1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/debugfs.h> 60 #include <uapi/linux/module.h> 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/module.h> 65 66 /* 67 * Mutex protects: 68 * 1) List of modules (also safely readable with preempt_disable), 69 * 2) module_use links, 70 * 3) mod_tree.addr_min/mod_tree.addr_max. 71 * (delete and add uses RCU list operations). 72 */ 73 DEFINE_MUTEX(module_mutex); 74 LIST_HEAD(modules); 75 76 /* Work queue for freeing init sections in success case */ 77 static void do_free_init(struct work_struct *w); 78 static DECLARE_WORK(init_free_wq, do_free_init); 79 static LLIST_HEAD(init_free_list); 80 81 struct mod_tree_root mod_tree __cacheline_aligned = { 82 .addr_min = -1UL, 83 }; 84 85 struct symsearch { 86 const struct kernel_symbol *start, *stop; 87 const s32 *crcs; 88 enum mod_license license; 89 }; 90 91 /* 92 * Bounds of module memory, for speeding up __module_address. 93 * Protected by module_mutex. 94 */ 95 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 96 unsigned int size, struct mod_tree_root *tree) 97 { 98 unsigned long min = (unsigned long)base; 99 unsigned long max = min + size; 100 101 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 102 if (mod_mem_type_is_core_data(type)) { 103 if (min < tree->data_addr_min) 104 tree->data_addr_min = min; 105 if (max > tree->data_addr_max) 106 tree->data_addr_max = max; 107 return; 108 } 109 #endif 110 if (min < tree->addr_min) 111 tree->addr_min = min; 112 if (max > tree->addr_max) 113 tree->addr_max = max; 114 } 115 116 static void mod_update_bounds(struct module *mod) 117 { 118 for_each_mod_mem_type(type) { 119 struct module_memory *mod_mem = &mod->mem[type]; 120 121 if (mod_mem->size) 122 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 123 } 124 } 125 126 /* Block module loading/unloading? */ 127 int modules_disabled; 128 core_param(nomodule, modules_disabled, bint, 0); 129 130 /* Waiting for a module to finish initializing? */ 131 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 132 133 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 134 135 int register_module_notifier(struct notifier_block *nb) 136 { 137 return blocking_notifier_chain_register(&module_notify_list, nb); 138 } 139 EXPORT_SYMBOL(register_module_notifier); 140 141 int unregister_module_notifier(struct notifier_block *nb) 142 { 143 return blocking_notifier_chain_unregister(&module_notify_list, nb); 144 } 145 EXPORT_SYMBOL(unregister_module_notifier); 146 147 /* 148 * We require a truly strong try_module_get(): 0 means success. 149 * Otherwise an error is returned due to ongoing or failed 150 * initialization etc. 151 */ 152 static inline int strong_try_module_get(struct module *mod) 153 { 154 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 155 if (mod && mod->state == MODULE_STATE_COMING) 156 return -EBUSY; 157 if (try_module_get(mod)) 158 return 0; 159 else 160 return -ENOENT; 161 } 162 163 static inline void add_taint_module(struct module *mod, unsigned flag, 164 enum lockdep_ok lockdep_ok) 165 { 166 add_taint(flag, lockdep_ok); 167 set_bit(flag, &mod->taints); 168 } 169 170 /* 171 * A thread that wants to hold a reference to a module only while it 172 * is running can call this to safely exit. 173 */ 174 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 175 { 176 module_put(mod); 177 kthread_exit(code); 178 } 179 EXPORT_SYMBOL(__module_put_and_kthread_exit); 180 181 /* Find a module section: 0 means not found. */ 182 static unsigned int find_sec(const struct load_info *info, const char *name) 183 { 184 unsigned int i; 185 186 for (i = 1; i < info->hdr->e_shnum; i++) { 187 Elf_Shdr *shdr = &info->sechdrs[i]; 188 /* Alloc bit cleared means "ignore it." */ 189 if ((shdr->sh_flags & SHF_ALLOC) 190 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 191 return i; 192 } 193 return 0; 194 } 195 196 /* Find a module section, or NULL. */ 197 static void *section_addr(const struct load_info *info, const char *name) 198 { 199 /* Section 0 has sh_addr 0. */ 200 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 201 } 202 203 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 204 static void *section_objs(const struct load_info *info, 205 const char *name, 206 size_t object_size, 207 unsigned int *num) 208 { 209 unsigned int sec = find_sec(info, name); 210 211 /* Section 0 has sh_addr 0 and sh_size 0. */ 212 *num = info->sechdrs[sec].sh_size / object_size; 213 return (void *)info->sechdrs[sec].sh_addr; 214 } 215 216 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 217 static unsigned int find_any_sec(const struct load_info *info, const char *name) 218 { 219 unsigned int i; 220 221 for (i = 1; i < info->hdr->e_shnum; i++) { 222 Elf_Shdr *shdr = &info->sechdrs[i]; 223 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 224 return i; 225 } 226 return 0; 227 } 228 229 /* 230 * Find a module section, or NULL. Fill in number of "objects" in section. 231 * Ignores SHF_ALLOC flag. 232 */ 233 static __maybe_unused void *any_section_objs(const struct load_info *info, 234 const char *name, 235 size_t object_size, 236 unsigned int *num) 237 { 238 unsigned int sec = find_any_sec(info, name); 239 240 /* Section 0 has sh_addr 0 and sh_size 0. */ 241 *num = info->sechdrs[sec].sh_size / object_size; 242 return (void *)info->sechdrs[sec].sh_addr; 243 } 244 245 #ifndef CONFIG_MODVERSIONS 246 #define symversion(base, idx) NULL 247 #else 248 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 249 #endif 250 251 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 252 { 253 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 254 return offset_to_ptr(&sym->name_offset); 255 #else 256 return sym->name; 257 #endif 258 } 259 260 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 261 { 262 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 263 if (!sym->namespace_offset) 264 return NULL; 265 return offset_to_ptr(&sym->namespace_offset); 266 #else 267 return sym->namespace; 268 #endif 269 } 270 271 int cmp_name(const void *name, const void *sym) 272 { 273 return strcmp(name, kernel_symbol_name(sym)); 274 } 275 276 static bool find_exported_symbol_in_section(const struct symsearch *syms, 277 struct module *owner, 278 struct find_symbol_arg *fsa) 279 { 280 struct kernel_symbol *sym; 281 282 if (!fsa->gplok && syms->license == GPL_ONLY) 283 return false; 284 285 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 286 sizeof(struct kernel_symbol), cmp_name); 287 if (!sym) 288 return false; 289 290 fsa->owner = owner; 291 fsa->crc = symversion(syms->crcs, sym - syms->start); 292 fsa->sym = sym; 293 fsa->license = syms->license; 294 295 return true; 296 } 297 298 /* 299 * Find an exported symbol and return it, along with, (optional) crc and 300 * (optional) module which owns it. Needs preempt disabled or module_mutex. 301 */ 302 bool find_symbol(struct find_symbol_arg *fsa) 303 { 304 static const struct symsearch arr[] = { 305 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 306 NOT_GPL_ONLY }, 307 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 308 __start___kcrctab_gpl, 309 GPL_ONLY }, 310 }; 311 struct module *mod; 312 unsigned int i; 313 314 module_assert_mutex_or_preempt(); 315 316 for (i = 0; i < ARRAY_SIZE(arr); i++) 317 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 318 return true; 319 320 list_for_each_entry_rcu(mod, &modules, list, 321 lockdep_is_held(&module_mutex)) { 322 struct symsearch arr[] = { 323 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 324 NOT_GPL_ONLY }, 325 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 326 mod->gpl_crcs, 327 GPL_ONLY }, 328 }; 329 330 if (mod->state == MODULE_STATE_UNFORMED) 331 continue; 332 333 for (i = 0; i < ARRAY_SIZE(arr); i++) 334 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 335 return true; 336 } 337 338 pr_debug("Failed to find symbol %s\n", fsa->name); 339 return false; 340 } 341 342 /* 343 * Search for module by name: must hold module_mutex (or preempt disabled 344 * for read-only access). 345 */ 346 struct module *find_module_all(const char *name, size_t len, 347 bool even_unformed) 348 { 349 struct module *mod; 350 351 module_assert_mutex_or_preempt(); 352 353 list_for_each_entry_rcu(mod, &modules, list, 354 lockdep_is_held(&module_mutex)) { 355 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 356 continue; 357 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 358 return mod; 359 } 360 return NULL; 361 } 362 363 struct module *find_module(const char *name) 364 { 365 return find_module_all(name, strlen(name), false); 366 } 367 368 #ifdef CONFIG_SMP 369 370 static inline void __percpu *mod_percpu(struct module *mod) 371 { 372 return mod->percpu; 373 } 374 375 static int percpu_modalloc(struct module *mod, struct load_info *info) 376 { 377 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 378 unsigned long align = pcpusec->sh_addralign; 379 380 if (!pcpusec->sh_size) 381 return 0; 382 383 if (align > PAGE_SIZE) { 384 pr_warn("%s: per-cpu alignment %li > %li\n", 385 mod->name, align, PAGE_SIZE); 386 align = PAGE_SIZE; 387 } 388 389 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 390 if (!mod->percpu) { 391 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 392 mod->name, (unsigned long)pcpusec->sh_size); 393 return -ENOMEM; 394 } 395 mod->percpu_size = pcpusec->sh_size; 396 return 0; 397 } 398 399 static void percpu_modfree(struct module *mod) 400 { 401 free_percpu(mod->percpu); 402 } 403 404 static unsigned int find_pcpusec(struct load_info *info) 405 { 406 return find_sec(info, ".data..percpu"); 407 } 408 409 static void percpu_modcopy(struct module *mod, 410 const void *from, unsigned long size) 411 { 412 int cpu; 413 414 for_each_possible_cpu(cpu) 415 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 416 } 417 418 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 419 { 420 struct module *mod; 421 unsigned int cpu; 422 423 preempt_disable(); 424 425 list_for_each_entry_rcu(mod, &modules, list) { 426 if (mod->state == MODULE_STATE_UNFORMED) 427 continue; 428 if (!mod->percpu_size) 429 continue; 430 for_each_possible_cpu(cpu) { 431 void *start = per_cpu_ptr(mod->percpu, cpu); 432 void *va = (void *)addr; 433 434 if (va >= start && va < start + mod->percpu_size) { 435 if (can_addr) { 436 *can_addr = (unsigned long) (va - start); 437 *can_addr += (unsigned long) 438 per_cpu_ptr(mod->percpu, 439 get_boot_cpu_id()); 440 } 441 preempt_enable(); 442 return true; 443 } 444 } 445 } 446 447 preempt_enable(); 448 return false; 449 } 450 451 /** 452 * is_module_percpu_address() - test whether address is from module static percpu 453 * @addr: address to test 454 * 455 * Test whether @addr belongs to module static percpu area. 456 * 457 * Return: %true if @addr is from module static percpu area 458 */ 459 bool is_module_percpu_address(unsigned long addr) 460 { 461 return __is_module_percpu_address(addr, NULL); 462 } 463 464 #else /* ... !CONFIG_SMP */ 465 466 static inline void __percpu *mod_percpu(struct module *mod) 467 { 468 return NULL; 469 } 470 static int percpu_modalloc(struct module *mod, struct load_info *info) 471 { 472 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 473 if (info->sechdrs[info->index.pcpu].sh_size != 0) 474 return -ENOMEM; 475 return 0; 476 } 477 static inline void percpu_modfree(struct module *mod) 478 { 479 } 480 static unsigned int find_pcpusec(struct load_info *info) 481 { 482 return 0; 483 } 484 static inline void percpu_modcopy(struct module *mod, 485 const void *from, unsigned long size) 486 { 487 /* pcpusec should be 0, and size of that section should be 0. */ 488 BUG_ON(size != 0); 489 } 490 bool is_module_percpu_address(unsigned long addr) 491 { 492 return false; 493 } 494 495 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 496 { 497 return false; 498 } 499 500 #endif /* CONFIG_SMP */ 501 502 #define MODINFO_ATTR(field) \ 503 static void setup_modinfo_##field(struct module *mod, const char *s) \ 504 { \ 505 mod->field = kstrdup(s, GFP_KERNEL); \ 506 } \ 507 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \ 508 struct module_kobject *mk, char *buffer) \ 509 { \ 510 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 511 } \ 512 static int modinfo_##field##_exists(struct module *mod) \ 513 { \ 514 return mod->field != NULL; \ 515 } \ 516 static void free_modinfo_##field(struct module *mod) \ 517 { \ 518 kfree(mod->field); \ 519 mod->field = NULL; \ 520 } \ 521 static struct module_attribute modinfo_##field = { \ 522 .attr = { .name = __stringify(field), .mode = 0444 }, \ 523 .show = show_modinfo_##field, \ 524 .setup = setup_modinfo_##field, \ 525 .test = modinfo_##field##_exists, \ 526 .free = free_modinfo_##field, \ 527 }; 528 529 MODINFO_ATTR(version); 530 MODINFO_ATTR(srcversion); 531 532 static struct { 533 char name[MODULE_NAME_LEN + 1]; 534 char taints[MODULE_FLAGS_BUF_SIZE]; 535 } last_unloaded_module; 536 537 #ifdef CONFIG_MODULE_UNLOAD 538 539 EXPORT_TRACEPOINT_SYMBOL(module_get); 540 541 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 542 #define MODULE_REF_BASE 1 543 544 /* Init the unload section of the module. */ 545 static int module_unload_init(struct module *mod) 546 { 547 /* 548 * Initialize reference counter to MODULE_REF_BASE. 549 * refcnt == 0 means module is going. 