE_LIVE) { 732 /* FIXME: if (force), slam module count damn the torpedoes */ 733 pr_debug("%s already dying\n", mod->name); 734 ret = -EBUSY; 735 goto out; 736 } 737 738 /* If it has an init func, it must have an exit func to unload */ 739 if (mod->init && !mod->exit) { 740 forced = try_force_unload(flags); 741 if (!forced) { 742 /* This module can't be removed */ 743 ret = -EBUSY; 744 goto out; 745 } 746 } 747 748 ret = try_stop_module(mod, flags, &forced); 749 if (ret != 0) 750 goto out; 751 752 mutex_unlock(&module_mutex); 753 /* Final destruction now no one is using it. */ 754 if (mod->exit != NULL) 755 mod->exit(); 756 blocking_notifier_call_chain(&module_notify_list, 757 MODULE_STATE_GOING, mod); 758 klp_module_going(mod); 759 ftrace_release_mod(mod); 760 761 async_synchronize_full(); 762 763 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 764 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 765 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 766 767 free_module(mod); 768 /* someone could wait for the module in add_unformed_module() */ 769 wake_up_all(&module_wq); 770 return 0; 771 out: 772 mutex_unlock(&module_mutex); 773 return ret; 774 } 775 776 void __symbol_put(const char *symbol) 777 { 778 struct find_symbol_arg fsa = { 779 .name = symbol, 780 .gplok = true, 781 }; 782 783 preempt_disable(); 784 BUG_ON(!find_symbol(&fsa)); 785 module_put(fsa.owner); 786 preempt_enable(); 787 } 788 EXPORT_SYMBOL(__symbol_put); 789 790 /* Note this assumes addr is a function, which it currently always is. */ 791 void symbol_put_addr(void *addr) 792 { 793 struct module *modaddr; 794 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 795 796 if (core_kernel_text(a)) 797 return; 798 799 /* 800 * Even though we hold a reference on the module; we still need to 801 * disable preemption in order to safely traverse the data structure. 802 */ 803 preempt_disable(); 804 modaddr = __module_text_address(a); 805 BUG_ON(!modaddr); 806 module_put(modaddr); 807 preempt_enable(); 808 } 809 EXPORT_SYMBOL_GPL(symbol_put_addr); 810 811 static ssize_t show_refcnt(struct module_attribute *mattr, 812 struct module_kobject *mk, char *buffer) 813 { 814 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 815 } 816 817 static struct module_attribute modinfo_refcnt = 818 __ATTR(refcnt, 0444, show_refcnt, NULL); 819 820 void __module_get(struct module *module) 821 { 822 if (module) { 823 atomic_inc(&module->refcnt); 824 trace_module_get(module, _RET_IP_); 825 } 826 } 827 EXPORT_SYMBOL(__module_get); 828 829 bool try_module_get(struct module *module) 830 { 831 bool ret = true; 832 833 if (module) { 834 /* Note: here, we can fail to get a reference */ 835 if (likely(module_is_live(module) && 836 atomic_inc_not_zero(&module->refcnt) != 0)) 837 trace_module_get(module, _RET_IP_); 838 else 839 ret = false; 840 } 841 return ret; 842 } 843 EXPORT_SYMBOL(try_module_get); 844 845 void module_put(struct module *module) 846 { 847 int ret; 848 849 if (module) { 850 ret = atomic_dec_if_positive(&module->refcnt); 851 WARN_ON(ret < 0); /* Failed to put refcount */ 852 trace_module_put(module, _RET_IP_); 853 } 854 } 855 EXPORT_SYMBOL(module_put); 856 857 #else /* !CONFIG_MODULE_UNLOAD */ 858 static inline void module_unload_free(struct module *mod) 859 { 860 } 861 862 static int ref_module(struct module *a, struct module *b) 863 { 864 return strong_try_module_get(b); 865 } 866 867 static inline int module_unload_init(struct module *mod) 868 { 869 return 0; 870 } 871 #endif /* CONFIG_MODULE_UNLOAD */ 872 873 size_t module_flags_taint(unsigned long taints, char *buf) 874 { 875 size_t l = 0; 876 int i; 877 878 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 879 if (taint_flags[i].module && test_bit(i, &taints)) 880 buf[l++] = taint_flags[i].c_true; 881 } 882 883 return l; 884 } 885 886 static ssize_t show_initstate(struct module_attribute *mattr, 887 struct module_kobject *mk, char *buffer) 888 { 889 const char *state = "unknown"; 890 891 switch (mk->mod->state) { 892 case MODULE_STATE_LIVE: 893 state = "live"; 894 break; 895 case MODULE_STATE_COMING: 896 state = "coming"; 897 break; 898 case MODULE_STATE_GOING: 899 state = "going"; 900 break; 901 default: 902 BUG(); 903 } 904 return sprintf(buffer, "%s\n", state); 905 } 906 907 static struct module_attribute modinfo_initstate = 908 __ATTR(initstate, 0444, show_initstate, NULL); 909 910 static ssize_t store_uevent(struct module_attribute *mattr, 911 struct module_kobject *mk, 912 const char *buffer, size_t count) 913 { 914 int rc; 915 916 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 917 return rc ? rc : count; 918 } 919 920 struct module_attribute module_uevent = 921 __ATTR(uevent, 0200, NULL, store_uevent); 922 923 static ssize_t show_coresize(struct module_attribute *mattr, 924 struct module_kobject *mk, char *buffer) 925 { 926 unsigned int size = mk->mod->mem[MOD_TEXT].size; 927 928 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 929 for_class_mod_mem_type(type, core_data) 930 size += mk->mod->mem[type].size; 931 } 932 return sprintf(buffer, "%u\n", size); 933 } 934 935 static struct module_attribute modinfo_coresize = 936 __ATTR(coresize, 0444, show_coresize, NULL); 937 938 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 939 static ssize_t show_datasize(struct module_attribute *mattr, 940 struct module_kobject *mk, char *buffer) 941 { 942 unsigned int size = 0; 943 944 for_class_mod_mem_type(type, core_data) 945 size += mk->mod->mem[type].size; 946 return sprintf(buffer, "%u\n", size); 947 } 948 949 static struct module_attribute modinfo_datasize = 950 __ATTR(datasize, 0444, show_datasize, NULL); 951 #endif 952 953 static ssize_t show_initsize(struct module_attribute *mattr, 954 struct module_kobject *mk, char *buffer) 955 { 956 unsigned int size = 0; 957 958 for_class_mod_mem_type(type, init) 959 size += mk->mod->mem[type].size; 960 return sprintf(buffer, "%u\n", size); 961 } 962 963 static struct module_attribute modinfo_initsize = 964 __ATTR(initsize, 0444, show_initsize, NULL); 965 966 static ssize_t show_taint(struct module_attribute *mattr, 967 struct module_kobject *mk, char *buffer) 968 { 969 size_t l; 970 971 l = module_flags_taint(mk->mod->taints, buffer); 972 buffer[l++] = '\n'; 973 return l; 974 } 975 976 static struct module_attribute modinfo_taint = 977 __ATTR(taint, 0444, show_taint, NULL); 978 979 struct module_attribute *modinfo_attrs[] = { 980 &module_uevent, 981 &modinfo_version, 982 &modinfo_srcversion, 983 &modinfo_initstate, 984 &modinfo_coresize, 985 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 986 &modinfo_datasize, 987 #endif 988 &modinfo_initsize, 989 &modinfo_taint, 990 #ifdef CONFIG_MODULE_UNLOAD 991 &modinfo_refcnt, 992 #endif 993 NULL, 994 }; 995 996 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 997 998 static const char vermagic[] = VERMAGIC_STRING; 999 1000 int try_to_force_load(struct module *mod, const char *reason) 1001 { 1002 #ifdef CONFIG_MODULE_FORCE_LOAD 1003 if (!test_taint(TAINT_FORCED_MODULE)) 1004 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1005 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1006 return 0; 1007 #else 1008 return -ENOEXEC; 1009 #endif 1010 } 1011 1012 /* Parse tag=value strings from .modinfo section */ 1013 char *module_next_tag_pair(char *string, unsigned long *secsize) 1014 { 1015 /* Skip non-zero chars */ 1016 while (string[0]) { 1017 string++; 1018 if ((*secsize)-- <= 1) 1019 return NULL; 1020 } 1021 1022 /* Skip any zero padding. */ 1023 while (!string[0]) { 1024 string++; 1025 if ((*secsize)-- <= 1) 1026 return NULL; 1027 } 1028 return string; 1029 } 1030 1031 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1032 char *prev) 1033 { 1034 char *p; 1035 unsigned int taglen = strlen(tag); 1036 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1037 unsigned long size = infosec->sh_size; 1038 1039 /* 1040 * get_modinfo() calls made before rewrite_section_headers() 1041 * must use sh_offset, as sh_addr isn't set! 1042 */ 1043 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1044 1045 if (prev) { 1046 size -= prev - modinfo; 1047 modinfo = module_next_tag_pair(prev, &size); 1048 } 1049 1050 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1051 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1052 return p + taglen + 1; 1053 } 1054 return NULL; 1055 } 1056 1057 static char *get_modinfo(const struct load_info *info, const char *tag) 1058 { 1059 return get_next_modinfo(info, tag, NULL); 1060 } 1061 1062 static int verify_namespace_is_imported(const struct load_info *info, 1063 const struct kernel_symbol *sym, 1064 struct module *mod) 1065 { 1066 const char *namespace; 1067 char *imported_namespace; 1068 1069 namespace = kernel_symbol_namespace(sym); 1070 if (namespace && namespace[0]) { 1071 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1072 if (strcmp(namespace, imported_namespace) == 0) 1073 return 0; 1074 } 1075 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1076 pr_warn( 1077 #else 1078 pr_err( 1079 #endif 1080 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1081 mod->name, kernel_symbol_name(sym), namespace); 1082 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1083 return -EINVAL; 1084 #endif 1085 } 1086 return 0; 1087 } 1088 1089 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1090 { 1091 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1092 return true; 1093 1094 if (mod->using_gplonly_symbols) { 1095 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1096 mod->name, name, owner->name); 1097 return false; 1098 } 1099 1100 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1101 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1102 mod->name, name, owner->name); 1103 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1104 } 1105 return true; 1106 } 1107 1108 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1109 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1110 const struct load_info *info, 1111 const char *name, 1112 char ownername[]) 1113 { 1114 struct find_symbol_arg fsa = { 1115 .name = name, 1116 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1117 .warn = true, 1118 }; 1119 int err; 1120 1121 /* 1122 * The module_mutex should not be a heavily contended lock; 1123 * if we get the occasional sleep here, we'll go an extra iteration 1124 * in the wait_event_interruptible(), which is harmless. 1125 */ 1126 sched_annotate_sleep(); 1127 mutex_lock(&module_mutex); 1128 if (!find_symbol(&fsa)) 1129 goto unlock; 1130 1131 if (fsa.license == GPL_ONLY) 1132 mod->using_gplonly_symbols = true; 1133 1134 if (!inherit_taint(mod, fsa.owner, name)) { 1135 fsa.sym = NULL; 1136 goto getname; 1137 } 1138 1139 if (!check_version(info, name, mod, fsa.crc)) { 1140 fsa.sym = ERR_PTR(-EINVAL); 1141 goto getname; 1142 } 1143 1144 err = verify_namespace_is_imported(info, fsa.sym, mod); 1145 if (err) { 1146 fsa.sym = ERR_PTR(err); 1147 goto getname; 1148 } 1149 1150 err = ref_module(mod, fsa.owner); 1151 if (err) { 1152 fsa.sym = ERR_PTR(err); 1153 goto getname; 1154 } 1155 1156 getname: 1157 /* We must make copy under the lock if we failed to get ref. */ 1158 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1159 unlock: 1160 mutex_unlock(&module_mutex); 1161 return fsa.sym; 1162 } 1163 1164 static const struct kernel_symbol * 1165 resolve_symbol_wait(struct module *mod, 1166 const struct load_info *info, 1167 const char *name) 1168 { 1169 const struct kernel_symbol *ksym; 1170 char owner[MODULE_NAME_LEN]; 1171 1172 if (wait_event_interruptible_timeout(module_wq, 1173 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1174 || PTR_ERR(ksym) != -EBUSY, 1175 30 * HZ) <= 0) { 1176 pr_warn("%s: gave up waiting for init of module %s.\n", 1177 mod->name, owner); 1178 } 1179 return ksym; 1180 } 1181 1182 void __weak module_memfree(void *module_region) 1183 { 1184 /* 1185 * This memory may be RO, and freeing RO memory in an interrupt is not 1186 * supported by vmalloc. 1187 */ 1188 WARN_ON(in_interrupt()); 1189 vfree(module_region); 1190 } 1191 1192 void __weak module_arch_cleanup(struct module *mod) 1193 { 1194 } 1195 1196 void __weak module_arch_freeing_init(struct module *mod) 1197 { 1198 } 1199 1200 static bool mod_mem_use_vmalloc(enum mod_mem_type type) 1201 { 1202 return IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC) && 1203 mod_mem_type_is_core_data(type); 1204 } 1205 1206 static void *module_memory_alloc(unsigned int size, enum mod_mem_type type) 1207 { 1208 if (mod_mem_use_vmalloc(type)) 1209 return vzalloc(size); 1210 return module_alloc(size); 1211 } 1212 1213 static void module_memory_free(void *ptr, enum mod_mem_type type) 1214 { 1215 if (mod_mem_use_vmalloc(type)) 1216 vfree(ptr); 1217 else 1218 module_memfree(ptr); 1219 } 1220 1221 static void free_mod_mem(struct module *mod) 1222 { 1223 for_each_mod_mem_type(type) { 1224 struct module_memory *mod_mem = &mod->mem[type]; 1225 1226 if (type == MOD_DATA) 1227 continue; 1228 1229 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1230 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1231 if (mod_mem->size) 1232 module_memory_free(mod_mem->base, type); 1233 } 1234 1235 /* MOD_DATA hosts mod, so free it at last */ 1236 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1237 module_memory_free(mod->mem[MOD_DATA].base, MOD_DATA); 1238 } 1239 1240 /* Free a module, remove from lists, etc. */ 1241 static void free_module(struct module *mod) 1242 { 1243 trace_module_free(mod); 1244 1245 mod_sysfs_teardown(mod); 1246 1247 /* 1248 * We leave it in list to prevent duplicate loads, but make sure 1249 * that noone uses it while it's being deconstructed. 1250 */ 1251 mutex_lock(&module_mutex); 1252 mod->state = MODULE_STATE_UNFORMED; 1253 mutex_unlock(&module_mutex); 1254 1255 /* Arch-specific cleanup. */ 1256 module_arch_cleanup(mod); 1257 1258 /* Module unload stuff */ 1259 module_unload_free(mod); 1260 1261 /* Free any allocated parameters. */ 1262 destroy_params(mod->kp, mod->num_kp); 1263 1264 if (is_livepatch_module(mod)) 1265 free_module_elf(mod); 1266 1267 /* Now we can delete it from the lists */ 1268 mutex_lock(&module_mutex); 1269 /* Unlink carefully: kallsyms could be walking list. */ 1270 list_del_rcu(&mod->list); 1271 mod_tree_remove(mod); 1272 /* Remove this module from bug list, this uses list_del_rcu */ 1273 module_bug_cleanup(mod); 1274 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1275 synchronize_rcu(); 1276 if (try_add_tainted_module(mod)) 1277 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1278 mod->name); 1279 mutex_unlock(&module_mutex); 1280 1281 /* This may be empty, but that's OK */ 1282 module_arch_freeing_init(mod); 1283 kfree(mod->args); 1284 percpu_modfree(mod); 1285 1286 free_mod_mem(mod); 1287 } 1288 1289 void *__symbol_get(const char *symbol) 1290 { 1291 struct find_symbol_arg fsa = { 1292 .name = symbol, 1293 .gplok = true, 1294 .warn = true, 1295 }; 1296 1297 preempt_disable(); 1298 if (!find_symbol(&fsa)) 1299 goto fail; 1300 if (fsa.license != GPL_ONLY) { 1301 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1302 symbol); 1303 goto fail; 1304 } 1305 if (strong_try_module_get(fsa.owner)) 1306 goto fail; 1307 preempt_enable(); 1308 return (void *)kernel_symbol_value(fsa.sym); 1309 fail: 1310 preempt_enable(); 1311 return NULL; 1312 } 1313 EXPORT_SYMBOL_GPL(__symbol_get); 1314 1315 /* 1316 * Ensure that an exported symbol [global namespace] does not already exist 1317 * in the kernel or in some other module's exported symbol table. 1318 * 1319 * You must hold the module_mutex. 1320 */ 1321 static int verify_exported_symbols(struct module *mod) 1322 { 1323 unsigned int i; 1324 const struct kernel_symbol *s; 1325 struct { 1326 const struct kernel_symbol *sym; 1327 unsigned int num; 1328 } arr[] = { 1329 { mod->syms, mod->num_syms }, 1330 { mod->gpl_syms, mod->num_gpl_syms }, 1331 }; 1332 1333 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1334 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1335 struct find_symbol_arg fsa = { 1336 .name = kernel_symbol_name(s), 1337 .gplok = true, 1338 }; 1339 if (find_symbol(&fsa)) { 1340 pr_err("%s: exports duplicate symbol %s" 1341 " (owned by %s)\n", 1342 mod->name, kernel_symbol_name(s), 1343 module_name(fsa.owner)); 1344 return -ENOEXEC; 1345 } 1346 } 1347 } 1348 return 0; 1349 } 1350 1351 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1352 { 1353 /* 1354 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1355 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1356 * i386 has a similar problem but may not deserve a fix. 1357 * 1358 * If we ever have to ignore many symbols, consider refactoring the code to 1359 * only warn if referenced by a relocation. 1360 */ 1361 if (emachine == EM_386 || emachine == EM_X86_64) 1362 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1363 return false; 1364 } 1365 1366 /* Change all symbols so that st_value encodes the pointer directly. */ 1367 static int simplify_symbols(struct module *mod, const struct load_info *info) 1368 { 1369 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1370 Elf_Sym *sym = (void *)symsec->sh_addr; 1371 unsigned long secbase; 1372 unsigned int i; 1373 int ret = 0; 1374 const struct kernel_symbol *ksym; 1375 1376 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1377 const char *name = info->strtab + sym[i].st_name; 1378 1379 switch (sym[i].st_shndx) { 1380 case SHN_COMMON: 1381 /* Ignore common symbols */ 1382 if (!strncmp(name, "__gnu_lto", 9)) 1383 break; 1384 1385 /* 1386 * We compiled with -fno-common. These are not 1387 * supposed to happen. 1388 */ 1389 pr_debug("Common symbol: %s\n", name); 1390 pr_warn("%s: please compile with -fno-common\n", 1391 mod->name); 1392 ret = -ENOEXEC; 1393 break; 1394 1395 case SHN_ABS: 1396 /* Don't need to do anything */ 1397 pr_debug("Absolute symbol: 0x%08lx %s\n", 1398 (long)sym[i].st_value, name); 1399 break; 1400 1401 case SHN_LIVEPATCH: 1402 /* Livepatch symbols are resolved by livepatch */ 1403 break; 1404 1405 case SHN_UNDEF: 1406 ksym = resolve_symbol_wait(mod, info, name); 1407 /* Ok if resolved. */ 1408 if (ksym && !IS_ERR(ksym)) { 1409 sym[i].st_value = kernel_symbol_value(ksym); 1410 break; 1411 } 1412 1413 /* Ok if weak or ignored. */ 1414 if (!ksym && 1415 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1416 ignore_undef_symbol(info->hdr->e_machine, name))) 1417 break; 1418 1419 ret = PTR_ERR(ksym) ?: -ENOENT; 1420 pr_warn("%s: Unknown symbol %s (err %d)\n", 1421 mod->name, name, ret); 1422 break; 1423 1424 default: 1425 /* Divert to percpu allocation if a percpu var. */ 1426 if (sym[i].st_shndx == info->index.pcpu) 1427 secbase = (unsigned long)mod_percpu(mod); 1428 else 1429 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1430 sym[i].st_value += secbase; 1431 break; 1432 } 1433 } 1434 1435 return ret; 1436 } 1437 1438 static int apply_relocations(struct module *mod, const struct load_info *info) 1439 { 1440 unsigned int i; 1441 int err = 0; 1442 1443 /* Now do relocations. */ 1444 for (i = 1; i < info->hdr->e_shnum; i++) { 1445 unsigned int infosec = info->sechdrs[i].sh_info; 1446 1447 /* Not