550 */ 551 atomic_set(&mod->refcnt, MODULE_REF_BASE); 552 553 INIT_LIST_HEAD(&mod->source_list); 554 INIT_LIST_HEAD(&mod->target_list); 555 556 /* Hold reference count during initialization. */ 557 atomic_inc(&mod->refcnt); 558 559 return 0; 560 } 561 562 /* Does a already use b? */ 563 static int already_uses(struct module *a, struct module *b) 564 { 565 struct module_use *use; 566 567 list_for_each_entry(use, &b->source_list, source_list) { 568 if (use->source == a) 569 return 1; 570 } 571 pr_debug("%s does not use %s!\n", a->name, b->name); 572 return 0; 573 } 574 575 /* 576 * Module a uses b 577 * - we add 'a' as a "source", 'b' as a "target" of module use 578 * - the module_use is added to the list of 'b' sources (so 579 * 'b' can walk the list to see who sourced them), and of 'a' 580 * targets (so 'a' can see what modules it targets). 581 */ 582 static int add_module_usage(struct module *a, struct module *b) 583 { 584 struct module_use *use; 585 586 pr_debug("Allocating new usage for %s.\n", a->name); 587 use = kmalloc(sizeof(*use), GFP_ATOMIC); 588 if (!use) 589 return -ENOMEM; 590 591 use->source = a; 592 use->target = b; 593 list_add(&use->source_list, &b->source_list); 594 list_add(&use->target_list, &a->target_list); 595 return 0; 596 } 597 598 /* Module a uses b: caller needs module_mutex() */ 599 static int ref_module(struct module *a, struct module *b) 600 { 601 int err; 602 603 if (b == NULL || already_uses(a, b)) 604 return 0; 605 606 /* If module isn't available, we fail. */ 607 err = strong_try_module_get(b); 608 if (err) 609 return err; 610 611 err = add_module_usage(a, b); 612 if (err) { 613 module_put(b); 614 return err; 615 } 616 return 0; 617 } 618 619 /* Clear the unload stuff of the module. */ 620 static void module_unload_free(struct module *mod) 621 { 622 struct module_use *use, *tmp; 623 624 mutex_lock(&module_mutex); 625 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 626 struct module *i = use->target; 627 pr_debug("%s unusing %s\n", mod->name, i->name); 628 module_put(i); 629 list_del(&use->source_list); 630 list_del(&use->target_list); 631 kfree(use); 632 } 633 mutex_unlock(&module_mutex); 634 } 635 636 #ifdef CONFIG_MODULE_FORCE_UNLOAD 637 static inline int try_force_unload(unsigned int flags) 638 { 639 int ret = (flags & O_TRUNC); 640 if (ret) 641 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 642 return ret; 643 } 644 #else 645 static inline int try_force_unload(unsigned int flags) 646 { 647 return 0; 648 } 649 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 650 651 /* Try to release refcount of module, 0 means success. */ 652 static int try_release_module_ref(struct module *mod) 653 { 654 int ret; 655 656 /* Try to decrement refcnt which we set at loading */ 657 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 658 BUG_ON(ret < 0); 659 if (ret) 660 /* Someone can put this right now, recover with checking */ 661 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 662 663 return ret; 664 } 665 666 static int try_stop_module(struct module *mod, int flags, int *forced) 667 { 668 /* If it's not unused, quit unless we're forcing. */ 669 if (try_release_module_ref(mod) != 0) { 670 *forced = try_force_unload(flags); 671 if (!(*forced)) 672 return -EWOULDBLOCK; 673 } 674 675 /* Mark it as dying. */ 676 mod->state = MODULE_STATE_GOING; 677 678 return 0; 679 } 680 681 /** 682 * module_refcount() - return the refcount or -1 if unloading 683 * @mod: the module we're checking 684 * 685 * Return: 686 * -1 if the module is in the process of unloading 687 * otherwise the number of references in the kernel to the module 688 */ 689 int module_refcount(struct module *mod) 690 { 691 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 692 } 693 EXPORT_SYMBOL(module_refcount); 694 695 /* This exists whether we can unload or not */ 696 static void free_module(struct module *mod); 697 698 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 699 unsigned int, flags) 700 { 701 struct module *mod; 702 char name[MODULE_NAME_LEN]; 703 char buf[MODULE_FLAGS_BUF_SIZE]; 704 int ret, forced = 0; 705 706 if (!capable(CAP_SYS_MODULE) || modules_disabled) 707 return -EPERM; 708 709 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 710 return -EFAULT; 711 name[MODULE_NAME_LEN-1] = '\0'; 712 713 audit_log_kern_module(name); 714 715 if (mutex_lock_interruptible(&module_mutex) != 0) 716 return -EINTR; 717 718 mod = find_module(name); 719 if (!mod) { 720 ret = -ENOENT; 721 goto out; 722 } 723 724 if (!list_empty(&mod->source_list)) { 725 /* Other modules depend on us: get rid of them first. */ 726 ret = -EWOULDBLOCK; 727 goto out; 728 } 729 730 /* Doing init or already dying? */ 731 if (mod->state != MODULE_STATE_LIVE) { 732 /* FIXME: if (force), slam module count damn the torpedoes */ 733 pr_debug("%s already dying\n", mod->name); 734 ret = -EBUSY; 735 goto out; 736 } 737 738 /* If it has an init func, it must have an exit func to unload */ 739 if (mod->init && !mod->exit) { 740 forced = try_force_unload(flags); 741 if (!forced) { 742 /* This module can't be removed */ 743 ret = -EBUSY; 744 goto out; 745 } 746 } 747 748 ret = try_stop_module(mod, flags, &forced); 749 if (ret != 0) 750 goto out; 751 752 mutex_unlock(&module_mutex); 753 /* Final destruction now no one is using it. */ 754 if (mod->exit != NULL) 755 mod->exit(); 756 blocking_notifier_call_chain(&module_notify_list, 757 MODULE_STATE_GOING, mod); 758 klp_module_going(mod); 759 ftrace_release_mod(mod); 760 761 async_synchronize_full(); 762 763 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 764 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 765 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 766 767 free_module(mod); 768 /* someone could wait for the module in add_unformed_module() */ 769 wake_up_all(&module_wq); 770 return 0; 771 out: 772 mutex_unlock(&module_mutex); 773 return ret; 774 } 775 776 void __symbol_put(const char *symbol) 777 { 778 struct find_symbol_arg fsa = { 779 .name = symbol, 780 .gplok = true, 781 }; 782 783 preempt_disable(); 784 BUG_ON(!find_symbol(&fsa)); 785 module_put(fsa.owner); 786 preempt_enable(); 787 } 788 EXPORT_SYMBOL(__symbol_put); 789 790 /* Note this assumes addr is a function, which it currently always is. */ 791 void symbol_put_addr(void *addr) 792 { 793 struct module *modaddr; 794 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 795 796 if (core_kernel_text(a)) 797 return; 798 799 /* 800 * Even though we hold a reference on the module; we still need to 801 * disable preemption in order to safely traverse the data structure. 802 */ 803 preempt_disable(); 804 modaddr = __module_text_address(a); 805 BUG_ON(!modaddr); 806 module_put(modaddr); 807 preempt_enable(); 808 } 809 EXPORT_SYMBOL_GPL(symbol_put_addr); 810 811 static ssize_t show_refcnt(struct module_attribute *mattr, 812 struct module_kobject *mk, char *buffer) 813 { 814 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 815 } 816 817 static struct module_attribute modinfo_refcnt = 818 __ATTR(refcnt, 0444, show_refcnt, NULL); 819 820 void __module_get(struct module *module) 821 { 822 if (module) { 823 atomic_inc(&module->refcnt); 824 trace_module_get(module, _RET_IP_); 825 } 826 } 827 EXPORT_SYMBOL(__module_get); 828 829 bool try_module_get(struct module *module) 830 { 831 bool ret = true; 832 833 if (module) { 834 /* Note: here, we can fail to get a reference */ 835 if (likely(module_is_live(module) && 836 atomic_inc_not_zero(&module->refcnt) != 0)) 837 trace_module_get(module, _RET_IP_); 838 else 839 ret = false; 840 } 841 return ret; 842 } 843 EXPORT_SYMBOL(try_module_get); 844 845 void module_put(struct module *module) 846 { 847 int ret; 848 849 if (module) { 850 ret = atomic_dec_if_positive(&module->refcnt); 851 WARN_ON(ret < 0); /* Failed to put refcount */ 852 trace_module_put(module, _RET_IP_); 853 } 854 } 855 EXPORT_SYMBOL(module_put); 856 857 #else /* !CONFIG_MODULE_UNLOAD */ 858 static inline void module_unload_free(struct module *mod) 859 { 860 } 861 862 static int ref_module(struct module *a, struct module *b) 863 { 864 return strong_try_module_get(b); 865 } 866 867 static inline int module_unload_init(struct module *mod) 868 { 869 return 0; 870 } 871 #endif /* CONFIG_MODULE_UNLOAD */ 872 873 size_t module_flags_taint(unsigned long taints, char *buf) 874 { 875 size_t l = 0; 876 int i; 877 878 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 879 if (taint_flags[i].module && test_bit(i, &taints)) 880 buf[l++] = taint_flags[i].c_true; 881 } 882 883 return l; 884 } 885 886 static ssize_t show_initstate(struct module_attribute *mattr, 887 struct module_kobject *mk, char *buffer) 888 { 889 const char *state = "unknown"; 890 891 switch (mk->mod->state) { 892 case MODULE_STATE_LIVE: 893 state = "live"; 894 break; 895 case MODULE_STATE_COMING: 896 state = "coming"; 897 break; 898 case MODULE_STATE_GOING: 899 state = "going"; 900 break; 901 default: 902 BUG(); 903 } 904 return sprintf(buffer, "%s\n", state); 905 } 906 907 static struct module_attribute modinfo_initstate = 908 __ATTR(initstate, 0444, show_initstate, NULL); 909 910 static ssize_t store_uevent(struct module_attribute *mattr, 911 struct module_kobject *mk, 912 const char *buffer, size_t count) 913 { 914 int rc; 915 916 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 917 return rc ? rc : count; 918 } 919 920 struct module_attribute module_uevent = 921 __ATTR(uevent, 0200, NULL, store_uevent); 922 923 static ssize_t show_coresize(struct module_attribute *mattr, 924 struct module_kobject *mk, char *buffer) 925 { 926 unsigned int size = mk->mod->mem[MOD_TEXT].size; 927 928 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 929 for_class_mod_mem_type(type, core_data) 930 size += mk->mod->mem[type].size; 931 } 932 return sprintf(buffer, "%u\n", size); 933 } 934 935 static struct module_attribute modinfo_coresize = 936 __ATTR(coresize, 0444, show_coresize, NULL); 937 938 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 939 static ssize_t show_datasize(struct module_attribute *mattr, 940 struct module_kobject *mk, char *buffer) 941 { 942 unsigned int size = 0; 943 944 for_class_mod_mem_type(type, core_data) 945 size += mk->mod->mem[type].size; 946 return sprintf(buffer, "%u\n", size); 947 } 948 949 static struct module_attribute modinfo_datasize = 950 __ATTR(datasize, 0444, show_datasize, NULL); 951 #endif 952 953 static ssize_t show_initsize(struct module_attribute *mattr, 954 struct module_kobject *mk, char *buffer) 955 { 956 unsigned int size = 0; 957 958 for_class_mod_mem_type(type, init) 959 size += mk->mod->mem[type].size; 960 return sprintf(buffer, "%u\n", size); 961 } 962 963 static struct module_attribute modinfo_initsize = 964 __ATTR(initsize, 0444, show_initsize, NULL); 965 966 static ssize_t show_taint(struct module_attribute *mattr, 967 struct module_kobject *mk, char *buffer) 968 { 969 size_t l; 970 971 l = module_flags_taint(mk->mod->taints, buffer); 972 buffer[l++] = '\n'; 973 return l; 974 } 975 976 static struct module_attribute modinfo_taint = 977 __ATTR(taint, 0444, show_taint, NULL); 978 979 struct module_attribute *modinfo_attrs[] = { 980 &module_uevent, 981 &modinfo_version, 982 &modinfo_srcversion, 983 &modinfo_initstate, 984 &modinfo_coresize, 985 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 986 &modinfo_datasize, 987 #endif 988 &modinfo_initsize, 989 &modinfo_taint, 990 #ifdef CONFIG_MODULE_UNLOAD 991 &modinfo_refcnt, 992 #endif 993 NULL, 994 }; 995 996 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 997 998 static const char vermagic[] = VERMAGIC_STRING; 999 1000 int try_to_force_load(struct module *mod, const char *reason) 1001 { 1002 #ifdef CONFIG_MODULE_FORCE_LOAD 1003 if (!test_taint(TAINT_FORCED_MODULE)) 1004 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1005 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1006 return 0; 1007 #else 1008 return -ENOEXEC; 1009 #endif 1010 } 1011 1012 /* Parse tag=value strings from .modinfo section */ 1013 char *module_next_tag_pair(char *string, unsigned long *secsize) 1014 { 1015 /* Skip non-zero chars */ 1016 while (string[0]) { 1017 string++; 1018 if ((*secsize)-- <= 1) 1019 return NULL; 1020 } 1021 1022 /* Skip any zero padding. */ 1023 while (!string[0]) { 1024 string++; 1025 if ((*secsize)-- <= 1) 1026 return NULL; 1027 } 1028 return string; 1029 } 1030 1031 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1032 char *prev) 1033 { 1034 char *p; 1035 unsigned int taglen = strlen(tag); 1036 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1037 unsigned long size = infosec->sh_size; 1038 1039 /* 1040 * get_modinfo() calls made before rewrite_section_headers() 1041 * must use sh_offset, as sh_addr isn't set! 1042 */ 1043 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1044 1045 if (prev) { 1046 size -= prev - modinfo; 1047 modinfo = module_next_tag_pair(prev, &size); 1048 } 1049 1050 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1051 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1052 return p + taglen + 1; 1053 } 1054 return NULL; 1055 } 1056 1057 static char *get_modinfo(const struct load_info *info, const char *tag) 1058 { 1059 return get_next_modinfo(info, tag, NULL); 1060 } 1061 1062 static int verify_namespace_is_imported(const struct load_info *info, 1063 const struct kernel_symbol *sym, 1064 struct module *mod) 1065 { 1066 const char *namespace; 1067 char *imported_namespace; 1068 1069 namespace = kernel_symbol_namespace(sym); 1070 if (namespace && namespace[0]) { 1071 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1072 if (strcmp(namespace, imported_namespace) == 0) 1073 return 0; 1074 } 1075 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1076 pr_warn( 1077 #else 1078 pr_err( 1079 #endif 1080 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1081 mod->name, kernel_symbol_name(sym), namespace); 1082 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1083 return -EINVAL; 1084 #endif 1085 } 1086 return 0; 1087 } 1088 1089 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1090 { 1091 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1092 return true; 1093 1094 if (mod->using_gplonly_symbols) { 1095 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1096 mod->name, name, owner->name); 1097 return false; 1098 } 1099 1100 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1101 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1102 mod->name, name, owner->name); 1103 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1104 } 1105 return true; 1106 } 1107 1108 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1109 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1110 const struct load_info *info, 1111 const char *name, 1112 char ownername[]) 1113 { 1114 struct find_symbol_arg fsa = { 1115 .name = name, 1116 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1117 .warn = true, 1118 }; 1119 int err; 1120 1121 /* 1122 * The module_mutex should not be a heavily contended lock; 1123 * if we get the occasional sleep here, we'll go an extra iteration 1124 * in the wait_event_interruptible(), which is harmless. 1125 */ 1126 sched_annotate_sleep(); 1127 mutex_lock(&module_mutex); 1128 if (!find_symbol(&fsa)) 1129 goto unlock; 1130 1131 if (fsa.license == GPL_ONLY) 1132 mod->using_gplonly_symbols = true; 1133 1134 if (!inherit_taint(mod, fsa.owner, name)) { 1135 fsa.sym = NULL; 1136 goto getname; 1137 } 1138 1139 if (!check_version(info, name, mod, fsa.crc)) { 1140 fsa.sym = ERR_PTR(-EINVAL); 1141 goto getname; 1142 } 1143 1144 err = verify_namespace_is_imported(info, fsa.sym, mod); 1145 if (err) { 1146 fsa.sym = ERR_PTR(err); 1147 goto getname; 1148 } 1149 1150 err = ref_module(mod, fsa.owner); 1151 if (err) { 1152 fsa.sym = ERR_PTR(err); 1153 goto getname; 1154 } 1155 1156 getname: 1157 /* We must make copy under the lock if we failed to get ref. */ 1158 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1159 unlock: 1160 mutex_unlock(&module_mutex); 1161 return fsa.sym; 1162 } 1163 1164 static const struct kernel_symbol * 1165 resolve_symbol_wait(struct module *mod, 1166 const struct load_info *info, 1167 const char *name) 1168 { 1169 const struct kernel_symbol *ksym; 1170 char owner[MODULE_NAME_LEN]; 1171 1172 if (wait_event_interruptible_timeout(module_wq, 1173 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1174 || PTR_ERR(ksym) != -EBUSY, 1175 30 * HZ) <= 0) { 1176 pr_warn("%s: gave up waiting for init of module %s.\n", 1177 mod->name, owner); 1178 } 1179 return ksym; 1180 } 1181 1182 void __weak module_memfree(void *module_region) 1183 { 1184 /* 1185 * This memory may be RO, and freeing RO memory in an interrupt is not 1186 * supported by vmalloc. 1187 */ 1188 WARN_ON(in_interrupt()); 1189 vfree(module_region); 1190 } 1191 1192 void __weak module_arch_cleanup(struct module *mod) 1193 { 1194 } 1195 1196 void __weak module_arch_freeing_init(struct module *mod) 1197 { 1198 } 1199 1200 static bool mod_mem_use_vmalloc(enum mod_mem_type type) 1201 { 1202 return IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC) && 1203 mod_mem_type_is_core_data(type); 1204 } 1205 1206 static void *module_memory_alloc(unsigned int size, enum mod_mem_type type) 1207 { 1208 if (mod_mem_use_vmalloc(type)) 1209 return vzalloc(size); 1210 return module_alloc(size); 1211 } 1212 1213 static void module_memory_free(void *ptr, enum mod_mem_type type) 1214 { 1215 if (mod_mem_use_vmalloc(type)) 1216 vfree(ptr); 1217 else 1218 module_memfree(ptr); 1219 } 1220 1221 static void free_mod_mem(struct module *mod) 1222 { 1223 for_each_mod_mem_type(type) { 1224 struct module_memory *mod_mem = &mod->mem[type]; 1225 1226 if (type == MOD_DATA) 1227 continue; 1228 1229 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1230 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1231 if (mod_mem->size) 1232 module_memory_free(mod_mem->base, type); 1233 } 1234 1235 /* MOD_DATA hosts mod, so free it at last */ 1236 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1237 module_memory_free(mod->mem[MOD_DATA].base, MOD_DATA); 1238 } 1239 1240 /* Free a module, remove from lists, etc. */ 1241 static void free_module(struct module *mod) 1242 { 1243 trace_module_free(mod); 1244 1245 mod_sysfs_teardown(mod); 1246 1247 /* 1248 * We leave it in list to prevent duplicate loads, but make sure 1249 * that noone uses it while it's being deconstructed. 1250 */ 1251 mutex_lock(&module_mutex); 1252 mod->state = MODULE_STATE_UNFORMED; 1253 mutex_unlock(&module_mutex); 1254 1255 /* Arch-specific cleanup. */ 1256 module_arch_cleanup(mod); 1257 1258 /* Module unload stuff */ 1259 module_unload_free(mod); 1260 1261 /* Free any allocated parameters. */ 1262 destroy_params(mod->kp, mod->num_kp); 1263 1264 if (is_livepatch_module(mod)) 1265 free_module_elf(mod); 1266 1267 /* Now we can delete it from the lists */ 1268 mutex_lock(&module_mutex); 1269 /* Unlink carefully: kallsyms could be walking list. */ 1270 list_del_rcu(&mod->list); 1271 mod_tree_remove(mod); 1272 /* Remove this module from bug list, this uses list_del_rcu */ 1273 module_bug_cleanup(mod); 1274 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1275 synchronize_rcu(); 1276 if (try_add_tainted_module(mod)) 1277 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1278 mod->name); 1279 mutex_unlock(&module_mutex); 1280 1281 /* This may be empty, but that's OK */ 1282 module_arch_freeing_init(mod); 1283 kfree(mod->args); 1284 percpu_modfree(mod); 1285 1286 free_mod_mem(mod); 1287 } 1288 1289 void *__symbol_get(const char *symbol) 1290 { 1291 struct find_symbol_arg fsa = { 1292 .name = symbol, 1293 .gplok = true, 1294 .warn = true, 1295 }; 1296 1297 preempt_disable(); 1298 if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) { 1299 preempt_enable(); 1300 return NULL; 1301 } 1302 preempt_enable(); 1303 return (void *)kernel_symbol_value(fsa.sym); 1304 } 1305 EXPORT_SYMBOL_GPL(__symbol_get); 1306 1307 /* 1308 * Ensure that an exported symbol [global namespace] does not already exist 1309 * in the kernel or in some other module's exported symbol table. 1310 * 1311 * You must hold the module_mutex. 1312 */ 1313 static int verify_exported_symbols(struct module *mod) 1314 { 1315 unsigned int i; 1316 const struct kernel_symbol *s; 1317 struct { 1318 const struct kernel_symbol *sym; 1319 unsigned int num; 1320 } arr[] = { 1321 { mod->syms, mod->num_syms }, 1322 { mod->gpl_syms, mod->num_gpl_syms }, 1323 }; 1324 1325 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1326 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1327 struct find_symbol_arg fsa = { 1328 .name = kernel_symbol_name(s), 1329 .gplok = true, 1330 }; 1331 if (find_symbol(&fsa)) { 1332 pr_err("%s: exports duplicate symbol %s" 1333 " (owned by %s)\n", 1334 mod->name, kernel_symbol_name(s), 1335 module_name(fsa.owner)); 1336 return -ENOEXEC; 1337 } 1338 } 1339 } 1340 return 0; 1341 } 1342 1343 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1344 { 1345 /* 1346 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1347 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1348 * i386 has a similar problem but may not deserve a fix. 1349 * 1350 * If we ever have to ignore many symbols, consider refactoring the code to 1351 * only warn if referenced by a relocation. 1352 */ 1353 if (emachine == EM_386 || emachine == EM_X86_64) 1354 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1355 return false; 1356 } 1357 1358 /* Change all symbols so that st_value encodes the pointer directly. */ 1359 static int simplify_symbols(struct module *mod, const struct load_info *info) 1360 { 1361 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1362 Elf_Sym *sym = (void *)symsec->sh_addr; 1363 unsigned long secbase; 1364 unsigned int i; 1365 int ret = 0; 1366 const struct kernel_symbol *ksym; 1367 1368 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1369 const char *name = info->strtab + sym[i].st_name; 1370 1371 switch (sym[i].st_shndx) { 1372 case SHN_COMMON: 1373 /* Ignore common symbols */ 1374 if (!strncmp(name, "__gnu_lto", 9)) 1375 break; 1376 1377 /* 1378 * We compiled with -fno-common. These are not 1379 * supposed to happen. 