a valid relocation section? */ 1448 if (infosec >= info->hdr->e_shnum) 1449 continue; 1450 1451 /* Don't bother with non-allocated sections */ 1452 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1453 continue; 1454 1455 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1456 err = klp_apply_section_relocs(mod, info->sechdrs, 1457 info->secstrings, 1458 info->strtab, 1459 info->index.sym, i, 1460 NULL); 1461 else if (info->sechdrs[i].sh_type == SHT_REL) 1462 err = apply_relocate(info->sechdrs, info->strtab, 1463 info->index.sym, i, mod); 1464 else if (info->sechdrs[i].sh_type == SHT_RELA) 1465 err = apply_relocate_add(info->sechdrs, info->strtab, 1466 info->index.sym, i, mod); 1467 if (err < 0) 1468 break; 1469 } 1470 return err; 1471 } 1472 1473 /* Additional bytes needed by arch in front of individual sections */ 1474 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1475 unsigned int section) 1476 { 1477 /* default implementation just returns zero */ 1478 return 0; 1479 } 1480 1481 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1482 Elf_Shdr *sechdr, unsigned int section) 1483 { 1484 long offset; 1485 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1486 1487 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1488 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1489 mod->mem[type].size = offset + sechdr->sh_size; 1490 1491 WARN_ON_ONCE(offset & mask); 1492 return offset | mask; 1493 } 1494 1495 bool module_init_layout_section(const char *sname) 1496 { 1497 #ifndef CONFIG_MODULE_UNLOAD 1498 if (module_exit_section(sname)) 1499 return true; 1500 #endif 1501 return module_init_section(sname); 1502 } 1503 1504 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1505 { 1506 unsigned int m, i; 1507 1508 static const unsigned long masks[][2] = { 1509 /* 1510 * NOTE: all executable code must be the first section 1511 * in this array; otherwise modify the text_size 1512 * finder in the two loops below 1513 */ 1514 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1515 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1516 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1517 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1518 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1519 }; 1520 static const int core_m_to_mem_type[] = { 1521 MOD_TEXT, 1522 MOD_RODATA, 1523 MOD_RO_AFTER_INIT, 1524 MOD_DATA, 1525 MOD_DATA, 1526 }; 1527 static const int init_m_to_mem_type[] = { 1528 MOD_INIT_TEXT, 1529 MOD_INIT_RODATA, 1530 MOD_INVALID, 1531 MOD_INIT_DATA, 1532 MOD_INIT_DATA, 1533 }; 1534 1535 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1536 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1537 1538 for (i = 0; i < info->hdr->e_shnum; ++i) { 1539 Elf_Shdr *s = &info->sechdrs[i]; 1540 const char *sname = info->secstrings + s->sh_name; 1541 1542 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1543 || (s->sh_flags & masks[m][1]) 1544 || s->sh_entsize != ~0UL 1545 || is_init != module_init_layout_section(sname)) 1546 continue; 1547 1548 if (WARN_ON_ONCE(type == MOD_INVALID)) 1549 continue; 1550 1551 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1552 pr_debug("\t%s\n", sname); 1553 } 1554 } 1555 } 1556 1557 /* 1558 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1559 * might -- code, read-only data, read-write data, small data. Tally 1560 * sizes, and place the offsets into sh_entsize fields: high bit means it 1561 * belongs in init. 1562 */ 1563 static void layout_sections(struct module *mod, struct load_info *info) 1564 { 1565 unsigned int i; 1566 1567 for (i = 0; i < info->hdr->e_shnum; i++) 1568 info->sechdrs[i].sh_entsize = ~0UL; 1569 1570 pr_debug("Core section allocation order for %s:\n", mod->name); 1571 __layout_sections(mod, info, false); 1572 1573 pr_debug("Init section allocation order for %s:\n", mod->name); 1574 __layout_sections(mod, info, true); 1575 } 1576 1577 static void module_license_taint_check(struct module *mod, const char *license) 1578 { 1579 if (!license) 1580 license = "unspecified"; 1581 1582 if (!license_is_gpl_compatible(license)) { 1583 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1584 pr_warn("%s: module license '%s' taints kernel.\n", 1585 mod->name, license); 1586 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1587 LOCKDEP_NOW_UNRELIABLE); 1588 } 1589 } 1590 1591 static void setup_modinfo(struct module *mod, struct load_info *info) 1592 { 1593 struct module_attribute *attr; 1594 int i; 1595 1596 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1597 if (attr->setup) 1598 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1599 } 1600 } 1601 1602 static void free_modinfo(struct module *mod) 1603 { 1604 struct module_attribute *attr; 1605 int i; 1606 1607 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1608 if (attr->free) 1609 attr->free(mod); 1610 } 1611 } 1612 1613 void * __weak module_alloc(unsigned long size) 1614 { 1615 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 1616 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 1617 NUMA_NO_NODE, __builtin_return_address(0)); 1618 } 1619 1620 bool __weak module_init_section(const char *name) 1621 { 1622 return strstarts(name, ".init"); 1623 } 1624 1625 bool __weak module_exit_section(const char *name) 1626 { 1627 return strstarts(name, ".exit"); 1628 } 1629 1630 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr) 1631 { 1632 #if defined(CONFIG_64BIT) 1633 unsigned long long secend; 1634 #else 1635 unsigned long secend; 1636 #endif 1637 1638 /* 1639 * Check for both overflow and offset/size being 1640 * too large. 1641 */ 1642 secend = shdr->sh_offset + shdr->sh_size; 1643 if (secend < shdr->sh_offset || secend > info->len) 1644 return -ENOEXEC; 1645 1646 return 0; 1647 } 1648 1649 /* 1650 * Check userspace passed ELF module against our expectations, and cache 1651 * useful variables for further processing as we go. 1652 * 1653 * This does basic validity checks against section offsets and sizes, the 1654 * section name string table, and the indices used for it (sh_name). 1655 * 1656 * As a last step, since we're already checking the ELF sections we cache 1657 * useful variables which will be used later for our convenience: 1658 * 1659 * o pointers to section headers 1660 * o cache the modinfo symbol section 1661 * o cache the string symbol section 1662 * o cache the module section 1663 * 1664 * As a last step we set info->mod to the temporary copy of the module in 1665 * info->hdr. The final one will be allocated in move_module(). Any 1666 * modifications we make to our copy of the module will be carried over 1667 * to the final minted module. 1668 */ 1669 static int elf_validity_cache_copy(struct load_info *info, int flags) 1670 { 1671 unsigned int i; 1672 Elf_Shdr *shdr, *strhdr; 1673 int err; 1674 unsigned int num_mod_secs = 0, mod_idx; 1675 unsigned int num_info_secs = 0, info_idx; 1676 unsigned int num_sym_secs = 0, sym_idx; 1677 1678 if (info->len < sizeof(*(info->hdr))) { 1679 pr_err("Invalid ELF header len %lu\n", info->len); 1680 goto no_exec; 1681 } 1682 1683 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1684 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1685 goto no_exec; 1686 } 1687 if (info->hdr->e_type != ET_REL) { 1688 pr_err("Invalid ELF header type: %u != %u\n", 1689 info->hdr->e_type, ET_REL); 1690 goto no_exec; 1691 } 1692 if (!elf_check_arch(info->hdr)) { 1693 pr_err("Invalid architecture in ELF header: %u\n", 1694 info->hdr->e_machine); 1695 goto no_exec; 1696 } 1697 if (!module_elf_check_arch(info->hdr)) { 1698 pr_err("Invalid module architecture in ELF header: %u\n", 1699 info->hdr->e_machine); 1700 goto no_exec; 1701 } 1702 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1703 pr_err("Invalid ELF section header size\n"); 1704 goto no_exec; 1705 } 1706 1707 /* 1708 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1709 * known and small. So e_shnum * sizeof(Elf_Shdr) 1710 * will not overflow unsigned long on any platform. 1711 */ 1712 if (info->hdr->e_shoff >= info->len 1713 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1714 info->len - info->hdr->e_shoff)) { 1715 pr_err("Invalid ELF section header overflow\n"); 1716 goto no_exec; 1717 } 1718 1719 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1720 1721 /* 1722 * Verify if the section name table index is valid. 