1380 */ 1381 pr_debug("Common symbol: %s\n", name); 1382 pr_warn("%s: please compile with -fno-common\n", 1383 mod->name); 1384 ret = -ENOEXEC; 1385 break; 1386 1387 case SHN_ABS: 1388 /* Don't need to do anything */ 1389 pr_debug("Absolute symbol: 0x%08lx %s\n", 1390 (long)sym[i].st_value, name); 1391 break; 1392 1393 case SHN_LIVEPATCH: 1394 /* Livepatch symbols are resolved by livepatch */ 1395 break; 1396 1397 case SHN_UNDEF: 1398 ksym = resolve_symbol_wait(mod, info, name); 1399 /* Ok if resolved. */ 1400 if (ksym && !IS_ERR(ksym)) { 1401 sym[i].st_value = kernel_symbol_value(ksym); 1402 break; 1403 } 1404 1405 /* Ok if weak or ignored. */ 1406 if (!ksym && 1407 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1408 ignore_undef_symbol(info->hdr->e_machine, name))) 1409 break; 1410 1411 ret = PTR_ERR(ksym) ?: -ENOENT; 1412 pr_warn("%s: Unknown symbol %s (err %d)\n", 1413 mod->name, name, ret); 1414 break; 1415 1416 default: 1417 /* Divert to percpu allocation if a percpu var. */ 1418 if (sym[i].st_shndx == info->index.pcpu) 1419 secbase = (unsigned long)mod_percpu(mod); 1420 else 1421 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1422 sym[i].st_value += secbase; 1423 break; 1424 } 1425 } 1426 1427 return ret; 1428 } 1429 1430 static int apply_relocations(struct module *mod, const struct load_info *info) 1431 { 1432 unsigned int i; 1433 int err = 0; 1434 1435 /* Now do relocations. */ 1436 for (i = 1; i < info->hdr->e_shnum; i++) { 1437 unsigned int infosec = info->sechdrs[i].sh_info; 1438 1439 /* Not a valid relocation section? */ 1440 if (infosec >= info->hdr->e_shnum) 1441 continue; 1442 1443 /* Don't bother with non-allocated sections */ 1444 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1445 continue; 1446 1447 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1448 err = klp_apply_section_relocs(mod, info->sechdrs, 1449 info->secstrings, 1450 info->strtab, 1451 info->index.sym, i, 1452 NULL); 1453 else if (info->sechdrs[i].sh_type == SHT_REL) 1454 err = apply_relocate(info->sechdrs, info->strtab, 1455 info->index.sym, i, mod); 1456 else if (info->sechdrs[i].sh_type == SHT_RELA) 1457 err = apply_relocate_add(info->sechdrs, info->strtab, 1458 info->index.sym, i, mod); 1459 if (err < 0) 1460 break; 1461 } 1462 return err; 1463 } 1464 1465 /* Additional bytes needed by arch in front of individual sections */ 1466 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1467 unsigned int section) 1468 { 1469 /* default implementation just returns zero */ 1470 return 0; 1471 } 1472 1473 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1474 Elf_Shdr *sechdr, unsigned int section) 1475 { 1476 long offset; 1477 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1478 1479 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1480 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1481 mod->mem[type].size = offset + sechdr->sh_size; 1482 1483 WARN_ON_ONCE(offset & mask); 1484 return offset | mask; 1485 } 1486 1487 static bool module_init_layout_section(const char *sname) 1488 { 1489 #ifndef CONFIG_MODULE_UNLOAD 1490 if (module_exit_section(sname)) 1491 return true; 1492 #endif 1493 return module_init_section(sname); 1494 } 1495 1496 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1497 { 1498 unsigned int m, i; 1499 1500 static const unsigned long masks[][2] = { 1501 /* 1502 * NOTE: all executable code must be the first section 1503 * in this array; otherwise modify the text_size 1504 * finder in the two loops below 1505 */ 1506 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1507 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1508 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1509 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1510 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1511 }; 1512 static const int core_m_to_mem_type[] = { 1513 MOD_TEXT, 1514 MOD_RODATA, 1515 MOD_RO_AFTER_INIT, 1516 MOD_DATA, 1517 MOD_DATA, 1518 }; 1519 static const int init_m_to_mem_type[] = { 1520 MOD_INIT_TEXT, 1521 MOD_INIT_RODATA, 1522 MOD_INVALID, 1523 MOD_INIT_DATA, 1524 MOD_INIT_DATA, 1525 }; 1526 1527 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1528 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1529 1530 for (i = 0; i < info->hdr->e_shnum; ++i) { 1531 Elf_Shdr *s = &info->sechdrs[i]; 1532 const char *sname = info->secstrings + s->sh_name; 1533 1534 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1535 || (s->sh_flags & masks[m][1]) 1536 || s->sh_entsize != ~0UL 1537 || is_init != module_init_layout_section(sname)) 1538 continue; 1539 1540 if (WARN_ON_ONCE(type == MOD_INVALID)) 1541 continue; 1542 1543 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1544 pr_debug("\t%s\n", sname); 1545 } 1546 } 1547 } 1548 1549 /* 1550 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1551 * might -- code, read-only data, read-write data, small data. Tally 1552 * sizes, and place the offsets into sh_entsize fields: high bit means it 1553 * belongs in init. 1554 */ 1555 static void layout_sections(struct module *mod, struct load_info *info) 1556 { 1557 unsigned int i; 1558 1559 for (i = 0; i < info->hdr->e_shnum; i++) 1560 info->sechdrs[i].sh_entsize = ~0UL; 1561 1562 pr_debug("Core section allocation order for %s:\n", mod->name); 1563 __layout_sections(mod, info, false); 1564 1565 pr_debug("Init section allocation order for %s:\n", mod->name); 1566 __layout_sections(mod, info, true); 1567 } 1568 1569 static void module_license_taint_check(struct module *mod, const char *license) 1570 { 1571 if (!license) 1572 license = "unspecified"; 1573 1574 if (!license_is_gpl_compatible(license)) { 1575 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1576 pr_warn("%s: module license '%s' taints kernel.\n", 1577 mod->name, license); 1578 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1579 LOCKDEP_NOW_UNRELIABLE); 1580 } 1581 } 1582 1583 static void setup_modinfo(struct module *mod, struct load_info *info) 1584 { 1585 struct module_attribute *attr; 1586 int i; 1587 1588 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1589 if (attr->setup) 1590 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1591 } 1592 } 1593 1594 static void free_modinfo(struct module *mod) 1595 { 1596 struct module_attribute *attr; 1597 int i; 1598 1599 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1600 if (attr->free) 1601 attr->free(mod); 1602 } 1603 } 1604 1605 void * __weak module_alloc(unsigned long size) 1606 { 1607 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 1608 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 1609 NUMA_NO_NODE, __builtin_return_address(0)); 1610 } 1611 1612 bool __weak module_init_section(const char *name) 1613 { 1614 return strstarts(name, ".init"); 1615 } 1616 1617 bool __weak module_exit_section(const char *name) 1618 { 1619 return strstarts(name, ".exit"); 1620 } 1621 1622 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr) 1623 { 1624 #if defined(CONFIG_64BIT) 1625 unsigned long long secend; 1626 #else 1627 unsigned long secend; 1628 #endif 1629 1630 /* 1631 * Check for both overflow and offset/size being 1632 * too large. 1633 */ 1634 secend = shdr->sh_offset + shdr->sh_size; 1635 if (secend < shdr->sh_offset || secend > info->len) 1636 return -ENOEXEC; 1637 1638 return 0; 1639 } 1640 1641 /* 1642 * Check userspace passed ELF module against our expectations, and cache 1643 * useful variables for further processing as we go. 1644 * 1645 * This does basic validity checks against section offsets and sizes, the 1646 * section name string table, and the indices used for it (sh_name). 1647 * 1648 * As a last step, since we're already checking the ELF sections we cache 1649 * useful variables which will be used later for our convenience: 1650 * 1651 * o pointers to section headers 1652 * o cache the modinfo symbol section 1653 * o cache the string symbol section 1654 * o cache the module section 1655 * 1656 * As a last step we set info->mod to the temporary copy of the module in 1657 * info->hdr. The final one will be allocated in move_module(). Any 1658 * modifications we make to our copy of the module will be carried over 1659 * to the final minted module. 1660 */ 1661 static int elf_validity_cache_copy(struct load_info *info, int flags) 1662 { 1663 unsigned int i; 1664 Elf_Shdr *shdr, *strhdr; 1665 int err; 1666 unsigned int num_mod_secs = 0, mod_idx; 1667 unsigned int num_info_secs = 0, info_idx; 1668 unsigned int num_sym_secs = 0, sym_idx; 1669 1670 if (info->len < sizeof(*(info->hdr))) { 1671 pr_err("Invalid ELF header len %lu\n", info->len); 1672 goto no_exec; 1673 } 1674 1675 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1676 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1677 goto no_exec; 1678 } 1679 if (info->hdr->e_type != ET_REL) { 1680 pr_err("Invalid ELF header type: %u != %u\n", 1681 info->hdr->e_type, ET_REL); 1682 goto no_exec; 1683 } 1684 if (!elf_check_arch(info->hdr)) { 1685 pr_err("Invalid architecture in ELF header: %u\n", 1686 info->hdr->e_machine); 1687 goto no_exec; 1688 } 1689 if (!module_elf_check_arch(info->hdr)) { 1690 pr_err("Invalid module architecture in ELF header: %u\n", 1691 info->hdr->e_machine); 1692 goto no_exec; 1693 } 1694 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1695 pr_err("Invalid ELF section header size\n"); 1696 goto no_exec; 1697 } 1698 1699 /* 1700 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1701 * known and small. So e_shnum * sizeof(Elf_Shdr) 1702 * will not overflow unsigned long on any platform. 1703 */ 1704 if (info->hdr->e_shoff >= info->len 1705 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1706 info->len - info->hdr->e_shoff)) { 1707 pr_err("Invalid ELF section header overflow\n"); 1708 goto no_exec; 1709 } 1710 1711 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1712 1713 /* 1714 * Verify if the section name table index is valid. 1715 */ 1716 if (info->hdr->e_shstrndx == SHN_UNDEF 1717 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1718 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1719 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1720 info->hdr->e_shnum); 1721 goto no_exec; 1722 } 1723 1724 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1725 err = validate_section_offset(info, strhdr); 1726 if (err < 0) { 1727 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type); 1728 return err; 1729 } 1730 1731 /* 1732 * The section name table must be NUL-terminated, as required 1733 * by the spec. This makes strcmp and pr_* calls that access 1734 * strings in the section safe. 1735 */ 1736 info->secstrings = (void *)info->hdr + strhdr->sh_offset; 1737 if (strhdr->sh_size == 0) { 1738 pr_err("empty section name table\n"); 1739 goto no_exec; 1740 } 1741 if (info->secstrings[strhdr->sh_size - 1] != '\0') { 1742 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1743 goto no_exec; 1744 } 1745 1746 /* 1747 * The code assumes that section 0 has a length of zero and 1748 * an addr of zero, so check for it. 1749 */ 1750 if (info->sechdrs[0].sh_type != SHT_NULL 1751 || info->sechdrs[0].sh_size != 0 1752 || info->sechdrs[0].sh_addr != 0) { 1753 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1754 info->sechdrs[0].sh_type); 1755 goto no_exec; 1756 } 1757 1758 for (i = 1; i < info->hdr->e_shnum; i++) { 1759 shdr = &info->sechdrs[i]; 1760 switch (shdr->sh_type) { 1761 case SHT_NULL: 1762 case SHT_NOBITS: 1763 continue; 1764 case SHT_SYMTAB: 1765 if (shdr->sh_link == SHN_UNDEF 1766 || shdr->sh_link >= info->hdr->e_shnum) { 1767 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 1768 shdr->sh_link, shdr->sh_link, 1769 info->hdr->e_shnum); 1770 goto no_exec; 1771 } 1772 num_sym_secs++; 1773 sym_idx = i; 1774 fallthrough; 1775 default: 1776 err = validate_section_offset(info, shdr); 1777 if (err < 0) { 1778 pr_err("Invalid ELF section in module (section %u type %u)\n", 1779 i, shdr->sh_type); 1780 return err; 1781 } 1782 if (strcmp(info->secstrings + shdr->sh_name, 1783 ".gnu.linkonce.this_module") == 0) { 1784 num_mod_secs++; 1785 mod_idx = i; 1786 } else if (strcmp(info->secstrings + shdr->sh_name, 1787 ".modinfo") == 0) { 1788 num_info_secs++; 1789 info_idx = i; 1790 } 1791 1792 if (shdr->sh_flags & SHF_ALLOC) { 1793 if (shdr->sh_name >= strhdr->sh_size) { 1794 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1795 i, shdr->sh_type); 1796 return -ENOEXEC; 1797 } 1798 } 1799 break; 1800 } 1801 } 1802 1803 if (num_info_secs > 1) { 1804 pr_err("Only one .modinfo section must exist.