1723 */ 1724 if (info->hdr->e_shstrndx == SHN_UNDEF 1725 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1726 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1727 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1728 info->hdr->e_shnum); 1729 goto no_exec; 1730 } 1731 1732 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1733 err = validate_section_offset(info, strhdr); 1734 if (err < 0) { 1735 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type); 1736 return err; 1737 } 1738 1739 /* 1740 * The section name table must be NUL-terminated, as required 1741 * by the spec. This makes strcmp and pr_* calls that access 1742 * strings in the section safe. 1743 */ 1744 info->secstrings = (void *)info->hdr + strhdr->sh_offset; 1745 if (strhdr->sh_size == 0) { 1746 pr_err("empty section name table\n"); 1747 goto no_exec; 1748 } 1749 if (info->secstrings[strhdr->sh_size - 1] != '\0') { 1750 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1751 goto no_exec; 1752 } 1753 1754 /* 1755 * The code assumes that section 0 has a length of zero and 1756 * an addr of zero, so check for it. 1757 */ 1758 if (info->sechdrs[0].sh_type != SHT_NULL 1759 || info->sechdrs[0].sh_size != 0 1760 || info->sechdrs[0].sh_addr != 0) { 1761 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1762 info->sechdrs[0].sh_type); 1763 goto no_exec; 1764 } 1765 1766 for (i = 1; i < info->hdr->e_shnum; i++) { 1767 shdr = &info->sechdrs[i]; 1768 switch (shdr->sh_type) { 1769 case SHT_NULL: 1770 case SHT_NOBITS: 1771 continue; 1772 case SHT_SYMTAB: 1773 if (shdr->sh_link == SHN_UNDEF 1774 || shdr->sh_link >= info->hdr->e_shnum) { 1775 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 1776 shdr->sh_link, shdr->sh_link, 1777 info->hdr->e_shnum); 1778 goto no_exec; 1779 } 1780 num_sym_secs++; 1781 sym_idx = i; 1782 fallthrough; 1783 default: 1784 err = validate_section_offset(info, shdr); 1785 if (err < 0) { 1786 pr_err("Invalid ELF section in module (section %u type %u)\n", 1787 i, shdr->sh_type); 1788 return err; 1789 } 1790 if (strcmp(info->secstrings + shdr->sh_name, 1791 ".gnu.linkonce.this_module") == 0) { 1792 num_mod_secs++; 1793 mod_idx = i; 1794 } else if (strcmp(info->secstrings + shdr->sh_name, 1795 ".modinfo") == 0) { 1796 num_info_secs++; 1797 info_idx = i; 1798 } 1799 1800 if (shdr->sh_flags & SHF_ALLOC) { 1801 if (shdr->sh_name >= strhdr->sh_size) { 1802 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1803 i, shdr->sh_type); 1804 return -ENOEXEC; 1805 } 1806 } 1807 break; 1808 } 1809 } 1810 1811 if (num_info_secs > 1) { 1812 pr_err("Only one .modinfo section must exist.\n"); 1813 goto no_exec; 1814 } else if (num_info_secs == 1) { 1815 /* Try to find a name early so we can log errors with a module name */ 1816 info->index.info = info_idx; 1817 info->name = get_modinfo(info, "name"); 1818 } 1819 1820 if (num_sym_secs != 1) { 1821 pr_warn("%s: module has no symbols (stripped?)\n", 1822 info->name ?: "(missing .modinfo section or name field)"); 1823 goto no_exec; 1824 } 1825 1826 /* Sets internal symbols and strings. */ 1827 info->index.sym = sym_idx; 1828 shdr = &info->sechdrs[sym_idx]; 1829 info->index.str = shdr->sh_link; 1830 info->strtab = (char *)info->hdr + info->sechdrs[info->index.str].sh_offset; 1831 1832 /* 1833 * The ".gnu.linkonce.this_module" ELF section is special. It is 1834 * what modpost uses to refer to __this_module and let's use rely 1835 * on THIS_MODULE to point to &__this_module properly. The kernel's 1836 * modpost declares it on each modules's *.mod.c file. If the struct 1837 * module of the kernel changes a full kernel rebuild is required. 1838 * 1839 * We have a few expectaions for this special section, the following 1840 * code validates all this for us: 1841 * 1842 * o Only one section must exist 1843 * o We expect the kernel to always have to allocate it: SHF_ALLOC 1844 * o The section size must match the kernel's run time's struct module 1845 * size 1846 */ 1847 if (num_mod_secs != 1) { 1848 pr_err("module %s: Only one .gnu.linkonce.this_module section must exist.\n", 1849 info->name ?: "(missing .modinfo section or name field)"); 1850 goto no_exec; 1851 } 1852 1853 shdr = &info->sechdrs[mod_idx]; 1854 1855 /* 1856 * This is already implied on the switch above, however let's be 1857 * pedantic about it. 1858 */ 1859 if (shdr->sh_type == SHT_NOBITS) { 1860 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 1861 info->name ?: "(missing .modinfo section or name field)"); 1862 goto no_exec; 1863 } 1864 1865 if (!(shdr->sh_flags & SHF_ALLOC)) { 1866 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 1867 info->name ?: "(missing .modinfo section or name field)"); 1868 goto no_exec; 1869 } 1870 1871 if (shdr->sh_size != sizeof(struct module)) { 1872 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 1873 info->name ?: "(missing .modinfo section or name field)"); 1874 goto no_exec; 1875 } 1876 1877 info->index.mod = mod_idx; 1878 1879 /* This is temporary: point mod into copy of data. */ 1880 info->mod = (void *)info->hdr + shdr->sh_offset; 1881 1882 /* 1883 * If we didn't load the .modinfo 'name' field earlier, fall back to 1884 * on-disk struct mod 'name' field. 1885 */ 1886 if (!info->name) 1887 info->name = info->mod->name; 1888 1889 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) 1890 info->index.vers = 0; /* Pretend no __versions section! */ 1891 else 1892 info->index.vers = find_sec(info, "__versions"); 1893 1894 info->index.pcpu = find_pcpusec(info); 1895 1896 return 0; 1897 1898 no_exec: 1899 return -ENOEXEC; 1900 } 1901 1902 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 1903 1904 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 1905 { 1906 do { 1907 unsigned long n = min(len, COPY_CHUNK_SIZE); 1908 1909 if (copy_from_user(dst, usrc, n) != 0) 1910 return -EFAULT; 1911 cond_resched(); 1912 dst += n; 1913 usrc += n; 1914 len -= n; 1915 } while (len); 1916 return 0; 1917 } 1918 1919 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 1920 { 1921 if (!get_modinfo(info, "livepatch")) 1922 /* Nothing more to do */ 1923 return 0; 1924 1925 if (set_livepatch_module(mod)) 1926 return 0; 1927 1928 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 1929 mod->name); 1930 return -ENOEXEC; 1931 } 1932 1933 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 1934 { 1935 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 1936 return; 1937 1938 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 1939 mod->name); 1940 } 1941 1942 /* Sets info->hdr and info->len. */ 1943 static int copy_module_from_user(const void __user *umod, unsigned long len, 1944 struct load_info *info) 1945 { 1946 int err; 1947 1948 info->len = len; 1949 if (info->len < sizeof(*(info->hdr))) 1950 return -ENOEXEC; 1951 1952 err = security_kernel_load_data(LOADING_MODULE, true); 1953 if (err) 1954 return err; 1955 1956 /* Suck in entire file: we'll want most of it. */ 1957 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 1958 if (!info->hdr) 1959 return -ENOMEM; 1960 1961 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 1962 err = -EFAULT; 1963 goto out; 1964 } 1965 1966 err = security_kernel_post_load_data((char *)info->hdr, info->len, 1967 LOADING_MODULE, "init_module"); 1968 out: 1969 if (err) 1970 vfree(info->hdr); 1971 1972 return err; 1973 } 1974 1975 static void free_copy(struct load_info *info, int flags) 1976 { 1977 if (flags & MODULE_INIT_COMPRESSED_FILE) 1978 module_decompress_cleanup(info); 1979 else 1980 vfree(info->hdr); 1981 } 1982 1983 static int rewrite_section_headers(struct load_info *info, int flags) 1984 { 1985 unsigned int i; 1986 1987 /* This should always be true, but let's be sure. */ 1988 info->sechdrs[0].sh_addr = 0; 1989 1990 for (i = 1; i < info->hdr->e_shnum; i++) { 1991 Elf_Shdr *shdr = &info->sechdrs[i]; 1992 1993 /* 1994 * Mark all sections sh_addr with their address in the 1995 * temporary image. 1996 */ 1997 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 1998 1999 } 2000 2001 /* Track but don't keep modinfo and version sections. */ 2002 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2003 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2004 2005 return 0; 2006 } 2007 2008 /* 2009 * These calls taint the kernel depending certain module circumstances */ 2010 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2011 { 2012 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2013 2014 if (!get_modinfo(info, "intree")) { 2015 if (!test_taint(TAINT_OOT_MODULE)) 2016 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2017 mod->name); 2018 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2019 } 2020 2021 check_modinfo_retpoline(mod, info); 2022 2023 if (get_modinfo(info, "staging")) { 2024 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2025 pr_warn("%s: module is from the staging directory, the quality " 2026 "is unknown, you have been warned.\n", mod->name); 2027 } 2028 2029 if (is_livepatch_module(mod)) { 2030 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2031 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2032 mod->name); 2033 } 2034 2035 module_license_taint_check(mod, get_modinfo(info, "license")); 2036 2037 if (get_modinfo(info, "test")) { 2038 if (!test_taint(TAINT_TEST)) 2039 pr_warn("%s: loading test module taints kernel.\n", 2040 mod->name); 2041 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2042 } 2043 #ifdef CONFIG_MODULE_SIG 2044 mod->sig_ok = info->sig_ok; 2045 if (!mod->sig_ok) { 2046 pr_notice_once("%s: module verification failed: signature " 2047 "and/or required key missing - tainting " 2048 "kernel\n", mod->name); 2049 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2050 } 2051 #endif 2052 2053 /* 2054 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2055 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2056 * using GPL-only symbols it needs. 2057 */ 2058 if (strcmp(mod->name, "ndiswrapper") == 0) 2059 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2060 2061 /* driverloader was caught wrongly pretending to be under GPL */ 2062 if (strcmp(mod->name, "driverloader") == 0) 2063 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2064 LOCKDEP_NOW_UNRELIABLE); 2065 2066 /* lve claims to be GPL but upstream won't provide source */ 2067 if (strcmp(mod->name, "lve") == 0) 2068 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2069 LOCKDEP_NOW_UNRELIABLE); 2070 2071 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2072 pr_warn("%s: module license taints kernel.