\n"); 1805 goto no_exec; 1806 } else if (num_info_secs == 1) { 1807 /* Try to find a name early so we can log errors with a module name */ 1808 info->index.info = info_idx; 1809 info->name = get_modinfo(info, "name"); 1810 } 1811 1812 if (num_sym_secs != 1) { 1813 pr_warn("%s: module has no symbols (stripped?)\n", 1814 info->name ?: "(missing .modinfo section or name field)"); 1815 goto no_exec; 1816 } 1817 1818 /* Sets internal symbols and strings. */ 1819 info->index.sym = sym_idx; 1820 shdr = &info->sechdrs[sym_idx]; 1821 info->index.str = shdr->sh_link; 1822 info->strtab = (char *)info->hdr + info->sechdrs[info->index.str].sh_offset; 1823 1824 /* 1825 * The ".gnu.linkonce.this_module" ELF section is special. It is 1826 * what modpost uses to refer to __this_module and let's use rely 1827 * on THIS_MODULE to point to &__this_module properly. The kernel's 1828 * modpost declares it on each modules's *.mod.c file. If the struct 1829 * module of the kernel changes a full kernel rebuild is required. 1830 * 1831 * We have a few expectaions for this special section, the following 1832 * code validates all this for us: 1833 * 1834 * o Only one section must exist 1835 * o We expect the kernel to always have to allocate it: SHF_ALLOC 1836 * o The section size must match the kernel's run time's struct module 1837 * size 1838 */ 1839 if (num_mod_secs != 1) { 1840 pr_err("module %s: Only one .gnu.linkonce.this_module section must exist.\n", 1841 info->name ?: "(missing .modinfo section or name field)"); 1842 goto no_exec; 1843 } 1844 1845 shdr = &info->sechdrs[mod_idx]; 1846 1847 /* 1848 * This is already implied on the switch above, however let's be 1849 * pedantic about it. 1850 */ 1851 if (shdr->sh_type == SHT_NOBITS) { 1852 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 1853 info->name ?: "(missing .modinfo section or name field)"); 1854 goto no_exec; 1855 } 1856 1857 if (!(shdr->sh_flags & SHF_ALLOC)) { 1858 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 1859 info->name ?: "(missing .modinfo section or name field)"); 1860 goto no_exec; 1861 } 1862 1863 if (shdr->sh_size != sizeof(struct module)) { 1864 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 1865 info->name ?: "(missing .modinfo section or name field)"); 1866 goto no_exec; 1867 } 1868 1869 info->index.mod = mod_idx; 1870 1871 /* This is temporary: point mod into copy of data. */ 1872 info->mod = (void *)info->hdr + shdr->sh_offset; 1873 1874 /* 1875 * If we didn't load the .modinfo 'name' field earlier, fall back to 1876 * on-disk struct mod 'name' field. 1877 */ 1878 if (!info->name) 1879 info->name = info->mod->name; 1880 1881 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) 1882 info->index.vers = 0; /* Pretend no __versions section! */ 1883 else 1884 info->index.vers = find_sec(info, "__versions"); 1885 1886 info->index.pcpu = find_pcpusec(info); 1887 1888 return 0; 1889 1890 no_exec: 1891 return -ENOEXEC; 1892 } 1893 1894 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 1895 1896 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 1897 { 1898 do { 1899 unsigned long n = min(len, COPY_CHUNK_SIZE); 1900 1901 if (copy_from_user(dst, usrc, n) != 0) 1902 return -EFAULT; 1903 cond_resched(); 1904 dst += n; 1905 usrc += n; 1906 len -= n; 1907 } while (len); 1908 return 0; 1909 } 1910 1911 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 1912 { 1913 if (!get_modinfo(info, "livepatch")) 1914 /* Nothing more to do */ 1915 return 0; 1916 1917 if (set_livepatch_module(mod)) 1918 return 0; 1919 1920 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 1921 mod->name); 1922 return -ENOEXEC; 1923 } 1924 1925 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 1926 { 1927 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 1928 return; 1929 1930 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 1931 mod->name); 1932 } 1933 1934 /* Sets info->hdr and info->len. */ 1935 static int copy_module_from_user(const void __user *umod, unsigned long len, 1936 struct load_info *info) 1937 { 1938 int err; 1939 1940 info->len = len; 1941 if (info->len < sizeof(*(info->hdr))) 1942 return -ENOEXEC; 1943 1944 err = security_kernel_load_data(LOADING_MODULE, true); 1945 if (err) 1946 return err; 1947 1948 /* Suck in entire file: we'll want most of it. */ 1949 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 1950 if (!info->hdr) 1951 return -ENOMEM; 1952 1953 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 1954 err = -EFAULT; 1955 goto out; 1956 } 1957 1958 err = security_kernel_post_load_data((char *)info->hdr, info->len, 1959 LOADING_MODULE, "init_module"); 1960 out: 1961 if (err) 1962 vfree(info->hdr); 1963 1964 return err; 1965 } 1966 1967 static void free_copy(struct load_info *info, int flags) 1968 { 1969 if (flags & MODULE_INIT_COMPRESSED_FILE) 1970 module_decompress_cleanup(info); 1971 else 1972 vfree(info->hdr); 1973 } 1974 1975 static int rewrite_section_headers(struct load_info *info, int flags) 1976 { 1977 unsigned int i; 1978 1979 /* This should always be true, but let's be sure. */ 1980 info->sechdrs[0].sh_addr = 0; 1981 1982 for (i = 1; i < info->hdr->e_shnum; i++) { 1983 Elf_Shdr *shdr = &info->sechdrs[i]; 1984 1985 /* 1986 * Mark all sections sh_addr with their address in the 1987 * temporary image. 1988 */ 1989 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 1990 1991 } 1992 1993 /* Track but don't keep modinfo and version sections. */ 1994 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 1995 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 1996 1997 return 0; 1998 } 1999 2000 /* 2001 * These calls taint the kernel depending certain module circumstances */ 2002 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2003 { 2004 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2005 2006 if (!get_modinfo(info, "intree")) { 2007 if (!test_taint(TAINT_OOT_MODULE)) 2008 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2009 mod->name); 2010 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2011 } 2012 2013 check_modinfo_retpoline(mod, info); 2014 2015 if (get_modinfo(info, "staging")) { 2016 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2017 pr_warn("%s: module is from the staging directory, the quality " 2018 "is unknown, you have been warned.\n", mod->name); 2019 } 2020 2021 if (is_livepatch_module(mod)) { 2022 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2023 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2024 mod->name); 2025 } 2026 2027 module_license_taint_check(mod, get_modinfo(info, "license")); 2028 2029 if (get_modinfo(info, "test")) { 2030 if (!test_taint(TAINT_TEST)) 2031 pr_warn("%s: loading test module taints kernel.\n", 2032 mod->name); 2033 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2034 } 2035 #ifdef CONFIG_MODULE_SIG 2036 mod->sig_ok = info->sig_ok; 2037 if (!mod->sig_ok) { 2038 pr_notice_once("%s: module verification failed: signature " 2039 "and/or required key missing - tainting " 2040 "kernel\n", mod->name); 2041 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2042 } 2043 #endif 2044 2045 /* 2046 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2047 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2048 * using GPL-only symbols it needs. 2049 */ 2050 if (strcmp(mod->name, "ndiswrapper") == 0) 2051 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2052 2053 /* driverloader was caught wrongly pretending to be under GPL */ 2054 if (strcmp(mod->name, "driverloader") == 0) 2055 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2056 LOCKDEP_NOW_UNRELIABLE); 2057 2058 /* lve claims to be GPL but upstream won't provide source */ 2059 if (strcmp(mod->name, "lve") == 0) 2060 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2061 LOCKDEP_NOW_UNRELIABLE); 2062 2063 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2064 pr_warn("%s: module license taints kernel.\n", mod->name); 2065 2066 } 2067 2068 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2069 { 2070 const char *modmagic = get_modinfo(info, "vermagic"); 2071 int err; 2072 2073 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2074 modmagic = NULL; 2075 2076 /* This is allowed: modprobe --force will invalidate it. */ 2077 if (!modmagic) { 2078 err = try_to_force_load(mod, "bad vermagic"); 2079 if (err) 2080 return err; 2081 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2082 pr_err("%s: version magic '%s' should be '%s'\n", 2083 info->name, modmagic, vermagic); 2084 return -ENOEXEC; 2085 } 2086 2087 err = check_modinfo_livepatch(mod, info); 2088 if (err) 2089 return err; 2090 2091 return 0; 2092 } 2093 2094 static int find_module_sections(struct module *mod, struct load_info *info) 2095 { 2096 mod->kp = section_objs(info, "__param", 2097 sizeof(*mod->kp), &mod->num_kp); 2098 mod->syms = section_objs(info, "__ksymtab", 2099 sizeof(*mod->syms), &mod->num_syms); 2100 mod->crcs = section_addr(info, "__kcrctab"); 2101 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2102 sizeof(*mod->gpl_syms), 2103 &mod->num_gpl_syms); 2104 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2105 2106 #ifdef CONFIG_CONSTRUCTORS 2107 mod->ctors = section_objs(info, ".ctors", 2108 sizeof(*mod->ctors), &mod->num_ctors); 2109 if (!mod->ctors) 2110 mod->ctors = section_objs(info, ".init_array", 2111 sizeof(*mod->ctors), &mod->num_ctors); 2112 else if (find_sec(info, ".init_array")) { 2113 /* 2114 * This shouldn't happen with same compiler and binutils 2115 * building all parts of the module. 2116 */ 2117 pr_warn("%s: has both .ctors and .init_array.