\n", mod->name); 2073 2074 } 2075 2076 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2077 { 2078 const char *modmagic = get_modinfo(info, "vermagic"); 2079 int err; 2080 2081 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2082 modmagic = NULL; 2083 2084 /* This is allowed: modprobe --force will invalidate it. */ 2085 if (!modmagic) { 2086 err = try_to_force_load(mod, "bad vermagic"); 2087 if (err) 2088 return err; 2089 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2090 pr_err("%s: version magic '%s' should be '%s'\n", 2091 info->name, modmagic, vermagic); 2092 return -ENOEXEC; 2093 } 2094 2095 err = check_modinfo_livepatch(mod, info); 2096 if (err) 2097 return err; 2098 2099 return 0; 2100 } 2101 2102 static int find_module_sections(struct module *mod, struct load_info *info) 2103 { 2104 mod->kp = section_objs(info, "__param", 2105 sizeof(*mod->kp), &mod->num_kp); 2106 mod->syms = section_objs(info, "__ksymtab", 2107 sizeof(*mod->syms), &mod->num_syms); 2108 mod->crcs = section_addr(info, "__kcrctab"); 2109 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2110 sizeof(*mod->gpl_syms), 2111 &mod->num_gpl_syms); 2112 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2113 2114 #ifdef CONFIG_CONSTRUCTORS 2115 mod->ctors = section_objs(info, ".ctors", 2116 sizeof(*mod->ctors), &mod->num_ctors); 2117 if (!mod->ctors) 2118 mod->ctors = section_objs(info, ".init_array", 2119 sizeof(*mod->ctors), &mod->num_ctors); 2120 else if (find_sec(info, ".init_array")) { 2121 /* 2122 * This shouldn't happen with same compiler and binutils 2123 * building all parts of the module. 2124 */ 2125 pr_warn("%s: has both .ctors and .init_array.\n", 2126 mod->name); 2127 return -EINVAL; 2128 } 2129 #endif 2130 2131 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2132 &mod->noinstr_text_size); 2133 2134 #ifdef CONFIG_TRACEPOINTS 2135 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2136 sizeof(*mod->tracepoints_ptrs), 2137 &mod->num_tracepoints); 2138 #endif 2139 #ifdef CONFIG_TREE_SRCU 2140 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2141 sizeof(*mod->srcu_struct_ptrs), 2142 &mod->num_srcu_structs); 2143 #endif 2144 #ifdef CONFIG_BPF_EVENTS 2145 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2146 sizeof(*mod->bpf_raw_events), 2147 &mod->num_bpf_raw_events); 2148 #endif 2149 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2150 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2151 #endif 2152 #ifdef CONFIG_JUMP_LABEL 2153 mod->jump_entries = section_objs(info, "__jump_table", 2154 sizeof(*mod->jump_entries), 2155 &mod->num_jump_entries); 2156 #endif 2157 #ifdef CONFIG_EVENT_TRACING 2158 mod->trace_events = section_objs(info, "_ftrace_events", 2159 sizeof(*mod->trace_events), 2160 &mod->num_trace_events); 2161 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2162 sizeof(*mod->trace_evals), 2163 &mod->num_trace_evals); 2164 #endif 2165 #ifdef CONFIG_TRACING 2166 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2167 sizeof(*mod->trace_bprintk_fmt_start), 2168 &mod->num_trace_bprintk_fmt); 2169 #endif 2170 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2171 /* sechdrs[0].sh_size is always zero */ 2172 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2173 sizeof(*mod->ftrace_callsites), 2174 &mod->num_ftrace_callsites); 2175 #endif 2176 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2177 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2178 sizeof(*mod->ei_funcs), 2179 &mod->num_ei_funcs); 2180 #endif 2181 #ifdef CONFIG_KPROBES 2182 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2183 &mod->kprobes_text_size); 2184 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2185 sizeof(unsigned long), 2186 &mod->num_kprobe_blacklist); 2187 #endif 2188 #ifdef CONFIG_PRINTK_INDEX 2189 mod->printk_index_start = section_objs(info, ".printk_index", 2190 sizeof(*mod->printk_index_start), 2191 &mod->printk_index_size); 2192 #endif 2193 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2194 mod->static_call_sites = section_objs(info, ".static_call_sites", 2195 sizeof(*mod->static_call_sites), 2196 &mod->num_static_call_sites); 2197 #endif 2198 #if IS_ENABLED(CONFIG_KUNIT) 2199 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2200 sizeof(*mod->kunit_suites), 2201 &mod->num_kunit_suites); 2202 #endif 2203 2204 mod->extable = section_objs(info, "__ex_table", 2205 sizeof(*mod->extable), &mod->num_exentries); 2206 2207 if (section_addr(info, "__obsparm")) 2208 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2209 2210 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2211 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2212 sizeof(*mod->dyndbg_info.descs), 2213 &mod->dyndbg_info.num_descs); 2214 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2215 sizeof(*mod->dyndbg_info.classes), 2216 &mod->dyndbg_info.num_classes); 2217 #endif 2218 2219 return 0; 2220 } 2221 2222 static int move_module(struct module *mod, struct load_info *info) 2223 { 2224 int i; 2225 void *ptr; 2226 enum mod_mem_type t = 0; 2227 int ret = -ENOMEM; 2228 2229 for_each_mod_mem_type(type) { 2230 if (!mod->mem[type].size) { 2231 mod->mem[type].base = NULL; 2232 continue; 2233 } 2234 mod->mem[type].size = PAGE_ALIGN(mod->mem[type].size); 2235 ptr = module_memory_alloc(mod->mem[type].size, type); 2236 /* 2237 * The pointer to these blocks of memory are stored on the module 2238 * structure and we keep that around so long as the module is 2239 * around. We only free that memory when we unload the module. 2240 * Just mark them as not being a leak then. The .init* ELF 2241 * sections *do* get freed after boot so we *could* treat them 2242 * slightly differently with kmemleak_ignore() and only grey 2243 * them out as they work as typical memory allocations which 2244 * *do* eventually get freed, but let's just keep things simple 2245 * and avoid *any* false positives. 2246 */ 2247 kmemleak_not_leak(ptr); 2248 if (!ptr) { 2249 t = type; 2250 goto out_enomem; 2251 } 2252 memset(ptr, 0, mod->mem[type].size); 2253 mod->mem[type].base = ptr; 2254 } 2255 2256 /* Transfer each section which specifies SHF_ALLOC */ 2257 pr_debug("Final section addresses for %s:\n", mod->name); 2258 for (i = 0; i < info->hdr->e_shnum; i++) { 2259 void *dest; 2260 Elf_Shdr *shdr = &info->sechdrs[i]; 2261 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2262 2263 if (!(shdr->sh_flags & SHF_ALLOC)) 2264 continue; 2265 2266 dest = mod->mem[type].base + (shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK); 2267 2268 if (shdr->sh_type != SHT_NOBITS) { 2269 /* 2270 * Our ELF checker already validated this, but let's 2271 * be pedantic and make the goal clearer. We actually 2272 * end up copying over all modifications made to the 2273 * userspace copy of the entire struct module. 2274 */ 2275 if (i == info->index.mod && 2276 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2277 ret = -ENOEXEC; 2278 goto out_enomem; 2279 } 2280 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2281 } 2282 /* 2283 * Update the userspace copy's ELF section address to point to 2284 * our newly allocated memory as a pure convenience so that 2285 * users of info can keep taking advantage and using the newly 2286 * minted official memory area. 2287 */ 2288 shdr->sh_addr = (unsigned long)dest; 2289 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2290 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2291 } 2292 2293 return 0; 2294 out_enomem: 2295 for (t--; t >= 0; t--) 2296 module_memory_free(mod->mem[t].base, t); 2297 return ret; 2298 } 2299 2300 static int check_export_symbol_versions(struct module *mod) 2301 { 2302 #ifdef CONFIG_MODVERSIONS 2303 if ((mod->num_syms && !mod->crcs) || 2304 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2305 return try_to_force_load(mod, 2306 "no versions for exported symbols"); 2307 } 2308 #endif 2309 return 0; 2310 } 2311 2312 static void flush_module_icache(const struct module *mod) 2313 { 2314 /* 2315 * Flush the instruction cache, since we've played with text. 2316 * Do it before processing of module parameters, so the module 2317 * can provide parameter accessor functions of its own. 2318 */ 2319 for_each_mod_mem_type(type) { 2320 const struct module_memory *mod_mem = &mod->mem[type]; 2321 2322 if (mod_mem->size) { 2323 flush_icache_range((unsigned long)mod_mem->base, 2324 (unsigned long)mod_mem->base + mod_mem->size); 2325 } 2326 } 2327 } 2328 2329 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2330 { 2331 return true; 2332 } 2333 2334 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2335 Elf_Shdr *sechdrs, 2336 char *secstrings, 2337 struct module *mod) 2338 { 2339 return 0; 2340 } 2341 2342 /* module_blacklist is a comma-separated list of module names */ 2343 static char *module_blacklist; 2344 static bool blacklisted(const char *module_name) 2345 { 2346 const char *p; 2347 size_t len; 2348 2349 if (!module_blacklist) 2350 return false; 2351 2352 for (p = module_blacklist; *p; p += len) { 2353 len = strcspn(p, ","); 2354 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2355 return true; 2356 if (p[len] == ',') 2357 len++; 2358 } 2359 return false; 2360 } 2361 core_param(module_blacklist, module_blacklist, charp, 0400); 2362 2363 static struct module *layout_and_allocate(struct load_info *info, int flags) 2364 { 2365 struct module *mod; 2366 unsigned int ndx; 2367 int err; 2368 2369 /* Allow arches to frob section contents and sizes. */ 2370 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2371 info->secstrings, info->mod); 2372 if (err < 0) 2373 return ERR_PTR(err); 2374 2375 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2376 info->secstrings, info->mod); 2377 if (err < 0) 2378 return ERR_PTR(err); 2379 2380 /* We will do a special allocation for per-cpu sections later. */ 2381 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2382 2383 /* 2384 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2385 * layout_sections() can put it in the right place. 2386 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2387 */ 2388 ndx = find_sec(info, ".data..ro_after_init"); 2389 if (ndx) 2390 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2391 /* 2392 * Mark the __jump_table section as ro_after_init as well: these data 2393 * structures are never modified, with the exception of entries that 2394 * refer to code in the __init section, which are annotated as such 2395 * at module load time. 2396 */ 2397 ndx = find_sec(info, "__jump_table"); 2398 if (ndx) 2399 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2400 2401 /* 2402 * Determine total sizes, and put offsets in sh_entsize. For now 2403 * this is done generically; there doesn't appear to be any 2404 * special cases for the architectures. 2405 */ 2406 layout_sections(info->mod, info); 2407 layout_symtab(info->mod, info); 2408 2409 /* Allocate and move to the final place */ 2410 err = move_module(info->mod, info); 2411 if (err) 2412 return ERR_PTR(err); 2413 2414 /* Module has been copied to its final place now: return it. */ 2415 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2416 kmemleak_load_module(mod, info); 2417 return mod; 2418 } 2419 2420 /* mod is no longer valid after this! */ 2421 static void module_deallocate(struct module *mod, struct load_info *info) 2422 { 2423 percpu_modfree(mod); 2424 module_arch_freeing_init(mod); 2425 2426 free_mod_mem(mod); 2427 } 2428 2429 int __weak module_finalize(const Elf_Ehdr *hdr, 2430 const Elf_Shdr *sechdrs, 2431 struct module *me) 2432 { 2433 return 0; 2434 } 2435 2436 static int post_relocation(struct module *mod, const struct load_info *info) 2437 { 2438 /* Sort exception table now relocations are done. */ 2439 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2440 2441 /* Copy relocated percpu area over. */ 2442 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2443 info->sechdrs[info->index.pcpu].sh_size); 2444 2445 /* Setup kallsyms-specific fields. */ 2446 add_kallsyms(mod, info); 2447 2448 /* Arch-specific module finalizing. */ 2449 return module_finalize(info->hdr, info->sechdrs, mod); 2450 } 2451 2452 /* Call module constructors. */ 2453 static void do_mod_ctors(struct module *mod) 2454 { 2455 #ifdef CONFIG_CONSTRUCTORS 2456 unsigned long i; 2457 2458 for (i = 0; i < mod->num_ctors; i++) 2459 mod->ctors[i](); 2460 #endif 2461 } 2462 2463 /* For freeing module_init on success, in case kallsyms traversing */ 2464 struct mod_initfree { 2465 struct llist_node node; 2466 void *init_text; 2467 void *init_data; 2468 void *init_rodata; 2469 }; 2470 2471 static void do_free_init(struct work_struct *w) 2472 { 2473 struct llist_node *pos, *n, *list; 2474 struct mod_initfree *initfree; 2475 2476 list = llist_del_all(&init_free_list); 2477 2478 synchronize_rcu(); 2479 2480 llist_for_each_safe(pos, n, list) { 2481 initfree = container_of(pos, struct mod_initfree, node); 2482 module_memfree(initfree->init_text); 2483 module_memfree(initfree->init_data); 2484 module_memfree(initfree->init_rodata); 2485 kfree(initfree); 2486 } 2487 } 2488 2489 void flush_module_init_free_work(void) 2490 { 2491 flush_work(&init_free_wq); 2492 } 2493 2494 #undef MODULE_PARAM_PREFIX 2495 #define MODULE_PARAM_PREFIX "module." 2496 /* Default value for module->async_probe_requested */ 2497 static bool async_probe; 2498 module_param(async_probe, bool, 0644); 2499 2500 /* 2501 * This is where the real work happens. 2502 * 2503 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2504 * helper command 'lx-symbols'. 2505 */ 2506 static noinline int do_init_module(struct module *mod) 2507 { 2508 int ret = 0; 2509 struct mod_initfree *freeinit; 2510 #if defined(CONFIG_MODULE_STATS) 2511 unsigned int text_size = 0, total_size = 0; 2512 2513 for_each_mod_mem_type(type) { 2514 const struct module_memory *mod_mem = &mod->mem[type]; 2515 if (mod_mem->size) { 2516 total_size += mod_mem->size; 2517 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2518 text_size += mod_mem->size; 2519 } 2520 } 2521 #endif 2522 2523 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2524 if (!freeinit) { 2525 ret = -ENOMEM; 2526 goto fail; 2527 } 2528 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 2529 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 2530 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 2531 2532 do_mod_ctors(mod); 2533 /* Start the module */ 2534 if (mod->init != NULL) 2535 ret = do_one_initcall(mod->init); 2536 if (ret < 0) { 2537 goto fail_free_freeinit; 2538 } 2539 if (ret > 0) { 2540 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2541 "follow 0/-E convention\n" 2542 "%s: loading module anyway...\n", 2543 __func__, mod->name, ret, __func__); 2544 dump_stack(); 2545 } 2546 2547 /* Now it's a first class citizen! */ 2548 mod->state = MODULE_STATE_LIVE; 2549 blocking_notifier_call_chain(&module_notify_list, 2550 MODULE_STATE_LIVE, mod); 2551 2552 /* Delay uevent until module has finished its init routine */ 2553 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2554 2555 /* 2556 * We need to finish all async code before the module init sequence 2557 * is done. This has potential to deadlock if synchronous module 2558 * loading is requested from async (which is not allowed!). 2559 * 2560 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2561 * request_module() from async workers") for more details. 2562 */ 2563 if (!mod->async_probe_requested) 2564 async_synchronize_full(); 2565 2566 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 2567 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 2568 mutex_lock(&module_mutex); 2569 /* Drop initial reference. */ 2570 module_put(mod); 2571 trim_init_extable(mod); 2572 #ifdef CONFIG_KALLSYMS 2573 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2574 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2575 #endif 2576 module_enable_ro(mod, true); 2577 mod_tree_remove_init(mod); 2578 module_arch_freeing_init(mod); 2579 for_class_mod_mem_type(type, init) { 2580 mod->mem[type].base = NULL; 2581 mod->mem[type].size = 0; 2582 } 2583 2584 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2585 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */ 2586 mod->btf_data = NULL; 2587 #endif 2588 /* 2589 * We want to free module_init, but be aware that kallsyms may be 2590 * walking this with preempt disabled. In all the failure paths, we 2591 * call synchronize_rcu(), but we don't want to slow down the success 2592 * path. module_memfree() cannot be called in an interrupt, so do the 2593 * work and call synchronize_rcu() in a work queue. 2594 * 2595 * Note that module_alloc() on most architectures creates W+X page 2596 * mappings which won't be cleaned up until do_free_init() runs. Any 2597 * code such as mark_rodata_ro() which depends on those mappings to 2598 * be cleaned up needs to sync with the queued work by invoking 2599 * flush_module_init_free_work(). 2600 */ 2601 if (llist_add(&freeinit->node, &init_free_list)) 2602 schedule_work(&init_free_wq); 2603 2604 mutex_unlock(&module_mutex); 2605 wake_up_all(&module_wq); 2606 2607 mod_stat_add_long(text_size, &total_text_size); 2608 mod_stat_add_long(total_size, &total_mod_size); 2609 2610 mod_stat_inc(&modcount); 2611 2612 return 0; 2613 2614 fail_free_freeinit: 2615 kfree(freeinit); 2616 fail: 2617 /* Try to protect us from buggy refcounters. */ 2618 mod->state = MODULE_STATE_GOING; 2619 synchronize_rcu(); 2620 module_put(mod); 2621 blocking_notifier_call_chain(&module_notify_list, 2622 MODULE_STATE_GOING, mod); 2623 klp_module_going(mod); 2624 ftrace_release_mod(mod); 2625 free_module(mod); 2626 wake_up_all(&module_wq); 2627 2628 return ret; 2629 } 2630 2631 static int may_init_module(void) 2632 { 2633 if (!capable(CAP_SYS_MODULE) || modules_disabled) 2634 return -EPERM; 2635 2636 return 0; 2637 } 2638 2639 /* Is this module of this name done loading? No locks held. */ 2640 static bool finished_loading(const char *name) 2641 { 2642 struct module *mod; 2643 bool ret; 2644 2645 /* 2646 * The module_mutex should not be a heavily contended lock; 2647 * if we get the occasional sleep here, we'll go an extra iteration 2648 * in the wait_event_interruptible(), which is harmless. 2649 */ 2650 sched_annotate_sleep(); 2651 mutex_lock(&module_mutex); 2652 mod = find_module_all(name, strlen(name), true); 2653 ret = !mod || mod->state == MODULE_STATE_LIVE 2654 || mod->state == MODULE_STATE_GOING; 2655 mutex_unlock(&module_mutex); 2656 2657 return ret; 2658 } 2659 2660 /* Must be called with module_mutex held */ 2661 static int module_patient_check_exists(const char *name, 2662 enum fail_dup_mod_reason reason) 2663 { 2664 struct module *old; 2665 int err = 0; 2666 2667 old = find_module_all(name, strlen(name), true); 2668 if (old == NULL) 2669 return 0; 2670 2671 if (old->state == MODULE_STATE_COMING || 2672 old->state == MODULE_STATE_UNFORMED) { 2673 /* Wait in case it fails to load. */ 2674 mutex_unlock(&module_mutex); 2675 err = wait_event_interruptible(module_wq, 2676 finished_loading(name)); 2677 mutex_lock(&module_mutex); 2678 if (err) 2679 return err; 2680 2681 /* The module might have gone in the meantime. */ 2682 old = find_module_all(name, strlen(name), true); 2683 } 2684 2685 if (try_add_failed_module(name, reason)) 2686 pr_warn("Could not add fail-tracking for module: %s\n", name); 2687 2688 /* 2689 * We are here only when the same module was being loaded. Do 2690 * not try to load it again right now. It prevents long delays 2691 * caused by serialized module load failures. It might happen 2692 * when more devices of the same type trigger load of 2693 * a particular module. 