\n", 2118 mod->name); 2119 return -EINVAL; 2120 } 2121 #endif 2122 2123 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2124 &mod->noinstr_text_size); 2125 2126 #ifdef CONFIG_TRACEPOINTS 2127 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2128 sizeof(*mod->tracepoints_ptrs), 2129 &mod->num_tracepoints); 2130 #endif 2131 #ifdef CONFIG_TREE_SRCU 2132 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2133 sizeof(*mod->srcu_struct_ptrs), 2134 &mod->num_srcu_structs); 2135 #endif 2136 #ifdef CONFIG_BPF_EVENTS 2137 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2138 sizeof(*mod->bpf_raw_events), 2139 &mod->num_bpf_raw_events); 2140 #endif 2141 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2142 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2143 #endif 2144 #ifdef CONFIG_JUMP_LABEL 2145 mod->jump_entries = section_objs(info, "__jump_table", 2146 sizeof(*mod->jump_entries), 2147 &mod->num_jump_entries); 2148 #endif 2149 #ifdef CONFIG_EVENT_TRACING 2150 mod->trace_events = section_objs(info, "_ftrace_events", 2151 sizeof(*mod->trace_events), 2152 &mod->num_trace_events); 2153 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2154 sizeof(*mod->trace_evals), 2155 &mod->num_trace_evals); 2156 #endif 2157 #ifdef CONFIG_TRACING 2158 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2159 sizeof(*mod->trace_bprintk_fmt_start), 2160 &mod->num_trace_bprintk_fmt); 2161 #endif 2162 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2163 /* sechdrs[0].sh_size is always zero */ 2164 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2165 sizeof(*mod->ftrace_callsites), 2166 &mod->num_ftrace_callsites); 2167 #endif 2168 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2169 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2170 sizeof(*mod->ei_funcs), 2171 &mod->num_ei_funcs); 2172 #endif 2173 #ifdef CONFIG_KPROBES 2174 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2175 &mod->kprobes_text_size); 2176 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2177 sizeof(unsigned long), 2178 &mod->num_kprobe_blacklist); 2179 #endif 2180 #ifdef CONFIG_PRINTK_INDEX 2181 mod->printk_index_start = section_objs(info, ".printk_index", 2182 sizeof(*mod->printk_index_start), 2183 &mod->printk_index_size); 2184 #endif 2185 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2186 mod->static_call_sites = section_objs(info, ".static_call_sites", 2187 sizeof(*mod->static_call_sites), 2188 &mod->num_static_call_sites); 2189 #endif 2190 #if IS_ENABLED(CONFIG_KUNIT) 2191 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2192 sizeof(*mod->kunit_suites), 2193 &mod->num_kunit_suites); 2194 #endif 2195 2196 mod->extable = section_objs(info, "__ex_table", 2197 sizeof(*mod->extable), &mod->num_exentries); 2198 2199 if (section_addr(info, "__obsparm")) 2200 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2201 2202 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2203 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2204 sizeof(*mod->dyndbg_info.descs), 2205 &mod->dyndbg_info.num_descs); 2206 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2207 sizeof(*mod->dyndbg_info.classes), 2208 &mod->dyndbg_info.num_classes); 2209 #endif 2210 2211 return 0; 2212 } 2213 2214 static int move_module(struct module *mod, struct load_info *info) 2215 { 2216 int i; 2217 void *ptr; 2218 enum mod_mem_type t = 0; 2219 int ret = -ENOMEM; 2220 2221 for_each_mod_mem_type(type) { 2222 if (!mod->mem[type].size) { 2223 mod->mem[type].base = NULL; 2224 continue; 2225 } 2226 mod->mem[type].size = PAGE_ALIGN(mod->mem[type].size); 2227 ptr = module_memory_alloc(mod->mem[type].size, type); 2228 /* 2229 * The pointer to these blocks of memory are stored on the module 2230 * structure and we keep that around so long as the module is 2231 * around. We only free that memory when we unload the module. 2232 * Just mark them as not being a leak then. The .init* ELF 2233 * sections *do* get freed after boot so we *could* treat them 2234 * slightly differently with kmemleak_ignore() and only grey 2235 * them out as they work as typical memory allocations which 2236 * *do* eventually get freed, but let's just keep things simple 2237 * and avoid *any* false positives. 2238 */ 2239 kmemleak_not_leak(ptr); 2240 if (!ptr) { 2241 t = type; 2242 goto out_enomem; 2243 } 2244 memset(ptr, 0, mod->mem[type].size); 2245 mod->mem[type].base = ptr; 2246 } 2247 2248 /* Transfer each section which specifies SHF_ALLOC */ 2249 pr_debug("Final section addresses for %s:\n", mod->name); 2250 for (i = 0; i < info->hdr->e_shnum; i++) { 2251 void *dest; 2252 Elf_Shdr *shdr = &info->sechdrs[i]; 2253 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2254 2255 if (!(shdr->sh_flags & SHF_ALLOC)) 2256 continue; 2257 2258 dest = mod->mem[type].base + (shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK); 2259 2260 if (shdr->sh_type != SHT_NOBITS) { 2261 /* 2262 * Our ELF checker already validated this, but let's 2263 * be pedantic and make the goal clearer. We actually 2264 * end up copying over all modifications made to the 2265 * userspace copy of the entire struct module. 2266 */ 2267 if (i == info->index.mod && 2268 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2269 ret = -ENOEXEC; 2270 goto out_enomem; 2271 } 2272 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2273 } 2274 /* 2275 * Update the userspace copy's ELF section address to point to 2276 * our newly allocated memory as a pure convenience so that 2277 * users of info can keep taking advantage and using the newly 2278 * minted official memory area. 2279 */ 2280 shdr->sh_addr = (unsigned long)dest; 2281 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2282 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2283 } 2284 2285 return 0; 2286 out_enomem: 2287 for (t--; t >= 0; t--) 2288 module_memory_free(mod->mem[t].base, t); 2289 return ret; 2290 } 2291 2292 static int check_export_symbol_versions(struct module *mod) 2293 { 2294 #ifdef CONFIG_MODVERSIONS 2295 if ((mod->num_syms && !mod->crcs) || 2296 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2297 return try_to_force_load(mod, 2298 "no versions for exported symbols"); 2299 } 2300 #endif 2301 return 0; 2302 } 2303 2304 static void flush_module_icache(const struct module *mod) 2305 { 2306 /* 2307 * Flush the instruction cache, since we've played with text. 2308 * Do it before processing of module parameters, so the module 2309 * can provide parameter accessor functions of its own. 2310 */ 2311 for_each_mod_mem_type(type) { 2312 const struct module_memory *mod_mem = &mod->mem[type]; 2313 2314 if (mod_mem->size) { 2315 flush_icache_range((unsigned long)mod_mem->base, 2316 (unsigned long)mod_mem->base + mod_mem->size); 2317 } 2318 } 2319 } 2320 2321 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2322 { 2323 return true; 2324 } 2325 2326 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2327 Elf_Shdr *sechdrs, 2328 char *secstrings, 2329 struct module *mod) 2330 { 2331 return 0; 2332 } 2333 2334 /* module_blacklist is a comma-separated list of module names */ 2335 static char *module_blacklist; 2336 static bool blacklisted(const char *module_name) 2337 { 2338 const char *p; 2339 size_t len; 2340 2341 if (!module_blacklist) 2342 return false; 2343 2344 for (p = module_blacklist; *p; p += len) { 2345 len = strcspn(p, ","); 2346 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2347 return true; 2348 if (p[len] == ',') 2349 len++; 2350 } 2351 return false; 2352 } 2353 core_param(module_blacklist, module_blacklist, charp, 0400); 2354 2355 static struct module *layout_and_allocate(struct load_info *info, int flags) 2356 { 2357 struct module *mod; 2358 unsigned int ndx; 2359 int err; 2360 2361 /* Allow arches to frob section contents and sizes. */ 2362 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2363 info->secstrings, info->mod); 2364 if (err < 0) 2365 return ERR_PTR(err); 2366 2367 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2368 info->secstrings, info->mod); 2369 if (err < 0) 2370 return ERR_PTR(err); 2371 2372 /* We will do a special allocation for per-cpu sections later. */ 2373 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2374 2375 /* 2376 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2377 * layout_sections() can put it in the right place. 2378 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2379 */ 2380 ndx = find_sec(info, ".data..ro_after_init"); 2381 if (ndx) 2382 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2383 /* 2384 * Mark the __jump_table section as ro_after_init as well: these data 2385 * structures are never modified, with the exception of entries that 2386 * refer to code in the __init section, which are annotated as such 2387 * at module load time. 2388 */ 2389 ndx = find_sec(info, "__jump_table"); 2390 if (ndx) 2391 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2392 2393 /* 2394 * Determine total sizes, and put offsets in sh_entsize. For now 2395 * this is done generically; there doesn't appear to be any 2396 * special cases for the architectures. 2397 */ 2398 layout_sections(info->mod, info); 2399 layout_symtab(info->mod, info); 2400 2401 /* Allocate and move to the final place */ 2402 err = move_module(info->mod, info); 2403 if (err) 2404 return ERR_PTR(err); 2405 2406 /* Module has been copied to its final place now: return it. */ 2407 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2408 kmemleak_load_module(mod, info); 2409 return mod; 2410 } 2411 2412 /* mod is no longer valid after this! */ 2413 static void module_deallocate(struct module *mod, struct load_info *info) 2414 { 2415 percpu_modfree(mod); 2416 module_arch_freeing_init(mod); 2417 2418 free_mod_mem(mod); 2419 } 2420 2421 int __weak module_finalize(const Elf_Ehdr *hdr, 2422 const Elf_Shdr *sechdrs, 2423 struct module *me) 2424 { 2425 return 0; 2426 } 2427 2428 static int post_relocation(struct module *mod, const struct load_info *info) 2429 { 2430 /* Sort exception table now relocations are done. */ 2431 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2432 2433 /* Copy relocated percpu area over. */ 2434 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2435 info->sechdrs[info->index.pcpu].sh_size); 2436 2437 /* Setup kallsyms-specific fields. */ 2438 add_kallsyms(mod, info); 2439 2440 /* Arch-specific module finalizing. */ 2441 return module_finalize(info->hdr, info->sechdrs, mod); 2442 } 2443 2444 /* Call module constructors. */ 2445 static void do_mod_ctors(struct module *mod) 2446 { 2447 #ifdef CONFIG_CONSTRUCTORS 2448 unsigned long i; 2449 2450 for (i = 0; i < mod->num_ctors; i++) 2451 mod->ctors[i](); 2452 #endif 2453 } 2454 2455 /* For freeing module_init on success, in case kallsyms traversing */ 2456 struct mod_initfree { 2457 struct llist_node node; 2458 void *init_text; 2459 void *init_data; 2460 void *init_rodata; 2461 }; 2462 2463 static void do_free_init(struct work_struct *w) 2464 { 2465 struct llist_node *pos, *n, *list; 2466 struct mod_initfree *initfree; 2467 2468 list = llist_del_all(&init_free_list); 2469 2470 synchronize_rcu(); 2471 2472 llist_for_each_safe(pos, n, list) { 2473 initfree = container_of(pos, struct mod_initfree, node); 2474 module_memfree(initfree->init_text); 2475 module_memfree(initfree->init_data); 2476 module_memfree(initfree->init_rodata); 2477 kfree(initfree); 2478 } 2479 } 2480 2481 #undef MODULE_PARAM_PREFIX 2482 #define MODULE_PARAM_PREFIX "module." 2483 /* Default value for module->async_probe_requested */ 2484 static bool async_probe; 2485 module_param(async_probe, bool, 0644); 2486 2487 /* 2488 * This is where the real work happens. 2489 * 2490 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2491 * helper command 'lx-symbols'. 2492 */ 2493 static noinline int do_init_module(struct module *mod) 2494 { 2495 int ret = 0; 2496 struct mod_initfree *freeinit; 2497 #if defined(CONFIG_MODULE_STATS) 2498 unsigned int text_size = 0, total_size = 0; 2499 2500 for_each_mod_mem_type(type) { 2501 const struct module_memory *mod_mem = &mod->mem[type]; 2502 if (mod_mem->size) { 2503 total_size += mod_mem->size; 2504 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2505 text_size += mod_mem->size; 2506 } 2507 } 2508 #endif 2509 2510 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2511 if (!freeinit) { 2512 ret = -ENOMEM; 2513 goto fail; 2514 } 2515 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 2516 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 2517 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 2518 2519 do_mod_ctors(mod); 2520 /* Start the module */ 2521 if (mod->init != NULL) 2522 ret = do_one_initcall(mod->init); 2523 if (ret < 0) { 2524 goto fail_free_freeinit; 2525 } 2526 if (ret > 0) { 2527 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2528 "follow 0/-E convention\n" 2529 "%s: loading module anyway...