2694 */ 2695 if (old && old->state == MODULE_STATE_LIVE) 2696 return -EEXIST; 2697 return -EBUSY; 2698 } 2699 2700 /* 2701 * We try to place it in the list now to make sure it's unique before 2702 * we dedicate too many resources. In particular, temporary percpu 2703 * memory exhaustion. 2704 */ 2705 static int add_unformed_module(struct module *mod) 2706 { 2707 int err; 2708 2709 mod->state = MODULE_STATE_UNFORMED; 2710 2711 mutex_lock(&module_mutex); 2712 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 2713 if (err) 2714 goto out; 2715 2716 mod_update_bounds(mod); 2717 list_add_rcu(&mod->list, &modules); 2718 mod_tree_insert(mod); 2719 err = 0; 2720 2721 out: 2722 mutex_unlock(&module_mutex); 2723 return err; 2724 } 2725 2726 static int complete_formation(struct module *mod, struct load_info *info) 2727 { 2728 int err; 2729 2730 mutex_lock(&module_mutex); 2731 2732 /* Find duplicate symbols (must be called under lock). */ 2733 err = verify_exported_symbols(mod); 2734 if (err < 0) 2735 goto out; 2736 2737 /* These rely on module_mutex for list integrity. */ 2738 module_bug_finalize(info->hdr, info->sechdrs, mod); 2739 module_cfi_finalize(info->hdr, info->sechdrs, mod); 2740 2741 module_enable_ro(mod, false); 2742 module_enable_nx(mod); 2743 module_enable_x(mod); 2744 2745 /* 2746 * Mark state as coming so strong_try_module_get() ignores us, 2747 * but kallsyms etc. can see us. 2748 */ 2749 mod->state = MODULE_STATE_COMING; 2750 mutex_unlock(&module_mutex); 2751 2752 return 0; 2753 2754 out: 2755 mutex_unlock(&module_mutex); 2756 return err; 2757 } 2758 2759 static int prepare_coming_module(struct module *mod) 2760 { 2761 int err; 2762 2763 ftrace_module_enable(mod); 2764 err = klp_module_coming(mod); 2765 if (err) 2766 return err; 2767 2768 err = blocking_notifier_call_chain_robust(&module_notify_list, 2769 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 2770 err = notifier_to_errno(err); 2771 if (err) 2772 klp_module_going(mod); 2773 2774 return err; 2775 } 2776 2777 static int unknown_module_param_cb(char *param, char *val, const char *modname, 2778 void *arg) 2779 { 2780 struct module *mod = arg; 2781 int ret; 2782 2783 if (strcmp(param, "async_probe") == 0) { 2784 if (kstrtobool(val, &mod->async_probe_requested)) 2785 mod->async_probe_requested = true; 2786 return 0; 2787 } 2788 2789 /* Check for magic 'dyndbg' arg */ 2790 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 2791 if (ret != 0) 2792 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 2793 return 0; 2794 } 2795 2796 /* Module within temporary copy, this doesn't do any allocation */ 2797 static int early_mod_check(struct load_info *info, int flags) 2798 { 2799 int err; 2800 2801 /* 2802 * Now that we know we have the correct module name, check 2803 * if it's blacklisted. 2804 */ 2805 if (blacklisted(info->name)) { 2806 pr_err("Module %s is blacklisted\n", info->name); 2807 return -EPERM; 2808 } 2809 2810 err = rewrite_section_headers(info, flags); 2811 if (err) 2812 return err; 2813 2814 /* Check module struct version now, before we try to use module. */ 2815 if (!check_modstruct_version(info, info->mod)) 2816 return -ENOEXEC; 2817 2818 err = check_modinfo(info->mod, info, flags); 2819 if (err) 2820 return err; 2821 2822 mutex_lock(&module_mutex); 2823 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 2824 mutex_unlock(&module_mutex); 2825 2826 return err; 2827 } 2828 2829 /* 2830 * Allocate and load the module: note that size of section 0 is always 2831 * zero, and we rely on this for optional sections. 2832 */ 2833 static int load_module(struct load_info *info, const char __user *uargs, 2834 int flags) 2835 { 2836 struct module *mod; 2837 bool module_allocated = false; 2838 long err = 0; 2839 char *after_dashes; 2840 2841 /* 2842 * Do the signature check (if any) first. All that 2843 * the signature check needs is info->len, it does 2844 * not need any of the section info. That can be 2845 * set up later. This will minimize the chances 2846 * of a corrupt module causing problems before 2847 * we even get to the signature check. 2848 * 2849 * The check will also adjust info->len by stripping 2850 * off the sig length at the end of the module, making 2851 * checks against info->len more correct. 2852 */ 2853 err = module_sig_check(info, flags); 2854 if (err) 2855 goto free_copy; 2856 2857 /* 2858 * Do basic sanity checks against the ELF header and 2859 * sections. Cache useful sections and set the 2860 * info->mod to the userspace passed struct module. 2861 */ 2862 err = elf_validity_cache_copy(info, flags); 2863 if (err) 2864 goto free_copy; 2865 2866 err = early_mod_check(info, flags); 2867 if (err) 2868 goto free_copy; 2869 2870 /* Figure out module layout, and allocate all the memory. */ 2871 mod = layout_and_allocate(info, flags); 2872 if (IS_ERR(mod)) { 2873 err = PTR_ERR(mod); 2874 goto free_copy; 2875 } 2876 2877 module_allocated = true; 2878 2879 audit_log_kern_module(mod->name); 2880 2881 /* Reserve our place in the list. */ 2882 err = add_unformed_module(mod); 2883 if (err) 2884 goto free_module; 2885 2886 /* 2887 * We are tainting your kernel if your module gets into 2888 * the modules linked list somehow. 2889 */ 2890 module_augment_kernel_taints(mod, info); 2891 2892 /* To avoid stressing percpu allocator, do this once we're unique. */ 2893 err = percpu_modalloc(mod, info); 2894 if (err) 2895 goto unlink_mod; 2896 2897 /* Now module is in final location, initialize linked lists, etc. */ 2898 err = module_unload_init(mod); 2899 if (err) 2900 goto unlink_mod; 2901 2902 init_param_lock(mod); 2903 2904 /* 2905 * Now we've got everything in the final locations, we can 2906 * find optional sections. 2907 */ 2908 err = find_module_sections(mod, info); 2909 if (err) 2910 goto free_unload; 2911 2912 err = check_export_symbol_versions(mod); 2913 if (err) 2914 goto free_unload; 2915 2916 /* Set up MODINFO_ATTR fields */ 2917 setup_modinfo(mod, info); 2918 2919 /* Fix up syms, so that st_value is a pointer to location. */ 2920 err = simplify_symbols(mod, info); 2921 if (err < 0) 2922 goto free_modinfo; 2923 2924 err = apply_relocations(mod, info); 2925 if (err < 0) 2926 goto free_modinfo; 2927 2928 err = post_relocation(mod, info); 2929 if (err < 0) 2930 goto free_modinfo; 2931 2932 flush_module_icache(mod); 2933 2934 /* Now copy in args */ 2935 mod->args = strndup_user(uargs, ~0UL >> 1); 2936 if (IS_ERR(mod->args)) { 2937 err = PTR_ERR(mod->args); 2938 goto free_arch_cleanup; 2939 } 2940 2941 init_build_id(mod, info); 2942 2943 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 2944 ftrace_module_init(mod); 2945 2946 /* Finally it's fully formed, ready to start executing. */ 2947 err = complete_formation(mod, info); 2948 if (err) 2949 goto ddebug_cleanup; 2950 2951 err = prepare_coming_module(mod); 2952 if (err) 2953 goto bug_cleanup; 2954 2955 mod->async_probe_requested = async_probe; 2956 2957 /* Module is ready to execute: parsing args may do that. */ 2958 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 2959 -32768, 32767, mod, 2960 unknown_module_param_cb); 2961 if (IS_ERR(after_dashes)) { 2962 err = PTR_ERR(after_dashes); 2963 goto coming_cleanup; 2964 } else if (after_dashes) { 2965 pr_warn("%s: parameters '%s' after `--' ignored\n", 2966 mod->name, after_dashes); 2967 } 2968 2969 /* Link in to sysfs. */ 2970 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 2971 if (err < 0) 2972 goto coming_cleanup; 2973 2974 if (is_livepatch_module(mod)) { 2975 err = copy_module_elf(mod, info); 2976 if (err < 0) 2977 goto sysfs_cleanup; 2978 } 2979 2980 /* Get rid of temporary copy. */ 2981 free_copy(info, flags); 2982 2983 /* Done! */ 2984 trace_module_load(mod); 2985 2986 return do_init_module(mod); 2987 2988 sysfs_cleanup: 2989 mod_sysfs_teardown(mod); 2990 coming_cleanup: 2991 mod->state = MODULE_STATE_GOING; 2992 destroy_params(mod->kp, mod->num_kp); 2993 blocking_notifier_call_chain(&module_notify_list, 2994 MODULE_STATE_GOING, mod); 2995 klp_module_going(mod); 2996 bug_cleanup: 2997 mod->state = MODULE_STATE_GOING; 2998 /* module_bug_cleanup needs module_mutex protection */ 2999 mutex_lock(&module_mutex); 3000 module_bug_cleanup(mod); 3001 mutex_unlock(&module_mutex); 3002 3003 ddebug_cleanup: 3004 ftrace_release_mod(mod); 3005 synchronize_rcu(); 3006 kfree(mod->args); 3007 free_arch_cleanup: 3008 module_arch_cleanup(mod); 3009 free_modinfo: 3010 free_modinfo(mod); 3011 free_unload: 3012 module_unload_free(mod); 3013 unlink_mod: 3014 mutex_lock(&module_mutex); 3015 /* Unlink carefully: kallsyms could be walking list. */ 3016 list_del_rcu(&mod->list); 3017 mod_tree_remove(mod); 3018 wake_up_all(&module_wq); 3019 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3020 synchronize_rcu(); 3021 mutex_unlock(&module_mutex); 3022 free_module: 3023 mod_stat_bump_invalid(info, flags); 3024 /* Free lock-classes; relies on the preceding sync_rcu() */ 3025 for_class_mod_mem_type(type, core_data) { 3026 lockdep_free_key_range(mod->mem[type].base, 3027 mod->mem[type].size); 3028 } 3029 3030 module_deallocate(mod, info); 3031 free_copy: 3032 /* 3033 * The info->len is always set. We distinguish between 3034 * failures once the proper module was allocated and 3035 * before that. 3036 */ 3037 if (!module_allocated) 3038 mod_stat_bump_becoming(info, flags); 3039 free_copy(info, flags); 3040 return err; 3041 } 3042 3043 SYSCALL_DEFINE3(init_module, void __user *, umod, 