\n", 2530 __func__, mod->name, ret, __func__); 2531 dump_stack(); 2532 } 2533 2534 /* Now it's a first class citizen! */ 2535 mod->state = MODULE_STATE_LIVE; 2536 blocking_notifier_call_chain(&module_notify_list, 2537 MODULE_STATE_LIVE, mod); 2538 2539 /* Delay uevent until module has finished its init routine */ 2540 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2541 2542 /* 2543 * We need to finish all async code before the module init sequence 2544 * is done. This has potential to deadlock if synchronous module 2545 * loading is requested from async (which is not allowed!). 2546 * 2547 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2548 * request_module() from async workers") for more details. 2549 */ 2550 if (!mod->async_probe_requested) 2551 async_synchronize_full(); 2552 2553 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 2554 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 2555 mutex_lock(&module_mutex); 2556 /* Drop initial reference. */ 2557 module_put(mod); 2558 trim_init_extable(mod); 2559 #ifdef CONFIG_KALLSYMS 2560 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2561 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2562 #endif 2563 module_enable_ro(mod, true); 2564 mod_tree_remove_init(mod); 2565 module_arch_freeing_init(mod); 2566 for_class_mod_mem_type(type, init) { 2567 mod->mem[type].base = NULL; 2568 mod->mem[type].size = 0; 2569 } 2570 2571 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2572 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */ 2573 mod->btf_data = NULL; 2574 #endif 2575 /* 2576 * We want to free module_init, but be aware that kallsyms may be 2577 * walking this with preempt disabled. In all the failure paths, we 2578 * call synchronize_rcu(), but we don't want to slow down the success 2579 * path. module_memfree() cannot be called in an interrupt, so do the 2580 * work and call synchronize_rcu() in a work queue. 2581 * 2582 * Note that module_alloc() on most architectures creates W+X page 2583 * mappings which won't be cleaned up until do_free_init() runs. Any 2584 * code such as mark_rodata_ro() which depends on those mappings to 2585 * be cleaned up needs to sync with the queued work - ie 2586 * rcu_barrier() 2587 */ 2588 if (llist_add(&freeinit->node, &init_free_list)) 2589 schedule_work(&init_free_wq); 2590 2591 mutex_unlock(&module_mutex); 2592 wake_up_all(&module_wq); 2593 2594 mod_stat_add_long(text_size, &total_text_size); 2595 mod_stat_add_long(total_size, &total_mod_size); 2596 2597 mod_stat_inc(&modcount); 2598 2599 return 0; 2600 2601 fail_free_freeinit: 2602 kfree(freeinit); 2603 fail: 2604 /* Try to protect us from buggy refcounters. */ 2605 mod->state = MODULE_STATE_GOING; 2606 synchronize_rcu(); 2607 module_put(mod); 2608 blocking_notifier_call_chain(&module_notify_list, 2609 MODULE_STATE_GOING, mod); 2610 klp_module_going(mod); 2611 ftrace_release_mod(mod); 2612 free_module(mod); 2613 wake_up_all(&module_wq); 2614 2615 return ret; 2616 } 2617 2618 static int may_init_module(void) 2619 { 2620 if (!capable(CAP_SYS_MODULE) || modules_disabled) 2621 return -EPERM; 2622 2623 return 0; 2624 } 2625 2626 /* Is this module of this name done loading? No locks held. */ 2627 static bool finished_loading(const char *name) 2628 { 2629 struct module *mod; 2630 bool ret; 2631 2632 /* 2633 * The module_mutex should not be a heavily contended lock; 2634 * if we get the occasional sleep here, we'll go an extra iteration 2635 * in the wait_event_interruptible(), which is harmless. 2636 */ 2637 sched_annotate_sleep(); 2638 mutex_lock(&module_mutex); 2639 mod = find_module_all(name, strlen(name), true); 2640 ret = !mod || mod->state == MODULE_STATE_LIVE 2641 || mod->state == MODULE_STATE_GOING; 2642 mutex_unlock(&module_mutex); 2643 2644 return ret; 2645 } 2646 2647 /* Must be called with module_mutex held */ 2648 static int module_patient_check_exists(const char *name, 2649 enum fail_dup_mod_reason reason) 2650 { 2651 struct module *old; 2652 int err = 0; 2653 2654 old = find_module_all(name, strlen(name), true); 2655 if (old == NULL) 2656 return 0; 2657 2658 if (old->state == MODULE_STATE_COMING || 2659 old->state == MODULE_STATE_UNFORMED) { 2660 /* Wait in case it fails to load. */ 2661 mutex_unlock(&module_mutex); 2662 err = wait_event_interruptible(module_wq, 2663 finished_loading(name)); 2664 mutex_lock(&module_mutex); 2665 if (err) 2666 return err; 2667 2668 /* The module might have gone in the meantime. */ 2669 old = find_module_all(name, strlen(name), true); 2670 } 2671 2672 if (try_add_failed_module(name, reason)) 2673 pr_warn("Could not add fail-tracking for module: %s\n", name); 2674 2675 /* 2676 * We are here only when the same module was being loaded. Do 2677 * not try to load it again right now. It prevents long delays 2678 * caused by serialized module load failures. It might happen 2679 * when more devices of the same type trigger load of 2680 * a particular module. 2681 */ 2682 if (old && old->state == MODULE_STATE_LIVE) 2683 return -EEXIST; 2684 return -EBUSY; 2685 } 2686 2687 /* 2688 * We try to place it in the list now to make sure it's unique before 2689 * we dedicate too many resources. In particular, temporary percpu 2690 * memory exhaustion. 2691 */ 2692 static int add_unformed_module(struct module *mod) 2693 { 2694 int err; 2695 2696 mod->state = MODULE_STATE_UNFORMED; 2697 2698 mutex_lock(&module_mutex); 2699 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 2700 if (err) 2701 goto out; 2702 2703 mod_update_bounds(mod); 2704 list_add_rcu(&mod->list, &modules); 2705 mod_tree_insert(mod); 2706 err = 0; 2707 2708 out: 2709 mutex_unlock(&module_mutex); 2710 return err; 2711 } 2712 2713 static int complete_formation(struct module *mod, struct load_info *info) 2714 { 2715 int err; 2716 2717 mutex_lock(&module_mutex); 2718 2719 /* Find duplicate symbols (must be called under lock). */ 2720 err = verify_exported_symbols(mod); 2721 if (err < 0) 2722 goto out; 2723 2724 /* These rely on module_mutex for list integrity. */ 2725 module_bug_finalize(info->hdr, info->sechdrs, mod); 2726 module_cfi_finalize(info->hdr, info->sechdrs, mod); 2727 2728 module_enable_ro(mod, false); 2729 module_enable_nx(mod); 2730 module_enable_x(mod); 2731 2732 /* 2733 * Mark state as coming so strong_try_module_get() ignores us, 2734 * but kallsyms etc. can see us. 2735 */ 2736 mod->state = MODULE_STATE_COMING; 2737 mutex_unlock(&module_mutex); 2738 2739 return 0; 2740 2741 out: 2742 mutex_unlock(&module_mutex); 2743 return err; 2744 } 2745 2746 static int prepare_coming_module(struct module *mod) 2747 { 2748 int err; 2749 2750 ftrace_module_enable(mod); 2751 err = klp_module_coming(mod); 2752 if (err) 2753 return err; 2754 2755 err = blocking_notifier_call_chain_robust(&module_notify_list, 2756 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 2757 err = notifier_to_errno(err); 2758 if (err) 2759 klp_module_going(mod); 2760 2761 return err; 2762 } 2763 2764 static int unknown_module_param_cb(char *param, char *val, const char *modname, 2765 void *arg) 2766 { 2767 struct module *mod = arg; 2768 int ret; 2769 2770 if (strcmp(param, "async_probe") == 0) { 2771 if (kstrtobool(val, &mod->async_probe_requested)) 2772 mod->async_probe_requested = true; 2773 return 0; 2774 } 2775 2776 /* Check for magic 'dyndbg' arg */ 2777 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 2778 if (ret != 0) 2779 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 2780 return 0; 2781 } 2782 2783 /* Module within temporary copy, this doesn't do any allocation */ 2784 static int early_mod_check(struct load_info *info, int flags) 2785 { 2786 int err; 2787 2788 /* 2789 * Now that we know we have the correct module name, check 2790 * if it's blacklisted. 2791 */ 2792 if (blacklisted(info->name)) { 2793 pr_err("Module %s is blacklisted\n", info->name); 2794 return -EPERM; 2795 } 2796 2797 err = rewrite_section_headers(info, flags); 2798 if (err) 2799 return err; 2800 2801 /* Check module struct version now, before we try to use module. */ 2802 if (!check_modstruct_version(info, info->mod)) 2803 return -ENOEXEC; 2804 2805 err = check_modinfo(info->mod, info, flags); 2806 if (err) 2807 return err; 2808 2809 mutex_lock(&module_mutex); 2810 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 2811 mutex_unlock(&module_mutex); 2812 2813 return err; 2814 } 2815 2816 /* 2817 * Allocate and load the module: note that size of section 0 is always 2818 * zero, and we rely on this for optional sections. 2819 */ 2820 static int load_module(struct load_info *info, const char __user *uargs, 2821 int flags) 2822 { 2823 struct module *mod; 2824 bool module_allocated = false; 2825 long err = 0; 2826 char *after_dashes; 2827 2828 /* 2829 * Do the signature check (if any) first. All that 2830 * the signature check needs is info->len, it does 2831 * not need any of the section info. That can be 2832 * set up later. This will minimize the chances 2833 * of a corrupt module causing problems before 2834 * we even get to the signature check. 2835 * 2836 * The check will also adjust info->len by stripping 2837 * off the sig length at the end of the module, making 2838 * checks against info->len more correct. 2839 */ 2840 err = module_sig_check(info, flags); 2841 if (err) 2842 goto free_copy; 2843 2844 /* 2845 * Do basic sanity checks against the ELF header and 2846 * sections. Cache useful sections and set the 2847 * info->mod to the userspace passed struct module. 2848 */ 2849 err = elf_validity_cache_copy(info, flags); 2850 if (err) 2851 goto free_copy; 2852 2853 err = early_mod_check(info, flags); 2854 if (err) 2855 goto free_copy; 2856 2857 /* Figure out module layout, and allocate all the memory. */ 2858 mod = layout_and_allocate(info, flags); 2859 if (IS_ERR(mod)) { 2860 err = PTR_ERR(mod); 2861 goto free_copy; 2862 } 2863 2864 module_allocated = true; 2865 2866 audit_log_kern_module(mod->name); 2867 2868 /* Reserve our place in the list. */ 2869 err = add_unformed_module(mod); 2870 if (err) 2871 goto free_module; 2872 2873 /* 2874 * We are tainting your kernel if your module gets into 2875 * the modules linked list somehow. 2876 */ 2877 module_augment_kernel_taints(mod, info); 2878 2879 /* To avoid stressing percpu allocator, do this once we're unique. */ 2880 err = percpu_modalloc(mod, info); 2881 if (err) 2882 goto unlink_mod; 2883 2884 /* Now module is in final location, initialize linked lists, etc. */ 2885 err = module_unload_init(mod); 2886 if (err) 2887 goto unlink_mod; 2888 2889 init_param_lock(mod); 2890 2891 /* 2892 * Now we've got everything in the final locations, we can 2893 * find optional sections. 2894 */ 2895 err = find_module_sections(mod, info); 2896 if (err) 2897 goto free_unload; 2898 2899 err = check_export_symbol_versions(mod); 2900 if (err) 2901 goto free_unload; 2902 2903 /* Set up MODINFO_ATTR fields */ 2904 setup_modinfo(mod, info); 2905 2906 /* Fix up syms, so that st_value is a pointer to location. */ 2907 err = simplify_symbols(mod, info); 2908 if (err < 0) 2909 goto free_modinfo; 2910 2911 err = apply_relocations(mod, info); 2912 if (err < 0) 2913 goto free_modinfo; 2914 2915 err = post_relocation(mod, info); 2916 if (err < 0) 2917 goto free_modinfo; 2918 2919 flush_module_icache(mod); 2920 2921 /* Now copy in args */ 2922 mod->args = strndup_user(uargs, ~0UL >> 1); 2923 if (IS_ERR(mod->args)) { 2924 err = PTR_ERR(mod->args); 2925 goto free_arch_cleanup; 2926 } 2927 2928 init_build_id(mod, info); 2929 2930 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 2931 ftrace_module_init(mod); 2932 2933 /* Finally it's fully formed, ready to start executing. */ 2934 err = complete_formation(mod, info); 2935 if (err) 2936 goto ddebug_cleanup; 2937 2938 err = prepare_coming_module(mod); 2939 if (err) 2940 goto bug_cleanup; 2941 2942 mod->async_probe_requested = async_probe; 2943 2944 /* Module is ready to execute: parsing args may do that. */ 2945 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 2946 -32768, 32767, mod, 2947 unknown_module_param_cb); 2948 if (IS_ERR(after_dashes)) { 2949 err = PTR_ERR(after_dashes); 2950 goto coming_cleanup; 2951 } else if (after_dashes) { 2952 pr_warn("%s: parameters '%s' after `--' ignored\n", 2953 mod->name, after_dashes); 2954 } 2955 2956 /* Link in to sysfs. */ 2957 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 2958 if (err < 0) 2959 goto coming_cleanup; 2960 2961 if (is_livepatch_module(mod)) { 2962 err = copy_module_elf(mod, info); 2963 if (err < 0) 2964 goto sysfs_cleanup; 2965 } 2966 2967 /* Get rid of temporary copy. */ 2968 free_copy(info, flags); 2969 2970 /* Done! */ 2971 trace_module_load(mod); 2972 2973 return do_init_module(mod); 2974 2975 sysfs_cleanup: 2976 mod_sysfs_teardown(mod); 2977 coming_cleanup: 2978 mod->state = MODULE_STATE_GOING; 2979 destroy_params(mod->kp, mod->num_kp); 2980 blocking_notifier_call_chain(&module_notify_list, 2981 MODULE_STATE_GOING, mod); 2982 klp_module_going(mod); 2983 bug_cleanup: 2984 mod->state = MODULE_STATE_GOING; 2985 /* module_bug_cleanup needs module_mutex protection */ 2986 mutex_lock(&module_mutex); 2987 module_bug_cleanup(mod); 2988 mutex_unlock(&module_mutex); 2989 2990 ddebug_cleanup: 2991 ftrace_release_mod(mod); 2992 synchronize_rcu(); 2993 kfree(mod->args); 2994 free_arch_cleanup: 2995 module_arch_cleanup(mod); 2996 free_modinfo: 2997 free_modinfo(mod); 2998 free_unload: 2999 module_unload_free(mod); 3000 unlink_mod: 3001 mutex_lock(&module_mutex); 3002 /* Unlink carefully: kallsyms could be walking list. */ 3003 list_del_rcu(&mod->list); 3004 mod_tree_remove(mod); 3005 wake_up_all(&module_wq); 3006 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3007 synchronize_rcu(); 3008 mutex_unlock(&module_mutex); 3009 free_module: 3010 mod_stat_bump_invalid(info, flags); 3011 /* Free lock-classes; relies on the preceding sync_rcu() */ 3012 for_class_mod_mem_type(type, core_data) { 3013 lockdep_free_key_range(mod->mem[type].base, 3014 mod->mem[type].size); 3015 } 3016 3017 module_deallocate(mod, info); 3018 free_copy: 3019 /* 3020 * The info->len is always set. We distinguish between 3021 * failures once the proper module was allocated and 3022 * before that. 3023 */ 3024 if (!module_allocated) 3025 mod_stat_bump_becoming(info, flags); 3026 free_copy(info, flags); 3027 return err; 3028 } 3029 3030 SYSCALL_DEFINE3(init_module, void __user *, umod, 3031 unsigned long, len, const char __user *, uargs) 3032 { 3033 int err; 3034 struct load_info info = { }; 3035 3036 err = may_init_module(); 3037 if (err) 3038 return err; 3039 3040 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3041 umod, len, uargs); 3042 3043 err = copy_module_from_user(umod, len, &info); 3044 if (err) { 3045 mod_stat_inc(&failed_kreads); 3046 mod_stat_add_long(len, &invalid_kread_bytes); 3047 return err; 3048 } 3049 3050 return load_module(&info, uargs, 0); 3051 } 3052 3053 struct idempotent { 3054 const void *cookie; 3055 struct hlist_node entry; 3056 struct completion complete; 3057 int ret; 3058 }; 3059 3060 #define IDEM_HASH_BITS 8 3061 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3062 static DEFINE_SPINLOCK(idem_lock); 3063 3064 static bool idempotent(struct idempotent *u, const void *cookie) 3065 { 3066 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3067 struct hlist_head *head = idem_hash + hash; 3068 struct idempotent *existing; 3069 bool first; 3070 3071 u->ret = 0; 3072 u->cookie = cookie; 3073 init_completion(&u->complete); 3074 3075 spin_lock(&idem_lock); 3076 first = true; 3077 hlist_for_each_entry(existing, head, entry) { 3078 if (existing->cookie != cookie) 3079 continue; 3080 first = false; 3081 break; 3082 } 3083 hlist_add_head(&u->entry, idem_hash + hash); 3084 spin_unlock(&idem_lock); 3085 3086 return !first; 3087 } 3088 3089 /* 3090 * We were the first one with 'cookie' on the list, and we ended 3091 * up completing the operation. We now need to walk the list, 3092 * remove everybody - which includes ourselves - fill in the return 3093 * value, and then complete the operation. 3094 */ 3095 static int idempotent_complete(struct idempotent *u, int ret) 3096 { 3097 const void *cookie = u->cookie; 3098 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3099 struct hlist_head *head = idem_hash + hash; 3100 struct hlist_node *next; 3101 struct idempotent *pos; 3102 3103 spin_lock(&idem_lock); 3104 hlist_for_each_entry_safe(pos, next, head, entry) { 3105 if (pos->cookie != cookie) 3106 continue; 3107 hlist_del(&pos->entry); 3108 pos->ret = ret; 3109 complete(&pos->complete); 3110 } 3111 spin_unlock(&idem_lock); 3112 return ret; 3113 } 3114 3115 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3116 { 3117 struct load_info info = { }; 3118 void *buf = NULL; 3119 int len; 3120 3121 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3122 if (len < 0) { 3123 mod_stat_inc(&failed_kreads); 3124 return len; 3125 } 3126 3127 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3128 int err = module_decompress(&info, buf, len); 3129 vfree(buf); /* compressed data is no longer needed */ 3130 if (err) { 3131 mod_stat_inc(&failed_decompress); 3132 mod_stat_add_long(len, &invalid_decompress_bytes); 3133 return err; 3134 } 3135 } else { 3136 info.hdr = buf; 3137 info.len = len; 3138 } 3139 3140 return load_module(&info, uargs, flags); 3141 } 3142 3143 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3144 { 3145 struct idempotent idem; 3146 3147 if (!f || !(f->f_mode & FMODE_READ)) 3148 return -EBADF; 3149 3150 /* See if somebody else is doing the operation? */ 3151 if (idempotent(&idem, file_inode(f))) { 3152 wait_for_completion(&idem.complete); 3153 return idem.ret; 3154 } 3155 3156 /* Otherwise, we'll do it and complete others */ 3157 return idempotent_complete(&idem, 3158 init_module_from_file(f, uargs, flags)); 3159 } 3160 3161 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3162 { 3163 int err; 3164 struct fd f; 3165 3166 err = may_init_module(); 3167 if (err) 3168 return err; 3169 3170 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3171 3172 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3173 |MODULE_INIT_IGNORE_VERMAGIC 3174 |MODULE_INIT_COMPRESSED_FILE)) 3175 return -EINVAL; 3176 3177 f = fdget(fd); 3178 err = idempotent_init_module(f.file, uargs, flags); 3179 fdput(f); 3180 return err; 3181 } 3182 3183 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3184 char *module_flags(struct module *mod, char *buf, bool show_state) 3185 { 3186 int bx = 0; 3187 3188 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3189 if (!mod->taints && !show_state) 3190 goto out; 3191 if (mod->taints || 3192 mod->state == MODULE_STATE_GOING || 3193 mod->state == MODULE_STATE_COMING) { 3194 buf[bx++] = '('; 3195 bx += module_flags_taint(mod->taints, buf + bx); 3196 /* Show a - for module-is-being-unloaded */ 3197 if (mod->state == MODULE_STATE_GOING && show_state) 3198 buf[bx++] = '-'; 3199 /* Show a + for module-is-being-loaded */ 3200 if (mod->state == MODULE_STATE_COMING && show_state) 3201 buf[bx++] = '+'; 3202 buf[bx++] = ')'; 3203 } 3204 out: 3205 buf[bx] = '\0'; 3206 3207 return buf; 3208 } 3209 3210 /* Given an address, look for it in the module exception tables. */ 3211 const struct exception_table_entry *search_module_extables(unsigned long addr) 3212 { 3213 const struct exception_table_entry *e = NULL; 3214 struct module *mod; 3215 3216 preempt_disable(); 3217 mod = __module_address(addr); 3218 if (!mod) 3219 goto out; 3220 3221 if (!mod->num_exentries) 3222 goto out; 3223 3224 e = search_extable(mod->extable, 3225 mod->num_exentries, 3226 addr); 3227 out: 3228 preempt_enable(); 3229 3230 /* 3231 * Now, if we found one, we are running inside it now, hence 3232 * we cannot unload the module, hence no refcnt needed. 3233 */ 3234 return e; 3235 } 3236 3237 /** 3238 * is_module_address() - is this address inside a module? 3239 * @addr: the address to check. 3240 * 3241 * See is_module_text_address() if you simply want to see if the address 3242 * is code (not data). 3243 */ 3244 bool is_module_address(unsigned long addr) 3245 { 3246 bool ret; 3247 3248 preempt_disable(); 3249 ret = __module_address(addr) != NULL; 3250 preempt_enable(); 3251 3252 return ret; 3253 } 3254 3255 /** 3256 * __module_address() - get the module which contains an address. 3257 * @addr: the address. 3258 * 3259 * Must be called with preempt disabled or module mutex held so that 3260 * module doesn't get freed during this. 3261 */ 3262 struct module *__module_address(unsigned long addr) 3263 { 3264 struct module *mod; 3265 3266 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3267 goto lookup; 3268 3269 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3270 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3271 goto lookup; 3272 #endif 3273 3274 return NULL; 3275 3276 lookup: 3277 module_assert_mutex_or_preempt(); 3278 3279 mod = mod_find(addr, &mod_tree); 3280 if (mod) { 3281 BUG_ON(!within_module(addr, mod)); 3282 if (mod->state == MODULE_STATE_UNFORMED) 3283 mod = NULL; 3284 } 3285 return mod; 3286 } 3287 3288 /** 3289 * is_module_text_address() - is this address inside module code? 3290 * @addr: the address to check. 3291 * 3292 * See is_module_address() if you simply want to see if the address is 3293 * anywhere in a module. See kernel_text_address() for testing if an 3294 * address corresponds to kernel or module code. 3295 */ 3296 bool is_module_text_address(unsigned long addr) 3297 { 3298 bool ret; 3299 3300 preempt_disable(); 3301 ret = __module_text_address(addr) != NULL; 3302 preempt_enable(); 3303 3304 return ret; 3305 } 3306 3307 /** 3308 * __module_text_address() - get the module whose code contains an address. 3309 * @addr: the address. 3310 * 3311 * Must be called with preempt disabled or module mutex held so that 3312 * module doesn't get freed during this. 3313 */ 3314 struct module *__module_text_address(unsigned long addr) 3315 { 3316 struct module *mod = __module_address(addr); 3317 if (mod) { 3318 /* Make sure it's within the text section. */ 3319 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3320 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3321 mod = NULL; 3322 } 3323 return mod; 3324 } 3325 3326 /* Don't grab lock, we're oopsing. */ 3327 void print_modules(void) 3328 { 3329 struct module *mod; 3330 char buf[MODULE_FLAGS_BUF_SIZE]; 3331 3332 printk(KERN_DEFAULT "Modules linked in:"); 3333 /* Most callers should already have preempt disabled, but make sure */ 3334 preempt_disable(); 3335 list_for_each_entry_rcu(mod, &modules, list) { 3336 if (mod->state == MODULE_STATE_UNFORMED) 3337 continue; 3338 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3339 } 3340 3341 print_unloaded_tainted_modules(); 3342 preempt_enable(); 3343 if (last_unloaded_module.name[0]) 3344 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3345 last_unloaded_module.taints); 3346 pr_cont("\n"); 3347 } 3348 3349 #ifdef CONFIG_MODULE_DEBUGFS 3350 struct dentry *mod_debugfs_root; 3351 3352 static int module_debugfs_init(void) 3353 { 3354 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3355 return 0; 3356 } 3357 module_init(module_debugfs_init); 3358 #endif 3359