3044 unsigned long, len, const char __user *, uargs) 3045 { 3046 int err; 3047 struct load_info info = { }; 3048 3049 err = may_init_module(); 3050 if (err) 3051 return err; 3052 3053 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3054 umod, len, uargs); 3055 3056 err = copy_module_from_user(umod, len, &info); 3057 if (err) { 3058 mod_stat_inc(&failed_kreads); 3059 mod_stat_add_long(len, &invalid_kread_bytes); 3060 return err; 3061 } 3062 3063 return load_module(&info, uargs, 0); 3064 } 3065 3066 struct idempotent { 3067 const void *cookie; 3068 struct hlist_node entry; 3069 struct completion complete; 3070 int ret; 3071 }; 3072 3073 #define IDEM_HASH_BITS 8 3074 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3075 static DEFINE_SPINLOCK(idem_lock); 3076 3077 static bool idempotent(struct idempotent *u, const void *cookie) 3078 { 3079 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3080 struct hlist_head *head = idem_hash + hash; 3081 struct idempotent *existing; 3082 bool first; 3083 3084 u->ret = -EINTR; 3085 u->cookie = cookie; 3086 init_completion(&u->complete); 3087 3088 spin_lock(&idem_lock); 3089 first = true; 3090 hlist_for_each_entry(existing, head, entry) { 3091 if (existing->cookie != cookie) 3092 continue; 3093 first = false; 3094 break; 3095 } 3096 hlist_add_head(&u->entry, idem_hash + hash); 3097 spin_unlock(&idem_lock); 3098 3099 return !first; 3100 } 3101 3102 /* 3103 * We were the first one with 'cookie' on the list, and we ended 3104 * up completing the operation. We now need to walk the list, 3105 * remove everybody - which includes ourselves - fill in the return 3106 * value, and then complete the operation. 3107 */ 3108 static int idempotent_complete(struct idempotent *u, int ret) 3109 { 3110 const void *cookie = u->cookie; 3111 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3112 struct hlist_head *head = idem_hash + hash; 3113 struct hlist_node *next; 3114 struct idempotent *pos; 3115 3116 spin_lock(&idem_lock); 3117 hlist_for_each_entry_safe(pos, next, head, entry) { 3118 if (pos->cookie != cookie) 3119 continue; 3120 hlist_del_init(&pos->entry); 3121 pos->ret = ret; 3122 complete(&pos->complete); 3123 } 3124 spin_unlock(&idem_lock); 3125 return ret; 3126 } 3127 3128 /* 3129 * Wait for the idempotent worker. 3130 * 3131 * If we get interrupted, we need to remove ourselves from the 3132 * the idempotent list, and the completion may still come in. 3133 * 3134 * The 'idem_lock' protects against the race, and 'idem.ret' was 3135 * initialized to -EINTR and is thus always the right return 3136 * value even if the idempotent work then completes between 3137 * the wait_for_completion and the cleanup. 3138 */ 3139 static int idempotent_wait_for_completion(struct idempotent *u) 3140 { 3141 if (wait_for_completion_interruptible(&u->complete)) { 3142 spin_lock(&idem_lock); 3143 if (!hlist_unhashed(&u->entry)) 3144 hlist_del(&u->entry); 3145 spin_unlock(&idem_lock); 3146 } 3147 return u->ret; 3148 } 3149 3150 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3151 { 3152 struct load_info info = { }; 3153 void *buf = NULL; 3154 int len; 3155 3156 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3157 if (len < 0) { 3158 mod_stat_inc(&failed_kreads); 3159 return len; 3160 } 3161 3162 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3163 int err = module_decompress(&info, buf, len); 3164 vfree(buf); /* compressed data is no longer needed */ 3165 if (err) { 3166 mod_stat_inc(&failed_decompress); 3167 mod_stat_add_long(len, &invalid_decompress_bytes); 3168 return err; 3169 } 3170 } else { 3171 info.hdr = buf; 3172 info.len = len; 3173 } 3174 3175 return load_module(&info, uargs, flags); 3176 } 3177 3178 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3179 { 3180 struct idempotent idem; 3181 3182 if (!f || !(f->f_mode & FMODE_READ)) 3183 return -EBADF; 3184 3185 /* Are we the winners of the race and get to do this? */ 3186 if (!idempotent(&idem, file_inode(f))) { 3187 int ret = init_module_from_file(f, uargs, flags); 3188 return idempotent_complete(&idem, ret); 3189 } 3190 3191 /* 3192 * Somebody else won the race and is loading the module. 3193 */ 3194 return idempotent_wait_for_completion(&idem); 3195 } 3196 3197 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3198 { 3199 int err; 3200 struct fd f; 3201 3202 err = may_init_module(); 3203 if (err) 3204 return err; 3205 3206 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3207 3208 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3209 |MODULE_INIT_IGNORE_VERMAGIC 3210 |MODULE_INIT_COMPRESSED_FILE)) 3211 return -EINVAL; 3212 3213 f = fdget(fd); 3214 err = idempotent_init_module(f.file, uargs, flags); 3215 fdput(f); 3216 return err; 3217 } 3218 3219 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3220 char *module_flags(struct module *mod, char *buf, bool show_state) 3221 { 3222 int bx = 0; 3223 3224 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3225 if (!mod->taints && !show_state) 3226 goto out; 3227 if (mod->taints || 3228 mod->state == MODULE_STATE_GOING || 3229 mod->state == MODULE_STATE_COMING) { 3230 buf[bx++] = '('; 3231 bx += module_flags_taint(mod->taints, buf + bx); 3232 /* Show a - for module-is-being-unloaded */ 3233 if (mod->state == MODULE_STATE_GOING && show_state) 3234 buf[bx++] = '-'; 3235 /* Show a + for module-is-being-loaded */ 3236 if (mod->state == MODULE_STATE_COMING && show_state) 3237 buf[bx++] = '+'; 3238 buf[bx++] = ')'; 3239 } 3240 out: 3241 buf[bx] = '\0'; 3242 3243 return buf; 3244 } 3245 3246 /* Given an address, look for it in the module exception tables. */ 3247 const struct exception_table_entry *search_module_extables(unsigned long addr) 3248 { 3249 const struct exception_table_entry *e = NULL; 3250 struct module *mod; 3251 3252 preempt_disable(); 3253 mod = __module_address(addr); 3254 if (!mod) 3255 goto out; 3256 3257 if (!mod->num_exentries) 3258 goto out; 3259 3260 e = search_extable(mod->extable, 3261 mod->num_exentries, 3262 addr); 3263 out: 3264 preempt_enable(); 3265 3266 /* 3267 * Now, if we found one, we are running inside it now, hence 3268 * we cannot unload the module, hence no refcnt needed. 3269 */ 3270 return e; 3271 } 3272 3273 /** 3274 * is_module_address() - is this address inside a module? 3275 * @addr: the address to check. 3276 * 3277 * See is_module_text_address() if you simply want to see if the address 3278 * is code (not data). 3279 */ 3280 bool is_module_address(unsigned long addr) 3281 { 3282 bool ret; 3283 3284 preempt_disable(); 3285 ret = __module_address(addr) != NULL; 3286 preempt_enable(); 3287 3288 return ret; 3289 } 3290 3291 /** 3292 * __module_address() - get the module which contains an address. 3293 * @addr: the address. 3294 * 3295 * Must be called with preempt disabled or module mutex held so that 3296 * module doesn't get freed during this. 3297 */ 3298 struct module *__module_address(unsigned long addr) 3299 { 3300 struct module *mod; 3301 3302 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3303 goto lookup; 3304 3305 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3306 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3307 goto lookup; 3308 #endif 3309 3310 return NULL; 3311 3312 lookup: 3313 module_assert_mutex_or_preempt(); 3314 3315 mod = mod_find(addr, &mod_tree); 3316 if (mod) { 3317 BUG_ON(!within_module(addr, mod)); 3318 if (mod->state == MODULE_STATE_UNFORMED) 3319 mod = NULL; 3320 } 3321 return mod; 3322 } 3323 3324 /** 3325 * is_module_text_address() - is this address inside module code? 3326 * @addr: the address to check. 3327 * 3328 * See is_module_address() if you simply want to see if the address is 3329 * anywhere in a module. See kernel_text_address() for testing if an 3330 * address corresponds to kernel or module code. 3331 */ 3332 bool is_module_text_address(unsigned long addr) 3333 { 3334 bool ret; 3335 3336 preempt_disable(); 3337 ret = __module_text_address(addr) != NULL; 3338 preempt_enable(); 3339 3340 return ret; 3341 } 3342 3343 /** 3344 * __module_text_address() - get the module whose code contains an address. 3345 * @addr: the address. 3346 * 3347 * Must be called with preempt disabled or module mutex held so that 3348 * module doesn't get freed during this. 3349 */ 3350 struct module *__module_text_address(unsigned long addr) 3351 { 3352 struct module *mod = __module_address(addr); 3353 if (mod) { 3354 /* Make sure it's within the text section. */ 3355 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3356 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3357 mod = NULL; 3358 } 3359 return mod; 3360 } 3361 3362 /* Don't grab lock, we're oopsing. */ 3363 void print_modules(void) 3364 { 3365 struct module *mod; 3366 char buf[MODULE_FLAGS_BUF_SIZE]; 3367 3368 printk(KERN_DEFAULT "Modules linked in:"); 3369 /* Most callers should already have preempt disabled, but make sure */ 3370 preempt_disable(); 3371 list_for_each_entry_rcu(mod, &modules, list) { 3372 if (mod->state == MODULE_STATE_UNFORMED) 3373 continue; 3374 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3375 } 3376 3377 print_unloaded_tainted_modules(); 3378 preempt_enable(); 3379 if (last_unloaded_module.name[0]) 3380 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3381 last_unloaded_module.taints); 3382 pr_cont("\n"); 3383 } 3384 3385 #ifdef CONFIG_MODULE_DEBUGFS 3386 struct dentry *mod_debugfs_root; 3387 3388 static int module_debugfs_init(void) 3389 { 3390 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3391 return 0; 3392 } 3393 module_init(module_debugfs_init); 3394 #endif 3395